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Abstract

The paper a discusses the interaction properties between preference and choice of
coalitions in a strategic interaction. A language is presented to talk about the conflict
between coalitionally optimal and socially optimal choices. Norms are seen as social
constructions that enable to enforce socially desirable outcomes.

aThis paper has been presented at the Ninth International Workshop on Deontic Logic
in Computer Science (DEON’08) and it is to be found in the conference proceedings (see
[4]).

1 Introduction

One fundamental issue of social choice theory [1] is how to aggregate the preferences of
individual agents in order to form decisions to be taken by society as a whole. However,
once we want to take into account the capabilities of agents, as we do in Multi Agent
Systems, mere social choice functions are not enough to explain how and (especially) why
individual interests are aggregated in the way they are. In this context, norms should be
seen as social constructions that enable us to enforce socially desirable outcomes [5].

In particular there are situations in which individual preferences are not compatible
and coalitions compete to achieve a given social order. A typical case is that of an agent’s
capability to positively or negatively affect the realization of other agents’ preferences. In our
paper we will view the enactment of norms as aimed at the regulation of such interactions.
By enacting a norm we mean the introduction of a normative constraint on individual and
collective choices in a Multi Agent System.

We are specifically concerned with cases where the collective perspective is at odds with
the individual perspective. That is, cases where we think that letting everybody pick their
own best action regardless of others’ interest gives a non-optimal result. The main question
we are dealing with is then: how do we determine which norms, if any, are to be imposed?

To answer this question, the paper presents a language to talk about the conflict between
coalitionally optimal and socially optimal choices, and it expresses deontic notions referring
to such circumstances.

1.0.1 Motivating Example

Let us consider a situation (Table 1) in which two players have the possibility of passing
believed (truth) or disbelieved information (lie). If both players do not lie, they share their
information, being both better off. If they both lie, they do not receive any advantage. But
the worst case for a player is the one in which he does not lie and the opponent does.

In this situation, a legislator that wants to achieve the socially optimal state (players do
not lie), should declare that lying is forbidden, thereby labeling the combinations of moves
(lie, lie), (lie, truth) and (truth, lie) as violations.

The lying matrix is nothing but a Prisoner Dilemma [11], that is an interactive situation
in which the advantages of cooperation are overruled by the incentive for individual players
to defect. In Prisoner Dilemmas, individually rational players have no incentive to cooperate,

145



because defecting is better for a player considering all possible answers of the opponent. Note
that cooperation is in the interest of the players themselves, since they would be better off
than if they had pursued the unique Nash Equilibrium [11], ending up in the (lie, lie) state.
However it is by no means clear that players should not pursue their own interest. In fact
once we reach a state in which one player lies and the other does not lie, we cannot move
to any other state without one of the two players being worse off.

1.0.2 A deontic logic for efficient interactions

Once we view a deontic language as regulating a Multi Agent System, we can say that a
set of commands promote a certain interaction, prohibiting certain others. Following this
line of reasoning it is possible, given a notion of optimality or efficiency, to provide a set of
deontic formulas that agree with such notion, as we have done with Pareto Optimality.

What we do then is to provide a deontic language for all possible interactions, based on
an underlying notion of optimality. This is quite a difference from the legal codes that we
can find in a certain society, where norms are either explicitly and specifically formulated
and written down in law books, contracts, etc., or are left implicit in the form of promises,
values or mores [5]. The obligations and prohibitions in our system result from one general
norm saying that all actions of sub-groups that do not take into account the interests of the
society as a whole, are forbidden. Then, one way to use our logic is to derive obligations,
permissions and prohibitions from conflicting group preferences, and use these as suggestions
for norm introduction in the society.

We do not claim that the meaning of these operators, as studied in deontic logic, cor-
responds to our semantics, but rather we claim that when people make new norms they
should choose those norms on the basis of the economical order behind them [17].

In order to represent abilities of agents we employ coalition logic [13], and we model an
agent’s preferences as a preorder on the domain of discourse. To model optimal social norms
we introduce a generalization of the economical notion of Strong Pareto Efficiency (see for
instance [11]), described as those sets of outcomes from which the grand coalition (i.e. the
set of all agents taken together) has no interest to deviate. Our generalization consists of the
fact that we do not make the assumption that these outcomes are singletons. In particular
(unless specified) we do not make the assumption of playability described in [13], according
to which the set of all agents can bring about any realizable outcome of the system. We
consider then the elements of the complement of the efficient choices, i.e. all those that are
not optimal, and we build the notion of obligation, prohibition and permission on top of
them.

We postpone to future work all considerations about the effectivity of the norm, that
is, all considerations about how, to what extent and in what way, the norm influences the
behaviour of the agents involved.

As system designers, our aim is then to construct efficient social procedures that can
guarantee a socially desirable property to be reached. We think that normative system
design is at last a proper part of the Social Software enterprise [12].

XXXXXXXXXXRow
Column

Truth Lie

Truth (3, 3) (0, 4)
Lie (4, 0) (1, 1)

Table 1: Lying or not lying
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The paper is structured as follows: In the first section we introduce the notions of
effectivity and preference, discuss its relevant properties with respect to the problem of
finding optimal social norms, and introduce the notion of domination, Pareto Efficiency and
violation. In the second part we describe the syntax, the structures and the interpretation
of our language. In the third part we discuss the deontic and collective ability modalities
and their properties, and compare them with classical deontic and agency logics; moreover
we discuss the introduction of further constraints in the models, in particular playability of
the effectivity function. We show some examples to give the flavour of the situations we are
able to capture with our formalism. A discussion of future work will follow and a summary
of the present achievements will conclude the paper.

2 Effectivity and preference

We start by defining some concepts underlying the deontic logic of this paper. They concern
the power and the preferences of collectives. We begin with the first of these, by introducing
the concept of a dynamic effectivity function, adopted from [13].

2.1 Effectivity

Definition 1 (Dynamic Effectivity Function)
Given a finite set of agents Agt and a set of states W , a dynamic effectivity function is

a function E : W → (2Agt → 22W

).

Any subset of Agt will henceforth be called a coalition. For elements of W we use variables
u, v, w, . . .; for subsets of W we use variables X,Y, Z, . . .; and for sets of subsets of W (i.e.,
elements of 22W

) we use variables X ,Y,Z, . . .. The elements of W are called ‘states’ or
‘worlds’; the subsets of Agt are called ‘coalitions’; the sets of states X ∈ E(w)(C) are called
the ‘choices’ of coalition C in state w. The set E(w)(C) is called the ‘choice set’ of C in w.
The complement of a set X or of a choice set X are calculated from the obvious domains.

A dynamic effectivity function assigns, in each world, to every coalition a set of sets of
states. Intuitively, if X ∈ E(w)(C) the coalition is said to be able to force or determine that
the next state after w will be some member of the set X. If the coalition has this power, it
can thus prevent that any state not in X will be the next state, but it might not be able to
determine which state in X will be the next state. Possibly, some other coalition will have
the power to refine the choice of C.

Many properties can be attributed to dynamic effectivity functions. An extensive dis-
cussion of them can be found in [13]. For what follows we do not need all the properties
that may be considered reasonable for effectivity. However the following properties seem to
be minimally required:

1. coalition monotonicity: for all X,w,C,D, if X ∈ E(w)(C) and C ⊆ D, then X ∈
E(w)(D);

2. regularity: for all X,w,C, if X ∈ E(w)(C), then X 6∈ E(w)(C);

3. outcome monotonicity: for all X,Y,w,C, if X ∈ E(w)(C) and X ⊆ Y , then Y ∈
E(w)(C);

4. inability of the empty coalition: for all w, E(w)(∅) = {W}
If a dynamic effectivity function has these properties, it will be called coherent.
The first property says that the ability of a coalition is preserved by enlarging the

coalition. In this sense we do not allow new members to interfere with the preexistent

147



capacities of a group of agents. The second property says that if a coalition is able to force
the outcome of an interaction to belong to a particular set, then no possible combinations
of moves by the other agents can prevent this to happen. We think that regularity is a key
property to understand the meaning of ability. If an agent is properly able to do something
this means that others have no means to prevent it. The third property says that if a
coalition is able to force the outcome of the interaction to belong to a particular set, then
that coalition is also able to force the outcome to belong to all his supersets. Outcome
monotonicity is a property of all effectivity functions in coalition logic, which is therefore a
monotonic modal logic [13]. The last condition is the “Inability of the Empty Coalition”.
As notice also by [2] such properties forces the coalition modality for the empty coalition to
be universal: intuitively the empty coalition cannot bring about non-trivial consequences.

Proposition 1 If the effectivity function is coherent then all coalitional effectivity functions
are nonempty and do not contain the empty set.

The last property ensures that the choice of the empty coalition is always the largest pos-
sible one. This property imposes that for all C,w,E(w)(C) 6= ∅ (by coalition monotonicity)
and that ∅ 6∈ E(w)(C) (by regularity).

2.2 Preference

Once we have defined the notion of effectivity, we also need to make reference to the prefer-
ences of coalitions. The notion of preference in strategic interaction can be understood and
modeled in many ways [16]. However we believe that in strategic reasoning players need to
have preferences over the possible outcomes of the game. Thus those are the preferences
that constitute our main concern. Nevertheless we know from the properties of effectivity as
described above, that coalitions may have different abilities at different states, in particular
the grand coalition of agents may gain or lose power while changing a state: the effectivity
is actually a dynamic effectivity.

The claim is thus that agents do have a fixed ordering over the domain of discourse (what
we call preferences), and that they generate their strategic preference considering where the
game may end (called domination). We are going to define both, discussing their properties.

We start from a preference relation for individuals over states working our way up to
preferences for coalitions over sets. To do so, we start from an order on singletons, and we
provide some properties to lift the relation to sets.

Definition 2 (Individual preferences for states) A preference ordering (≥i)i∈Agt con-
sists of a partial order (reflexive, transitive, antisymmentric) ≥i⊆ W ×W for all agents
i ∈ Agt, where v ≥i w has the intuitive reading that v is ‘at least as nice’ as w for agent i.
The corresponding strict order is defined as usual: v >i w if, and only if, v ≥i w and not
w ≥i v.

Definition 3 (Individual preferences for sets of states) Given a preference ordering
(≥i)i∈Agt, we lift it to an ordering on nonempty sets of states by means of the following
principles.

1. {v} ≥i {w} iff v ≥i w; (Singletons)

2. (X ∪ Y ) ≥i Z iff X ≥i Z and Y ≥i Z; (Left weakening)

3. X ≥i (Y ∪ Z) iff X ≥i Y and X ≥i Z. (Right weakening)
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We do not give a comprehensive specification of the logical properties of preference
relations for coalitions, because this would not be relevant for the remainder of this paper.
Different types of interaction may warrant the assumption of different properties for such a
relation. Nevertheless, these are some properties that seem minimally required for calling
some relation a preference relation. The first ensures that preferences are copied to possible
choices. The properties of left and right weakening ensure a lifting from singletons to sets.

The lifting enables us to deal with preference under uncertainty or indeterminacy. The
idea is that if an agent were ever confronted with two choices X,Y he would choose X over
Y provided X >i Y

1.
Preferences do not consider any realizability condition, they are simply basic aspirations

of individual agents, on which to construct a more realistic order on the possible outcomes
of the game, which are by definition dependent on what all the agents can do together.

Out of agents’ preferences, we can already define a classical notion of Pareto Efficiency.

Definition 4 (Strong Pareto efficiency) Given a choice set X , a choice X ∈ X is
Strongly Pareto efficient for coalition C if, and only if, for no Y ∈ X , Y ≥i X for all
i ∈ C, and Y >i X for some. When C = Agt we speak of Strong Pareto Optimality.

We will use the characterization of Pareto Efficiency and Optimality to refer to the
notions we have just defined, even though the classical definitions (compare with [11]) are
weaker.

The last definition is clearer when we consider the case X = E(w)(C), but it is formulated
in a more abstract way in order to smoothen the next two definitions.

Proposition 2 Given the preference relation over choices ≥i, and taking A,B in a choice
set X of a coaltion C, with PE(A) to indicate that the choice A is Strongly Pareto Efficient
in X , Strong Pareto Efficiency is monotonic, that is A ⊆ B implies that PE(B) whenever
PE(A).

Proof Suppose A ⊆ B and PE(A) and suppose it is not the case that PE(B). This means
that there is a choice X in the choice set X of C such that X >i B for some i ∈ C. But
being A ⊆ B this would imply that X >i A, contradicting the assumption that PE(A).

Pareto Efficiency is usually defined disregarding the strategies of the players. Neverthe-
less, once we claim that the outcome of an interaction need not be a singleton, we need to
adapt our evaluation of efficiency to such an assumption.

We now construct a preference relation on choices. To do so we first need to look at the
interaction that agents’ choices have with one another.

Definition 5 (Subchoice) If E is an effectivity function, and X ∈ E(w)(C), then the
X-subchoice set for C in w is given by EX(w)(C) = {X ∩ Y | Y ∈ E(w)(C)}.

As an example, let us take Table 1. Consider expressions of the form (LieC) to be
intended as the set of worlds that make the proposition LieC true, with the obvious reading.
In our example we have for instance the following cases:

• E(LieC)(w)(R) = {(LieC ∧ LieR), (LieC ∧ TruthR)}
• E(TruthC)(w)(R) = {(TruthC ∧ LieR), (TruthC ∧ TruthR)}

1Preference lifting in interaction is also addessed by Gardenfors in [6]. A modal account of it is given in
Fenrong Liu’s PhD thesis [9].
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Subchoices allow us to reason on a restriction of the game and to consider possible moves
looking from a coalitional point of view, i.e. what is best for a coalition to do provided the
others have already moved.

When agents interact therefore they make choices on the grounds of their own prefer-
ences. Nevertheless the moves at their disposal need not be all those that the grand coalition
has. We can reasonably assume that preferences are filtered through a given coalitional ef-
fectivity function. That is we are going to consider what agents prefer among the things
they can do.

Definition 6 (Domination) Given an effectivity function E, X is undominated for C in
w (abbr. XBC,w) if, and only if, (i) X ∈ E(w)(C) and (ii) for all Y ∈ E(w)(C), (X ∩ Y )
is Pareto efficient in EY (w)(C) for C.

The idea behind the notion of domination is that if X ′ and X ′′ are both members of
E(w)(C) then, in principle, C will not choose X ′′, if X ′ dominates X ′′. This property
ensures that a preference takes into account the possible moves of the other players. This
resembles the notion of Individual Rationality in Nash solutions [11], according to which an
action is chosen reasoning on the possible moves of the others.

Continuing our example, we have the following cases:

• (LieR)BR,w for any w.

• (LieC)BC,w for any w.

• not (LieC , LieR)BAgt,w

The preceding three definitions capture the idea that ‘inwardly’ coalitions reason Pareto-
like, and ‘outwardly’ coalitions reason strategically, in terms of strict domination. A coalition
will choose its best option given all possible moves of the opponents. Looking at the defini-
tion of Optimality we gave, we can see that undomination collapses to individual rationality
when we only consider individual agents, and to Pareto efficiency when we consider the
grand coalition of agents.

Proposition 3

XBAgt,w iff X is a standard Pareto Optimal Choice in w.

XBi,w iff X is a standard Dominating Choice in w for i.

Proof For the first, notice that since E(w)(∅) = {W} (i.e., the empty coalition has no
powers), then X is undominated for Agt in w iff it is Pareto efficient in E(w)(Agt) for Agt
(i.e., it is Pareto optimal in w). The second is due to the restriction of undomination to
singleton agents.

Nevertheless, in our framework, domination is a relation between the choice sets of
a given coalition. This approach looks different from the standard one (see for instance
Osborne and Rubinstein [11]) that considers instead domination as a property of states.

Proposition 4 Game-theoretical domination is expressible in our framework.

It is possible to rewrite a domination of a state x over a state y as the domination of the
choice {x} over {y}, making it a particular case of our definition.

Proposition 5 Undomination is monotonic, that is for X in E(C)(w) for some C,w, if
X ⊆ Y and XBC,w then YBC,w.

which follows from monotonicity of Pareto Optimality for choices and outcome mono-
tonicity.
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2.2.1 Violation

The fundamental idea of this work is that an efficient way to impose normative constraints in
a Multi Agent System is to look at the optimality of the strategic interaction of such system.
In particular the presence of possible outcomes in which agents could not unanimously
improve (Pareto Efficient) can be a useful guide line for designing a new set of norms to be
imposed.

Following this line we define a set of violation sets as the set of those choices that are
not a Pareto Efficient interaction.

Definition 7 (Violation) If E is an effectivity function and C ⊆ C ′, then the choice
X ∈ E(w)(C) is a violation by C towards C ′ in w (X ∈ V IOLC,C′,w) iff there is a Y ∈
E(w)(C ′ \ C), s.t. (X ∩ Y ) is not undominated for C ′ in w.

In words, X is a violation if it is not safe for the other agents, in the sense that not all
the moves at their disposal yield an efficient outcome.

We indicate with V IOLC,w the set violations by C at w towards Agt2.

Proposition 6 If C=C ′ then a violation is a dominated choice; If C=C ′=Agt a violation
is a Pareto inefficient choice.

If we consider the Prisoner Dilemma of Table 1 the following holds:

• (LieR) = V IOLR,w for any w, since (LieR ∧ LieC) is not Agt- undominated;

• (LieC ∧ LieR) = V IOLAgt,w for any w, since not Pareto Efficient.

We can observe here that any choice made by a single agent is a violation. The reason
why it is so has to be found in the form of the game, that requires the grand coalition to
form for an efficient outcome to be forced.

3 Logic

We now introduce the syntax of our logic, an extension of the language of coalition logic
[13] with modalities for permission, prohibition and obligation, and a modality for rational
choice.

3.1 Language

Let Agt be a finite set of agents and Prop a countable set of atomic formulas. The syntax
of our logic is defined as follows:

φ ::= p|¬φ|φ ∨ φ|[C]φ|P (C, φ)|F (C, φ)|O(C, φ)|[rationalC ]φ

where p ranges over Prop and C ranges over the subsets of Agt. The other boolean connec-
tives are defined as usual. The informal reading of the modalities is: “Coalition C can choose
φ”, “It is permitted (/forbidden/obligated) for coalition C to choose φ”, “It is rational for
coalition C to choose φ”.

2One interesting question is whether given any dynamic effectivity function and preference relation (with
the above defined properties) we can always find a coalitionally dominated action (and hence a Pareto
Efficient interaction). The acquainted reader will have noticed the resemblance of this problem with that of
nonemptiness of the Core [11]. We leave though to further work the analysis of this relation. In case there
is none, we may consider a satisfactory notion of optimal choice - as done for instance by Horty [7] - that
looks at the relation between the choices in the choice sets of each coalition.
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3.2 Structures

Definition 8 (Models) A model for our logic is a quadruple

(W,E, {≥i}i⊆Agt, V )

where:

• W is a nonempty set of states;

• E : W −→ (2Agt −→ 22W

) is a coherent effectivity function;

• ≥i⊆W ×W for each i ∈ Agt, is the preference relation;

• V : W −→ 2Prop is the valuation function.

3.3 Semantics

The satisfaction relation of the formulas with respect to a pointed model M,w is defined as
follows:

M,w |= p iff p ∈ V (w)
M,w |= ¬φ iff M,w 6|= φ

M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ
M,w |= [C]φ iff [[φ]]M ∈ E(w)(C)

M,w |= [rationalC ]φ iff ∀X(XBC,w ⇒ X ⊆ [[φ]]M )
M,w |= P (C, φ) iff ∃X ∈ E(w)(C) s.t. X ∈ V IOLC,w and X ⊆ [[φ]]M

M,w |= F (C, φ) iff ∀X ∈ E(w)(C)(X ⊆ [[φ]]M ⇒ X ∈ V IOLC,w)
M,w |= O(C, φ) iff ∀X ∈ E(w)(C)(X ∈ V IOLC,w ⇒ X ⊆ [[φ]]M )

In this definition, [[φ]]M =def {w ∈W | M,w |= φ}.
The modality for coalitional ability is standard from Coalition Logic [13]. The modality

for rational action requires for a proposition φ to be rational (wrt a coalition C in a given
state w) that all undominated choices (for C in w) be in the extension of φ. This means
that there is no safe choice for a coalition that does not make sure that φ will hold. Notice
that it is still possible for a coalition to pursue a rational choice that may be socially not
rational.

The deontic modalities are defined in terms of the coalitional abilities and preferences.
A choice is permitted whenever it is safe, forbidden when it may be unsafe (i.e. when it
contains an inefficient choice), and obligated when it is the only choice that is safe.

4 Discussion

The definition of strong permission does not allow for a permitted choice of an agent to be
refined by the other agents towards a violation. In fact we define permission for φ as “a
φ-choice guarantees safety from violation”. A more standard diamond modality would say “
doing φ is compatible with no violation”. A “safety” definition of permission has also been
studied in [18], [14], [10], [3].
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4.1 Properties

It is now interesting to look at what we can say and what we cannot say within our system.

Some Validities
1 P (C, φ)→ ¬O(C,¬φ)
2 F (C, φ)↔ ¬P (C, φ)
3 P (C, φ) ∨ P (C,ψ)→ P (C, φ ∨ ψ)
4 O(C, φ)→ ([C]φ→ P (C, φ))
5 [rationalC ]φ ∧ [rationalAgt]¬φ→ F (C, φ)
6 O(C, φ) ∨O(C,ψ)→ O(C, φ ∨ ψ)
7 O(C,>)
8 F (C, φ) ∧ F (C,ψ)→ F (C, φ ∧ ψ)
9 [rationalC ]φ ∧ (φ→ ψ)→ [rationalC ]ψ

Some non-Validities
10 ¬O(C,¬φ)→ P (C, φ)
11 P (C, φ ∨ ψ)→ P (C, φ) ∨ P (C,ψ)
12 O(C, φ)↔ ¬O(C,¬φ)
13 [rationalC ]φ↔ [rationalAgt]φ
14 O(C, φ)→ P (C, φ)
15 O(C, φ ∨ ψ)→ O(C, φ) ∨O(C,ψ)

The first validity says that the presence of permission imposes the absence of contrasting
obligations, but the converse is not necessarily true. The second that prohibition and
permission are interdefinable. The third says that the permission of φ or the permission
of ψ implies the permission of φ or ψ. The fourth that the obligation to choose φ for an
agent plus the ability to do something entails the permission to carry out φ. The validity
number 5 says that the presence of a safe state that is rational for the grand coalition of
agents is a norm for every coalition, even in case of conflicting preferences, i.e. in case of
conflict the interest of the grand coalition prevails. The sixth one that obligation for φ or
obligation for ψ implies the obligation for φ or ψ. Validity 7 says that there are no empty
normative systems. The next validity says that prohibition is conjunctive. The last validity
says that rational moves are monotonic. This has interesting implications on the choices of
the agents, since refraining, i.e. choosing the biggest possible outcome, is always rational.

It is also useful to look at the non-validities: Number 10 says that if an agent is not
obliged to choose something then it is permitted to do the contrary. But of course an
agent may not be able to do anything, or may be not able to refine the choices “until the
optimal”. The next non-validity says that a permission of choice is not equivalent to a choice
of permission. Number 12 says that a coalition can be obliged to do contradictory choices.
This situation happens when a coalition is powerless or optimality is not possible. The next
non validity says that the rational action for a certain coalition does not necessarily coincide
with that of the grand coalition. Number 14, that ought does not imply can. The last does
not allow to detach specific obligation from obligatory choices.
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4.1.1 Further Assumptions

Playability Our notion of agency is more general than that of game theory. In particular
we assume that even the grand coalition of agents may not determine a precise outcome of
the interaction.

This is due to the abandonment of the property of playability of the effectivity function,
that requires, together with regularity, outcome monotonicity, coalition monotonicity that:

• X 6∈ E(C) implies X ∈ E(C), that is any choice excluded to a coalition is possible for
the rest of the agents (maximality);

• For all X1, X2, C1, C2 such that C1 ∩ C2 = ∅, X1 ∈ E(C1) and X2 ∈ E(C2) imply
that X1 ∩X2 ∈ E(C1 ∪ C2) (superadditivity)

Playability is a very strong property but it is needed to talk about games. As proved in
[13] [Theorem 2.27], strategic games correspond exactly to playable effectivity functions 3.
With playable effectivity functions, the grand coalition can determine the exact outcome of
the game and the dynamic effectivity function for the grand coalition of agents is the same
in any state.

M,w |= [Agt]φ⇔M |= [Agt]φ

Moreover the fact that preferences do not change, induces the following stronger invari-
ance:

M,w |= [rationalAgt]φ⇔M |= [rationalAgt]φ

So not only is every outcome reachable, but any situation shares the same social opti-
mality. Notice that this is independent of the solution concept we may consider.

Finite Domain Another interesting assumption can be made about the finitness of the
domain of discourse. With finite W , for C being the class of our models, we have that

Proposition 7 |=C [rationalAgt]φ
implies that there exists an efficient outcome in the class of coalition models C

Another property is the following:

|=C [rationalAgt]¬φ ∧ [C]φ→ F (C, φ)

(REG)
which says that any coalition has to refrain from a choice that is against an optimal state

independently of its own preferences. A corresponding propery for obligation is instead the
following:

|=C [rationalAgt]¬φ ∧ [C]¬φ→ O(C,¬φ)

(REG’)

3The proof involves the definition of strategic game as a tuple 〈N, {Σi|i ∈ N}, o, S〉 where N is a set
of players, each i being endowed with a set of strategies σi from Σi, an outcome function that returns the
result of playing individual strategies at each of the states in S; the definition of α effectivity function for
a nonempty strategic game G, EαG : ℘(N) → ℘℘(S) defined as follows: X ∈ EαG∃σC∀σCo(σC ;σC) ∈ X.
The above mentioned theorem establishes that EαG = E in case E is playable and G is a nonempty strategic
game.
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Coalitionally optimal norms The logic can be extended to treat norms that do not lead
to a socially optimal outcome, but a coalitionally optimal outcome. That is it is possible to
construct a deontic logic that pursues the interests of a particular coalition, independently
of the other players’ welfare. This extension is related to the work of Kooi and Tamminga
on conflicting moral codes [8].

We limit the description to the obligation operator, the others are straightforward.
M,w |= OC′

(C, φ) iff ∀X(X BC,w and X ∈ V IOLC,C′,w ⇒ X ⊆ [[φ]]M )
where V IOLC,C′,w is a C violation towards C ′, with C ⊆ C ′.
For this operator it holds that

|=C OC(C, φ)↔ [rationalC ]φ

that is playing for oneself boils down to rational action, and

|=C OAgt(C, φ)↔ O(C, φ)

that is, with the new operator we can express our original obligation operator.

4.2 Example: Norms of Cooperation

To consider forbidden all non optimal choices may seem a very strong requirement. Never-
theless, take the example in Table 1.

It is interesting to notice how V IOL is not equivalent to the situations that each player
is forbidden to choose. This is due to the fact that each player can only refine the choices
of the other players, but cannot determine alone the outcome of the game: a permitted
choice cannot be refined by permitted choices towards an inefficient outcome. Moreover
M |= [R]¬(TR) ∧ [rationalR,C ](TR), that by (REG) allows to conclude F (R,¬(TR)).

No agent is in fact obligated not to lie, but only permitted. Why is it so? Because no
agent can alone reach a singleton state that is only good. But of course as a coalition {R,C}
has the obligation to end up in the optimal state.

Prisoner Dilemma, but think also of Coordination Games, in which individual players
cannot reach a socially optimal outcome, have rules that say something about how coalitions
should choose. This indirectly says something about the coalitions that are necessary to
achieve an optimal outcome, i.e. about the coalitions that should form.

4.3 Future Work

The work here described allows for several developments. Among the most interesting ones
is the study of the relation between imposed outcomes and steady states that describe where
the game will actually end up (i.e. Nash Solution, the Core etc.). Conversely another feature
that is worth studying is those structures in which Pareto Efficiency is not always present.
Agents will reckon some actions as optimal even though there is no social equilibrium that
can ever be reached. One more feature concerns the possibility of an inconsistent normative
system. Further work could be done looking at the factual obedience of the norm, and how
a norm affects preferences of agents (see for instance the work in [15]).

5 Conclusion

In this paper we proposed a deontic logic for optimal social norms. We described the
concept of social optimality, explicitly linking it with the economical concept of Pareto
Efficiency. Moreover we generalized the notion of Pareto Efficiency to capture those strategic
interactions in which even the grand coalition of agents is not able to achieve every outcome.
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Technically we did not assume playability of the coalitional effectivity functions. It is an
important question in itself to understand the class of interactions to which such effectivity
function corresponds. On top of the notion of Optimality we constructed a deontic language
to talk about a normative system resulting from the imposition of such norms. We analyzed
the properties of the language and discussed in details various examples from game theory
and social science.
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