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Abstract

Weighted voting games are a popular model of collaboration in multiagent systems.
In such games, each agent has a weight (intuitively corresponding to resources he can
contribute), and a coalition of agents wins if its total weight meets or exceeds a given
threshold. Even though coalitional stability in such games is important, existing
research has nonetheless only considered the stability of the grand coalition. In this
paper, we introduce a model for weighted voting games with coalition structures.
This is a natural extension in the context of multiagent systems, as several groups of
agents may be simultaneously at work, each serving a different task. We then proceed
to study stability in this context. First, we define the CS-core, a notion of the core
for such settings, discuss its non-emptiness, and relate it to the traditional notion of
the core in weighted voting games. We then investigate its computational properties.
We show that, in contrast with the traditional setting, it is computationally hard to
decide whether a game has a non-empty CS-core, or whether a given outcome is in
the CS-core. However, we then provide an efficient algorithm that verifies whether an
outcome is in the CS-core if all weights are small (polynomially bounded). Finally,
we also suggest heuristic algorithms for checking the non-emptiness of the CS-core.

1 Introduction

Coalitional games [8] provide a rich framework for the study of cooperation both in eco-
nomics and politics, and have been successfully used to model collaboration in multiagent
systems [9, 3]. In such games, teams (or coalitions) of agents come together to achieve a
common goal, and derive individual benefits from this activity.

A particularly simple, yet expressive, class of coalitional games is that of weighted voting
games (WVGs) [11]. In a weighted voting game each player (or agent) has a weight, and a
coalition wins if its members’ total weight meets or exceeds a certain threshold, and loses
otherwise. Weighted voting has straightforward applications in a plethora of societal and
computer science settings ranging from real-life elections to computer operating systems,
as well as a variety of settings involving multiagent coordination. In particular, an agent’s
weight can be thought of as the amount of resources available to this agent, and the threshold
indicates the amount of resources necessary to achieve a task. A winning coalition then
corresponds to a team of agents that can successfully complete this task.

Originally, research in weighted voting games was motivated by a desire to model
decision-making in governmental bodies. In such settings, the threshold is usually at least
50% of the total weight, and the issues of interest relate to the distribution of payoffs within
the grand coalition, i.e., the coalition of all agents. Perhaps for this reason, to date, all
research on weighted voting games tacitly assumes that the grand coalition will form. How-
ever, in multiagent settings such as those described above, the threshold can be significantly
smaller than 50% of the total weight, and several winning coalitions may be able to form
simultaneously. Moreover, in this situation the formation of the grand coalition may not,
in fact, be a desirable outcome: instead of completing several tasks, forming the grand
coalition concentrates all agent resources on finishing a single task. In contrast, the overall
efficiency will be higher if the agents form a coalition structure (CS), i.e., a collection of
several disjoint coalitions.
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To model such scenarios, in this paper we introduce a model for WVGs with coalition
structures. We then focus on the issue of stability in this setting. A structure is stable
when rational agents are not motivated to depart from it, and thus they can concentrate
on performing their task, rather than looking for ways to improve their payoffs. Therefore,
stability provides a useful balance between individual goals and overall performance. To
study it, we extend the notion of the core—a classic notion of stability for coalitional games—
to our setting, by defining the CS-core for WVGs. We then provide a detailed study of this
concept, comparing it with the classic core and analyzing its computational properties.

Our main contributions are as follows: (1) we define a new model that allows weighted
voting games to admit coalition structures (Sec. 3); (2) we define the CS-core for such games,
relate it to the classic core, and describe sufficient conditions for its non-emptiness (Sec. 4);
(3) we show that several natural CS-core-related problems are intractable—namely, it is
NP-hard to decide the non-emptiness of the CS-core and coNP-complete to check whether
a given outcome is in the CS-core (Sec. 5). Interestingly, this contrasts with what holds
in weighted voting games without coalition structures, where both of these problems are
polynomial-time solvable; (4) we provide a polynomial-time algorithm to check if a given
outcome is in the CS-core in the important special case of polynomially-bounded weights.
We then show how to use this algorithm to efficiently check if a given coalition structure
admits a stable payoff distribution, and suggest a heuristic algorithm to find an allocation
in the core (Sec. 6). Before presenting our results, we provide some background and a brief
review of related work.

2 Background and Related Work

In this section, we provide an overview of the basic concepts in coalitional game theory. Let
I, |I| = n, be a set of players. A subset C ⊆ I is called a coalition. A coalitional game with
transferable utility is defined by its characteristic function v : 2I 7→ R that specifies the value
v(C) of each coalition C [12]. Intuitively, v(C) represents the maximal payoff the members
of C can jointly receive by cooperating, and it is assumed that the agents can distribute
this payoff between themselves in any way.

While the characteristic function describes the payoffs available to coalitions, it does not
prescribe a way of distributing these payoffs. We say that an allocation is a vector of payoffs
x = (x1, . . . , xn) assigning some payoff to each i ∈ I. We write x(S) to denote

∑
i∈S xi.

An allocation is feasible for the grand coalition if x(I) ≤ v(I). An imputation is a feasible
allocation that is also efficient, i.e., x(I) = v(I).

A weighted voting game (WVG) is a coalitional game G given by a set of agents I =
{1, . . . , n}, their weights w = {w1, . . . , wn}, wi ∈ R+, and a threshold T ∈ R; we write
G = (I;w;T ). We use w(S) to denote

∑
i∈S wi. For a coalition S ⊆ I, its value v(S) is 1 if

w(S) ≥ T ; otherwise, v(S) = 0. Without loss of generality, the value of the grand coalition
I is 1 (i.e., w(I) ≥ T ).

One of the best-known solution concepts describing coalitional stability is the core[8].

Definition 1. An allocation x is in the core of G iff x(I) = v(I) and for any S ⊆ I we
have x(S) ≥ v(S).

If an allocation x is in the core, then no subgroup of agents can guarantee all of its
members a higher payoff than the one they receive in the grand coalition under x. This
definition of the core can therefore be used to characterize the stability of the grand coalition.

The setting where several coalitions can form at the same time can be modeled using
coalition structures. Formally, a coalition structure (CS ) is an exhaustive partition of the
set of agents. CS(G) denotes the set of all coalition structures for G. Given a structure
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CS = {C1, . . . , Ck}, an allocation x is feasible for CS if x(Ci) ≤ v(Ci) for i = 1, . . . , k and
efficient for CS if this holds with equality.

Games with coalition structures were introduced by Aumann and Dreze [2], and are
obviously of interest from an AI/multiagent systems point of view, as illustrated in Section 1.
Indeed, in this context dealing with coalition structures other than the grand coalition is of
uttermost importance: simply put, there is a plethora of realistic application scenarios where
the emergence of the grand coalition is either not guaranteed, might be perceivably harmful,
or is plainly impossible. In particular, in the context of WVGs, by forming several disjoint
winning coalitions, the agents generate more payoff than in the grand coalition. Additional
motivation from an economics perspective is given in [2], which contains a thorough and
insightful discussion on why coalition structures arise.

Now, there exists a handful of approaches in the multiagent literature that do take
coalition structures explicitly into account. Sandholm and Lesser [9] discuss the stability of
coalition structures when examining the problem of allocating computational resources to
coalitions. In particular, they introduce a notion of bounded rational core that explicitly
takes into account coalition structures. Apt and Radzik [1] also do not restrain themselves
to problems where the outcome is the grand coalition only. Instead, they introduce various
stability notions for abstract games whose outcomes can be coalition structures, and discuss
simple transformations (essentially split and merge rules) by which stable partitions of the
set of players may emerge. Dieckmann and Schwalbe [5] also propose a version of the
core with coalition structures when dealing with coalition formation in a dynamic context.
Finally, Chalkiadakis and Boutilier also define a core with coalition structures when tackling
coalition formation under uncertainty [4]. None of these papers studies WVGs, however.

A thorough discussion of weighted voting games can be found in [11]. The stability-
related solution concepts for WVGs (without coalition structures) have recently been studied
by Elkind et al. [6], who also investigate them from computational perspective. However,
there is no existing work in the literature studying WVGs with coalition structure—a class
of games that we now proceed to define.

3 Coalition structures in WVGs

We now extend the traditional model for WVGs to allow for coalition structures. First,
an outcome of a game is now a pair of the form (coalition structure, allocation) rather
than just an allocation. Furtheremore, in the traditional model, any allocation of payoffs
among the participating agents is required to be an exhaustive partition of the value of the
grand coalition. In other words, it is always an imputation, i.e., an allocation of payoffs
that is feasible and efficient for the grand coalition I. As we now allow WVGs to admit
coalition structures, we replace the aforementioned requirement with similar requirements
with respect to a coalition structure:

First, we no longer require an allocation to be an imputation in the classic sense. Instead,
we demand that, for a given outcome (CS ,x), the allocation x of payoffs for I is feasible
for CS . In this way, CS may contain zero or more winning coalitions. Furthermore, we
define an imputation for a coalition structure CS as a vector p of non-negative numbers
(p1, . . . , pn) (one for each agent in I), such that for every C ∈ CS it holds p(C) = v(C) ≤ 1;
we write p ∈ I(CS ). That is, an imputation is now a feasible and efficient allocation of the
payoff of any coalition C ∈ CS .

159



4 Core and CS-core of weighted voting games

In this section we define the core of WVG games with coalition structures, relate it to the
“classic” core of WVG games without coalition structures, and obtain some core character-
ization results for a few interesting classes of WVG games.

The definition of the core (Def. 1) takes the following simple form in the traditional
WVGs setting (see, e.g., [6]):

Definition 2. The core of a WVG game G = (I;w;T ) is the set of imputations p such
that, ∀S ⊆ I, w(S) ≥ T ⇒ p(S) ≥ 1.

Intuitively, an imputation p is in the core whenever the payoffs defined by p are such
that any winning coalition already receives collective payoff of 1 (and therefore no coalition
can improve its payoff by breaking away from the grand coalition).

This notion of the core cannot be directly used for coalition structures: indeed, it de-
mands that an allocation is an imputation in the traditional sense, and therefore no im-
putation for a coalition structure with more than one winning coalition can ever be in the
core. We will now extend this definition to the setting with coalition structures. Namely,
we define the core of weighted voting games with coalition structures, or CS-core, as follows:

Definition 3. The CS-core of a WVG game G = (I;w;T ) with coalition structures is the
set of outcomes (CS ,p) such that ∀S ⊆ I, w(S) ≥ T ⇒ p(S) ≥ 1 and ∀C ∈ CS it holds
p(C) = v(C).

Intuitively, given an outcome that is in the CS-core, no coalition has an incentive to
break away from the coalition structure.

Now, it is well-known (see, e.g., [6]) that in weighted voting games the core is non-empty
if and only if there exists a veto player, i.e., a player that belongs to all winning coalitions,
and an imputation is in the core if and only if it distributes the payoff in some way between
the veto players. This directly implies the following result.

Observation 1 (An imputation in the core induces an outcome in the CS-core). Let G =
(I;w;T ). If the core of G is non-empty, then, for any p in the core, the outcome ({I},p)
is in the CS-core of G.

However, it turns out that the CS-core may be non-empty even when the core is empty.

Example 1. Consider a weighted voting game G = (I;w;T ), where I = {1, 2, 3}, w =
(1, 1, 2) and T = 2. It is easy to see that none of the players in G is a veto player, so G
has an empty core. On the other hand, the outcome (CS ,p), where CS = {{1, 2}, {3}},
p = (1/2, 1/2, 1) is in the CS-core of G. Indeed, agent 3 is getting a payoff of 1 under this
outcome, so his payoff cannot improve. Therefore, the only deviation available to the other
two players is to form singleton coalitions, and this is clearly not beneficial.

We now show that if the threshold T is strictly greater than 50% the CS-core and the
core coincide.

Proposition 1 (In absolute majority games, the cores coincide). Let G = (I;w;T ) be a
WVG game with T > w(I)/2. Then there is an outcome (CS ,p) in the CS-core of G if and
only if p is in the core of G. Consequently, G has a non-empty core if and only if it has a
non-empty CS-core.

Proof. Suppose that an outcome (CS ,p) is in the CS-core of G. As T > w(I)/2, CS can
contain at most one winning coalition C, and hence p(I) = 1. Consider any player i ∈ C
such that pi > 0. If pi is not a veto player, we have w(I \{i}) ≥ T , p(I \{i}) < 1, so (CS ,p)
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is not in the CS-core of G, a contradiction. Hence, under p only the veto players get any
payoff, which implies that p is in the core of G. Conversely, if p is in the core of G, it is
easy to see that ({I},p) is in the CS-core of G.

We can also prove the following sufficient condition for non-emptiness of the CS-core.

Theorem 1. Any weighted voting game G = (I;w;T ) that admits a partition of players
into coalitions of weight T has a non-empty CS-core.

Proof. Let CS = {C1, . . . , Ck} be the corresponding partition such that w(Ci) = T for all
i = 1, . . . , k. Define p by setting pj = wj/T for all j = 1, . . . , n. Consider any winning
coalition S. We have w(S) ≥ T , so p(S) = w(S)/T ≥ 1, and hence S does not want to
deviate. As this holds for any S with v(S) = 1, the outcome (CS ,p) is in the CS-core of
G.

However, it is not the case that the CS-core of a weighted voting game is always non-
empty. In particular, this follows from the fact that the CS-core coincides with the core in
games with T > w(I)/2, and such games may have an empty core. We now show that the
CS-core can be empty also if T < w(I)/2:

Example 2. Consider a weighted voting game G = (I;w;T ), where I = {1, 2, 3, 4, 5},
w = (1, 1, 1, 1, 1) and T = 2. We now show that this game has empty CS-core. Indeed,
consider any CS ∈ CS(G) and any p ∈ I(CS ). Clearly, CS can contain at most two
winning coalitions, so p(I) ≤ 2. Now, if there is a coalition C ∈ CS, |C| ≥ 3, such that
pi > 0 for all i ∈ C, any two players i, j ∈ C can deviate by forming a winning coalition and
splitting the surplus p(C \ {i, j}). If all coalitions have size at most 2, then there is a player
i that forms a singleton coalition (and hence pi = 0). There also exists another player j
such that pj < 1 (otherwise p(I) ≥ 4). But then S = {i, j} satisfies w(S) ≥ T , p(S) < 1, so
it is a successful deviation.

5 Non-emptiness of the CS-core: hardness results

In the rest of the paper, we deal with computational questions related to the notion of
the CS-core. This topic is important since in practical applications agents have limited
computational resources, and may not be able to find a stable outcome if this requires
excessive computation. To provide a formal treatment of complexity issues in our setting,
we assume that all weights and the threshold are integers given in binary. As any rational
weights can be scaled up to integers, this can be done without loss of generality.

In the previous section, we explained how to verify whether the core is non-empty or
whether a given outcome is in the core. It is not hard to see that this verification can be
done in polynomial time: e.g., to check the non-emptiness of the core, we simply check
if w(I \ {i}) ≥ T for all i ∈ I. In WVGs with coalition structures, the situation is very
different. Namely, we will show that it is NP-hard to decide whether a given WVG has
a non-empty CS-core. Moreover, even if we are given an imputation, it is coNP-complete
to decide whether it is in the CS-core of a given WVG. We now state these computational
problems more formally.

Name: NonEmptyCsCore.

Instance: Weighted voting game G = (I;w;T ).

Question: Does G have a non-empty CS-core?

Name: InCsCore.
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Instance: Weighted voting game G = (I;w;T ), a coalition structure CS ∈ CS(G) and an
imputation p ∈ I(CS ).

Question: Is (CS ,p) in the CS-core of G?

Both of our reductions rely on the well-known NP-complete Partition problem. An
input to this problem is a pair (A;K), where A is a list of positive integers A = {a1, . . . , an}
such that

∑n
i=1 ai = 2K. It is a “yes”-instance if there is a subset of indices J such that∑

i∈J ai = K and a “no”-instance otherwise [7, p.223].

Theorem 2. The problem NonEmptyCsCore is NP-hard.

Proof. We will describe a polynomial-time procedure that maps a “yes”-instance of Par-
tition to a “yes”-instance of NonEmptyCsCore and a “no”-instance of Partition
to a “no”-instance of NonEmptyCsCore. Suppose that we are given an instance
(a1, . . . , an;K) of Partition. If there is an i such that ai > K, then obviously it is a
“no”-instance of Partition, so we map it to a fixed “no”-instance of NonEmptyCsCore,
e.g., by setting G = ({1, 2, 3, 4, 5}; (1, 1, 1, 1, 1); 2) as in Example 2. Otherwise, we construct
a game G = (I;w;T ) by setting I = {1, . . . , n}, wi = ai for i = 1, . . . , n, T = K. Note that
in this case we have w(I \ {i}) ≥ T for any i, so there are no veto players in G.

Suppose that we have started with a “yes”-instance of Partition, and let J be such
that

∑
i∈J ai = K. Consider the coalition structure CS = {J, I \ J} and an imputation p

given by pi = wi/K for i = 1, . . . , n. Note that w(J) = w(I \J) = K, so p(J) = p(I \J) = 1,
i.e., p is a valid imputation. It is easy to see that (CS ,p) is in the CS-core of G. Indeed,
for any winning coalition S we have w(S) ≥ K, so p(S) ≥ 1, i.e., the members of S would
not want to deviate.

On the other hand, suppose that we have started with a “no”-instance of Partition.
Consider any outcome (CS ,p) in the resulting game. Clearly, CS can contain at most one
winning coalition: if there are two disjoint winning coalitions, each of them has weight K,
i.e., it can be used as a “yes”-certificate for Partition. If CS contains no winning coalitions,
then it is clearly unstable, as w(I) ≥ T , p(I) = 0. Now, suppose that CS contains exactly
one winning coalition S. In this case we have p(S) = p(I) = 1 and pi = 0 for all i 6∈ S. We
have pi > 0 for some i ∈ S, so p(I \ {i}) < 1. Moreover, by construction, w(I \ {i}) ≥ T .
Hence, I \ {i} can deviate, so (CS ,p) is not in the CS-core of G.

Theorem 3. The problem InCsCore is coNP-complete.

Proof. We will show that the complementary problem on checking that a given outcome is
not in the core is NP-complete.

First, it is easy to see that this problem is in NP: we can guess a coalition S such that
w(S) ≥ T , but p(S) < 1; this coalition can successfully deviate from (CS ,p).

To show that this problem is NP-hard, we construct a reduction from Partition as
follows. Given an instance (a1, . . . , an;K) of Partition, we set I = {1, . . . , n, n + 1, n + 2}
and wi = 2ai for i = 1, . . . , n. Define also I ′ = {1, . . . , n}. The weights wn+1 and wn+2

and the quota T are determined as follows. We construct a coalition S by adding agents
1, 2, . . . to it one by one until the weight of S is at least 2K. If the weight of S is exactly
2K, this means that we have started with a “yes”-instance of Partition. In this case, we
set wn+1 = wn+2 = 0, T = 2K, CS = {I}, and pi = wi/T for all i ∈ I. It is easy to see
that the outcome (CS ,p) is not stable: the agents in S can deviate and increase their total
payoff from 1/2 to 1. Hence, in this case we have mapped a “yes”-instance of Partition
to a “no”-instance of InCsCore.

Now, suppose that w(S) > 2K. As all weights are even, we have w(S) = 2Q for some
integer Q > K. Also, we have w(I ′ \ S) = 4K − 2Q. Set T = 2Q, and let wn+1 = wn+2 =
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2Q − 2K. Now we have w(I \ S) = 4K − 2Q + 4Q − 4K = 2Q, i.e., both S and I \ S
are winning coalitions. Set CS = {S, I \ S}. Now, p is defined as follows: for all i ∈ I ′

set pi = wi/T , set pn+1 = wn+1/(T + 1), and set pn+2 = 1 − p(I ′ \ S) − pn+1. We have
p(S) = w(S)/T = 1, p(I \S) = p(I ′ \S)+pn+1 +pn+2 = 1, so p is an imputation. Note also
that we have pn+1 + pn+2 = 1− p(I ′ \S) = 1−w(I ′ \S)/T = (wn+1 + wn+2)/T . Moreover,
we have pn+1 < wn+1/T , p(I ′ \ S) = w(I ′ \ S)/T , and hence pn+2 > wn+2/T .

We now show that if (a1, . . . , an;K) is a “yes”-instance of Partition, then
〈(I;w;T ),CS ,p〉 is a “no”-instance of InCsCore. Indeed, suppose there is a set J such that∑

i∈J ai = K. Consider the coalition J ′ = J∪{n+1}. We have w(J ′) = 2K+2Q−2K, so it
is a winning coalition. On the other hand, p(J ′) = p(J)+pn+1 = w(J)/T +wn+1/(T +1) <
w(J ′)/T = 1. Hence, J ′ can benefit from deviating, i.e., (CS ,p) is not in the core.

On the other hand, suppose that 〈(I;w;T ),CS ,p〉 is a “no”-instance of InCsCore,
i.e., there is a set J ′′ such that w(J ′′) ≥ T , p(J ′′) < 1. Suppose that w(J ′′) > T , i.e.,
w(J ′′) ≥ T + 1. We have pi ≥ wi/(T + 1) for all i ∈ I (indeed, we have pi ≥ wi/T
for i 6= n + 1 and pi = wi/(T + 1) for i = n + 1), so p(J ′′) ≥ w(J ′′)/(T + 1) ≥ 1, a
contradiction. Hence, we have w(J ′′) = T . Moreover, if n + 1 6∈ J ′′, we have p(J ′′) ≥
w(J ′′)/T = 1, a contradiction again. Therefore, n + 1 ∈ J ′′. Finally, if n + 2 ∈ J ′′, we have
p(J ′′) = p(J ′′ ∩ I ′) + pn+1 + pn+2 = w(J ′′ ∩ I ′)/T + (wn+1 + wn+2)/T = w(J ′′)/T = 1,
also a contradiction. We conclude that w(J ′′) = T , n + 1 ∈ J ′′, n + 2 6∈ J ′′, and hence
w(J ′′ ∩ I ′) = 2Q− (2K − 2Q) = 2K, which means that

∑
i∈J′′∩I′ ai = K, i.e., J ′′ ∩ I ′ is a

witness that we have a “yes”-instance of Partition.

6 Algorithms for the CS-core

The hardness results presented in the previous section rely on all weights being given in
binary. However, in practical applications it is often the case that the weights are not too
large, or can be rounded down so that the weights of all agents are drawn from a small range
of values. In such cases, we can assume that the weights are given in unary, or, alternatively,
are at most polynomial in n. It is therefore natural to ask if our problems can be solved
efficiently in such settings. It turns out that for InCsCore this is indeed the case.

Theorem 4. There exists a pseudopolynomial1 algorithm AInCsCore for InCsCore, i.e.,
an algorithm that correctly decides whether a given outcome (CS ,p) is in the CS-core of a
weighted voting game (I;w;T ) and runs in time poly(n, w(I), |p|), where |p| is the number
of bits in the binary representation of p.

Proof. The input to our algorithm is an instance of InCsCore, i.e., a weighted voting
game G = (I;w;T ), a coalition structure CS ∈ CS(G) and an imputation p ∈ I(CS ). The
outcome (CS ,p) is not stable if and only if there exists a set S such that w(S) ≥ T , but
p(S) < 1. This means that our problem is essentially reducible to the classic Knapsack
problem [7], which is known to have a pseudopolynomial time algorithm based on dynamic
programming. In what follows, we present this algorithm for completeness.

Let W = w(I). For j = 1, . . . , n and w = 1, . . . ,W , let P (j, w) be the smallest total
payoff of a coalition with total weight w all of whose members appear in {1, . . . j}: P (j, w) =
min{p(J) | J ⊆ {1, . . . , j}, w(J) = w}. Now, if minw=T,...,W P (n, w) < 1, it means that
there is a winning coalition whose total payoff is less than 1. Obviously, this coalition would
like to deviate from (CS ,p), i.e., in this case (CS ,p) is not in the CS-core. Otherwise, the
payoff to any winning coalition (not necessarily in CS ) is at least 1, so no group of agents
wants to deviate from CS , and thus (CS ,p) is in the CS-core.

1An algorithm whose running time is polynomial if all numbers in the input are given in unary is called
pseudopolynomial.
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It remains to show how to compute P (j, w) for all j = 1, . . . , n, w = 1, . . . ,W . For
j = 1, we have P (1, w) = p1 if w = w1 and P (1, w) = +∞ otherwise. Now, suppose
we have computed P (j, w) for all w = 1, . . . ,W . Then we can compute P (j + 1, w) as
min{P (j, w), pj+1 + P (j, w − wj)}. The running time of this algorithm is polynomial in n,
W and |p|, i.e., in the size of the input.

We now show how to use the algorithm AInCsCore to check whether for a given coalition
structure CS there exists an imputation p such that the outcome (CS ,p) is in the CS-core.
Our algorithm for this problem also runs in pseudopolynomial time.

Theorem 5. There exists a pseudopolynomial algorithm Ap that given a weighted voting
game G = (I;w;T ) and a coalition structure CS ∈ CS(G), correctly decides whether there
exists an imputation p ∈ I(CS ) such that the outcome (CS ,p) is in the CS-core of G and
runs in time poly(n, w(I)).

Proof. Suppose CS = {C1, . . . , Ck}. Consider the following linear feasibility program (LFP)
with variables p1, . . . , pn:

pi ≥ 0 for all i = 1, . . . , n∑
i∈Cj

pi = 1 for all j such that w(Cj) ≥ T

∑
i∈Cj

pi = 0 for all j such that w(Cj) < T

∑
i∈J

pi ≥ 1 for all J ⊆ I such that w(J) ≥ T (1)

The first three groups of equations require that p is an imputation for CS : all payments
are non-negative, the sum of payments to members of each winning coalition in CS is 1,
and the sum of payments to members of each losing coalition in CS is 0. The last group of
equations states that there is no profitable deviation: the payoff to each winning coalition
(not necessarily in CS ) is at least 1. Clearly, we can implement the algorithm Ap by solving
this LFP, as follows:

The size of this LFP may be exponential in n, as there is a constraint for each winning
coalition. Nevertheless, it is well-known that such LFPs can be solved in polynomial time
by the ellipsoid method provided that they have a polynomial-time separation oracle. A
separation oracle is an algorithm that, given an alleged feasible solution, checks whether it
is indeed feasible, and if not, outputs a violated constraint [10]. In our case, such an oracle
will have to verify whether a given vector p violates one of the constraints in (1):

It is straightforward to verify whether all pi are non-negative, and whether the payment
to each winning coalition in CS is 1 and the payment to each losing coalition in CS is 0. If
any of these constraints is violated, our separation oracle outputs the violated constraint. If
this is not the case, we can use the algorithm AInCsCore described in the proof of Theorem 4
to decide whether there exists a winning coalition J such that w(J) ≥ T , p(J) < 1; this
algorithm can be easily adapted to return such coalition if one exists. If AInCsCore produces
such a coalition, our separation oracle outputs the corresponding violated constraint. If
AInCsCore reports that no such coalition exists, then (CS ,p) is in the CS-core of G, so we
can output p and stop.

The algorithm Ap described in the proof of Theorem 5 allows us to check whether a
given weighted voting game G has a non-empty CS-core: we can enumerate all coalitional
structures in CS(G), and for each of them check whether there is an imputation p, which,
combined with the coalition structure under consideration, results in a stable outcome.
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However, the number of coalition structures in CS(G) is exponential in n, and solving
a linear feasibility problem for each of them using the ellipsoid method is prohibitively
expensive. We now describe heuristics that can be used to speed up this process.

First, observe that we can exclude from consideration coalition structures that contain
more than one losing coalition. Indeed, if any such coalition structure is stable, the coalition
structure obtained from it by merging all losing coalitions will also be stable. Moreover,
we can assume that each winning coalition C in our coalition structure is minimal, i.e., if
we delete any element from C, it becomes a losing coalition. The argument is similar to
the previous case: if any coalition structure with a non-minimal coalition C is stable, the
coalition structure obtained by moving the extraneous element from C to the (unique) losing
coalition is also stable.

Now, suppose that we have a coalition structure CS = {C0, C1, . . . , Ck} such that
v(C0) = 0 (C0 can be empty), v(Ci) = 1 for i = 1, . . . , k, and all Ci, i > 0, are mini-
mal. Consider an agent j ∈ Ci, i > 0. If pj > 0 and w(C0) ≥ wj , then CS is not stable:
the players in C0 ∪ Ci \ {j} can deviate by forming a winning coalition and redistributing
the extra payoff of pj between themselves. Set C ′

i = {j ∈ Ci | wj ≤ w(C0)}. The argument
above shows that the members of the sets C ′

i get paid 0 under any imputation p such that
(CS ,p) is stable. Now, set C ′ = ∪i>0C

′
i. If w(C ′) + w(C0) ≥ T , there is no imputation p

such that (CS ,p) is stable: any such imputation would have to pay 0 to players in C0 and
each C ′

i, but then the players in these sets can jointly deviate and form a winning coalition.
Therefore, we can speed up the algorithm in the proof of Theorem 5 as follows: given

a coalition structure CS = {C0, C1, . . . , Ck}, compute the sets C ′
i, i = 1, . . . , k, and check

whether w(C ′) + w(C0) ≥ T . If this is indeed the case, there is no imputation p such that
(CS ,p) is stable. Otherwise, run the algorithm Ap. Clearly, this preprocessing step is very
fast (in particular, unlike Ap, it runs in polynomial time even if the weights are large, i.e.,
given in binary), and in many cases we will be able to reject a candidate coalition structure
without having to solve the LFP (which is computationally expensive).

7 Conclusions

In this paper, we extended the model of weighted voting games (WVGs) to allow for the for-
mation of coalition structures, thus permitting more than one coalition to be winning at the
same time. We then studied the problem of stability of the resulting structure in such games.
Specifically, we introduced CS-core (the core with coalition structures), and discussed its
properties by relating it to the traditional concept of the core for WVGs and proving suf-
ficient conditions for its non-emptiness. Following that, we showed that deciding CS-core
non-emptiness or checking whether an outcome is in the CS-core are computationally hard
problems (unlike what holds in the traditional WVGs setting). However, for specific classes
of games, we presented polynomial-time algorithms for checking if a given outcome is in the
CS-core, and discovering a CS-core element given a coalition structure. We then suggested
heuristics that, combined with these algorithms, can be used to generate an outcome in the
CS-core. We believe that the line of work presented here is important: Weighted voting
games are well understood, and the addition of coalition structures increases the usability of
this intuitive framework in multiagent settings (where weights can represent resources and
thresholds do not necessarily exceed 50%).

In terms of future work, we intend, first of all, to come up with new heuristics to speed
up our algorithms. In addition, notice that the algorithms and heuristics of Sec. 6 provide
essentially centralized solutions to their respective problems. Therefore, we are interested in
studying decentralized approaches; to begin, we intend to speed up, in the WVGs context,
the exponential decentralized coalition formation algorithm of [5]. Finally, studying other
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solution concepts in this context, such as the Shapley value [8], is also within our intentions.
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