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Abstract

Since its introduction in the mid-nineties, Dung’s theory of abstract argumentation frameworks
has been influential in artificial intelligence. Dung viewed arguments as abstract entities with
a binary defeat relation among them. This enabled extensive analysis of different (seman-
tic) argument acceptance criteria. However, little attention has been given to comparing such
criteria in relation to the preferences of self-interested agents who may have conflicting prefer-
ences over the final status of arguments. In this paper, we define a number of agent preference
relations over argumentation outcomes. We then analyse different argument evaluation rules
taking into account the preferences of individual agents.

1 Introduction
Negotiation is at the core of multiagent systems since it provides procedures so that agents can
find beneficial agreements. While approaches based on game-theory have proved to be highly in-
fluential [9], an alternative approach for conducting negotiations is through argumentation [8]. In
argumentation, the focus is on how assertions or statements are proposed and resolved in settings
where agents may have different opinions and goals. Dung presented one of the most influential
computational models of argument [6]. Arguments are viewed as abstract entities, with a binary
defeat relation among them. This view of argumentation enables high-level analysis while abstract-
ing away from the internal structure of individual arguments. In Dung’s approach, given a set of
arguments and a binary defeat relation, a rule specifies which arguments should be accepted. A
variety of such rules have been analysed using intuitive objective logical criteria such as consistency
or self-defence [2].

Most research that employs Dung’s approach discounts the fact that argumentation takes place
among self-interested agents, who may have conflicting preferences over which arguments end up
being accepted, rejected, or undecided. As such, argumentation can (and arguably should) be studied
as an economic mechanism in which determining the acceptability status of arguments is akin to
allocating resources.

In any allocation mechanism involving multiple agents (be it resource allocation or argument
status assignment), two complementary issues are usually studied. On one hand, we may analyse
the agents’ incentives in order to predict the equilibrium outcome of rational strategies. On the
other hand, we may analyse the properties of the outcomes themselves in order to compare different
allocation mechanisms. The above issues are the subject of study of the field of game theory and
welfare economics, respectively.

The study of incentives in abstract argumentation has commenced recently [7]. To complement
this work, in this paper we initiate the study of preference and welfare in abstract argumentation
mechanisms. To this end, we define several new classes of agent preferences over the outcomes of
an argumentation process. We then analyse different existing rules for argument status assignment
in terms of how they satisfy the preferences of the agents involved. Our focus in this paper is on the
property of Pareto optimality, which measures whether an outcome can be improved for one agent
without harming other agents. We also discuss more refined social welfare measures.

The paper makes two distinct contributions to the state-of-the-art in computational models of
argument. First, the paper extends Rahwan and Larson’s definition of argumentation outcomes [7]

1A preliminary version of this paper appeared in AAAI 2008, with the title Pareto optimality in abstract argumentation.
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to account for complete labellings of arguments (as opposed to accepted arguments only). This
allows us to define a number of novel preference criteria that arguing agents may have.

The second contribution of this paper is the comparison of different argumentation semantics
using a well-known social welfare measure, namely Pareto optimality. To our knowledge, this is
the first attempt to evaluate Dung semantics in terms of the social desirability of its outcomes. In
particular, we show that in many cases, these semantics fail to fully characterise Pareto optimal
outcomes. Thus, when the semantics provides multiple possible argument status assignments, our
analysis presents a new criterion for selecting among those.

2 Background
In this section, we briefly outline key elements of abstract argumentation frameworks. We begin
with Dung’s abstract characterisation of an argumentation system [6]:

Definition 1 (Argumentation framework). An argumentation framework is a pair AF = 〈A,⇀〉
where A is a set of arguments and ⇀⊆ A × A is a defeat relation. We say that an argument α
defeats an argument β if (α, β) ∈⇀ (sometimes written α ⇀ β).2

α3 α2

α4

α1

α5

Figure 1: A simple argument graph

An argumentation framework can be represented as a directed graph in which vertices are ar-
guments and directed arcs characterise defeat among arguments. An example argument graph is
shown in Figure 1. Argument α1 has two defeaters (i.e. counter-arguments) α2 and α4, which are
themselves defeated by arguments α3 and α5 respectively.

Let S+ = {β ∈ A | α ⇀ β for some α ∈ S}. Also let α− = {β ∈ A | β ⇀ α}. We first
characterise the fundamental notions of conflict-free and defence.

Definition 2 (Conflict-free, Defence). Let 〈A,⇀〉 be an argumentation framework and let S ⊆ A
and let α ∈ A.

• S is conflict-free if S ∩ S+ = ∅.

• S defends argument α if α− ⊆ S+. We also say that argument α is acceptable with respect
to S.

Intuitively, a set of arguments is conflict free if no argument in that set defeats another. A set of
arguments defends a given argument if it defeats all its defeaters. In Figure 1, for example, {α3, α5}
defends α1. We now look at different semantics that characterise the collective acceptability of a set
of arguments.

Definition 3 (Characteristic function). Let AF = 〈A,⇀〉 be an argumentation framework. The
characteristic function of AF is FAF : 2A → 2A such that, given S ⊆ A, we have FAF (S) =
{α ∈ A | S defends α}.

When there is no ambiguity about the argumentation framework in question, we will use F
instead of FAF .

2We restrict ourselves to finite sets of arguments.
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Definition 4 (Acceptability semantics). Let S be a conflict-free set of arguments in framework
〈A,⇀〉.

• S is admissible if it is conflict-free and defends every element in S (i.e. if S ⊆ F(S)).

• S is a complete extension if S = F(S).

• S is a grounded extension if it is the minimal (w.r.t. set-inclusion) complete extension (or,
alternatively, if S is the least fixed-point of F(.)).

• S is a preferred extension if it is a maximal (w.r.t. set-inclusion) complete extension (or,
alternatively, if S is a maximal admissible set).

• S is a stable extension if S+ = A\S.

• S is a semi-stable extension if S is a complete extension of which S ∪ S+ is maximal.

Intuitively, a set of arguments is admissible if it is a conflict-free set that defends itself against
any defeater – in other words, if it is a conflict free set in which each argument is acceptable with
respect to the set itself.

An admissible set S is a complete extension if and only if all arguments defended by S are also in
S (that is, if S is a fixed point of the operator F). There may be more than one complete extension,
each corresponding to a particular consistent and self-defending viewpoint.

A grounded extension contains all the arguments which are not defeated, as well as the argu-
ments which are defended directly or indirectly by non-defeated arguments. This can be seen as a
non-committal view (characterised by the least fixed point of F). As such, there always exists a
unique grounded extension. Dung [6] showed that in finite argumentation systems, the grounded ex-
tension can be obtained by an iterative application of the characteristic function to the empty set. For
example, in Figure 1 the grounded extension is {α1, α3, α5}, which is the only complete extension.

A preferred extension is a bolder, more committed position that cannot be extended – by accept-
ing more arguments – without causing inconsistency. Thus a preferred extension can be thought
of as a maximal consistent set of hypotheses. There may be multiple preferred extensions, and the
grounded extension is included in all of them.

Finally, a set of arguments is a stable extension if it is a preferred extension that defeats every
argument which does not belong to it. A semi-stable extension requires the weaker condition that
the set of arguments defeated is maximal.

Crucial to our subsequent analysis is the notion of argument labelling [3], which specifies a
particular outcome of argumentation. It specifies which arguments are accepted (labelled in), which
ones are rejected (labelled out), and which ones whose acceptance or rejection could not be decided
(labelled undec). Labellings must satisfy the condition that an argument is in if and only if all of
its defeaters are out. An argument is out if and only if at least one of its defeaters is in.

Definition 5 (Argument Labelling). Let 〈A,⇀〉 be an argumentation framework. An argument
labelling is a total function L : A → {in, out, undec} such that:

• ∀α ∈ A : (L(α) = out ≡ ∃β ∈ A such that (β ⇀ α and L(β) = in)); and

• ∀α ∈ A : (L(α) = in ≡ ∀β ∈ A : ( if β ⇀ α then L(β) = out))

We will make use of the following notation.

Definition 6. Let AF = 〈A,⇀〉 be an argumentation framework, and L a labelling over AF . We
define:

• in(L) = {α ∈ A | L(α) = in}
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• out(L) = {α ∈ A | L(α) = out}
• undec(L) = {α ∈ A | L(α) = undec}
In the rest of the paper, by slight abuse of notation, when we refer to a labelling L as an extension,

we will be referring to the set of accepted arguments in(L).
Caminada [3] established a correspondence between properties of labellings and the different

extensions. These are summarised in Table 1.

Extensions Restrictions on Labellings
complete all labellings
grounded minimal in

minimal out
maximal undec

preferred maximal in
maximal out

semi-stable minimal undec
stable empty undec

Table 1: The relationships between extensions and labellings.

3 Agent Preferences
Abstract argumentation frameworks have typically been analysed without taking into account the
agents involved. This is because the focus has mostly been on studying the logically intuitive prop-
erties of argument acceptance criteria [2]. Recently research has commenced on evaluating argument
acceptance criteria taking into account agents’ strategic behaviour [7]. In this paper, we focus on
developing an understanding of the underlying preferences of the agents and how these can be used
in refining outcomes of the argumentation process. While we assume that agents are non-strategic,
this paper complements our earlier work in that strategic behaviour is often motivated by underlying
preferences.

In this paper we view an outcome as an argument labelling, specifying not only which arguments
are accepted, but also which ones are rejected or undecided. Thus the set L of possible outcomes is
exactly the set of all possible labellings of all arguments.

We let θi ∈ Θi denote the type of agent i ∈ I which is drawn from some set of possible types
Θi. The type represents the private information and preferences of the agent. More precisely, θi

determines the set Ai of arguments available to agent i, as well as the preference criterion used to
evaluate outcomes. We place no restrictions on the argument sets of agents, and for i 6= j it is
possible that Ai ∩ Aj 6= ∅. An agent’s preferences are over outcomes L ∈ L. By L1 �i L2 we
denote that agent i weakly prefers (or simply prefers) outcome L1 to L2. We say that agent i strictly
prefers outcome L1 to L2, written L1 �i L2, if and only if L1 �i L2 but not L2 �i L1. Finally, we
say that agent i is indifferent between outcomes L1 and L2, written L1 ∼i L2, if and only if both
L1 �i L2 and L2 �i L1.

We define agents’ preferences with respect to restricted sets of arguments in order to model
situations where agents have potentially different domains of knowledge. As a motivating example,
consider a court case where a medical expert is called as an expert witness. This expert can put
forward arguments related to medical forensics, but would be unable to comment on legal issues.
Similarly, an agent’s arguments can be limited by their position of knowledge. For example, a friend
may be in a position to comment on someone’s character, while a stranger’s comments would not be
of interest.

While many classes of preferences are possible, in this paper we focus on self-interested pref-
erences. By this we mean that we are interested in preference structures where each agent i is only
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interested in the status (i.e. labelling) of its own arguments and not on the particular status of other
agents’ arguments. We also emphasize that we assume that all agents understand and share the un-
derlying argumentation system. Thus, the question of merging argumentation systems is outside the
scope of this paper [5].

We start with individual acceptability maximising preferences [7]. Under these preferences, each
agent wants to maximise the number of arguments in Ai that end up being accepted.

Definition 7 (Acceptability maximising preferences). An agent i has individual acceptability max-
imising preferences if ∀L1, L2 ∈ L such that |in(L1) ∩ Ai| ≥ |in(L2) ∩ Ai|, we have L1 �i L2.

An agent may, instead, aim to minimise the number of arguments in Ai that end up rejected.

Definition 8 (Rejection minimising preferences). An agent i has individual rejection minimising
preferences if ∀L1, L2 ∈ L such that |out(L1) ∩ Ai| ≤ |out(L2) ∩ Ai|, we have L1 �i L2.

An agent may prefer outcomes which minimise uncertainty by having as few undecided argu-
ments as possible.

Definition 9 (Decisive preferences). An agent i has decisive preferences if ∀L1, L2 ∈ L if
|undec(L1) ∩ Ai| ≤ |undec(L2) ∩ Ai| then L1 �i L2.

An agent may only be interested in getting all of its arguments collectively accepted.

Definition 10 (All-or-nothing preferences). An agent i has all-or-nothing preferences if and only if
∀L1, L2 ∈ L, if Ai ⊆ in(L1) and Ai * in(L2), then L1 �i L2, otherwise L1 ∼i L2.

Instead of having all of its arguments collectively accepted, an agent may be interested in having
one particular focal argument accepted.

Definition 11 (Focal-argument preferences). An agent i has focal-argument preferences if and only
if there exists some argument α∗i ∈ Ai such that ∀L1, L2 ∈ L if α∗i ∈ in(L1) and α∗i 6∈ in(L2)
then L1 �i L2, otherwise, L1 ∼i L2.

Finally, we analyse a preference structure which is not strictly self-interested. In aggressive
preferences an agent is interested in defeating as many arguments of other all agents’ as possible,
and thus does care about the labelling of arguments of others.

Definition 12 (Aggressive preferences). An agent i has aggressive preferences if ∀L1, L2 ∈ L, if
|out(L1) \ Ai| ≥ |out(L2) \ Ai| then L1 �i L2.

4 Pareto Optimality
Welfare economics provides a formal tool for assessing outcomes in terms of how they affect the
well-being of society as a whole [1]. Often these outcomes are allocations of goods or resources. In
the context of argumentation, however, an outcome specifies a particular labelling. In this section,
we analyse the Pareto optimality of the different argumentation outcomes. Since labellings coincide
exactly with all complete extensions, in the subsequent analysis, all in arguments in our outcomes
are conflict-free, self-defending, and contain all arguments they defend.

A key property of an outcome is whether it is Pareto optimal. This relies on the notion of Pareto
dominance.

Definition 13 (Pareto Dominance). An outcome o1 ∈ O Pareto dominates outcome o2 if ∀i ∈ I ,
o1 �i o2 and ∃j ∈ I , o1 �j o2.

An outcome is Pareto optimal if it is not Pareto dominated by any other outcome – or, equiv-
alently, if it cannot be improved upon from one agent’s perspective without making another agent
worse off. Formally:
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Definition 14 (Pareto Optimality). An outcome o1 ∈ O is Pareto optimal (or Pareto efficient) if
there is no other outcome o2 6= o1 such that ∀i ∈ I , o2 �i o1 and ∃j ∈ I , o2 �j o1.

It is interesting to see that the grounded extension is not Pareto optimal for a population of
individual acceptability maximising agents. Consider the following example.

Example 1. Consider the graph below with three outcomes.

α2 α1

α3

in out

L1

α2 α1

α3L2

α2 α1

α3LG

undec

Suppose we have two agents with types A1 = {α1, α3} and A2 = {α2}. The grounded extension is
the labelling LG, which is not Pareto optimal. Agent 1 strictly prefers L1 and is indifferent between
LG and L2, while agent 2 strictly prefers outcome L2 and is indifferent between LG and L1.

The above observation is caused by the fact that the grounded extension is the minimal com-
plete extension with respect to set inclusion. Thus, it is possible to accept more arguments without
violating the fundamental requirement that the outcome is a complete extension (i.e. conflict-free,
admissible, and includes everything it defends).

One might expect that all preferred extensions are Pareto optimal outcomes, since they are max-
imal with respect to set inclusion. However, as the following example demonstrates, this is not
necessarily the case.

Example 2. Consider the graph below, in which the graph has two preferred extensions.

in

out

α1 α2

L1α4

α3

α5

α1 α2

L2α4

α3

α5

Suppose we have three individual acceptability maximising agents with typesA1 = {α3, α4}, A2 =
{α1} and A3 = {α2, α5}. Agents A1 and A3 are indifferent between the two extensions (they get a
single argument accepted in either) but agent A2 strictly prefers outcome L1. Thus L2 is not Pareto
optimal.

However, it is possible to prove that every Pareto optimal outcome is a preferred extension (i.e.
all non-preferred extensions are Pareto dominated by some preferred extension).

Theorem 1. If agents have acceptability-maximising preferences and if an outcome is Pareto opti-
mal then it is a preferred extension.

Proof. Let L ∈ L be a Pareto optimal outcome. Assume that L is not a preferred extension. Since L
is not a preferred extension, then there must exist a preferred extension LP ∈ L such that in(L) ⊂
in(LP ). Thus, for all i, in(L) ∩ Ai ⊆ in(LP ) ∩ Ai and |in(L) ∩ Ai| ≤ |in(LP ) ∩ Ai| which
implies that LP �i L. Additionally, there exists an argument α′ ∈ Aj for some agent j such that
α′ /∈ L and α′ ∈ LP . Therefore, |in(L) ∩ Aj | < |in(LP ) ∩ Aj | and so LP �j L. That is, LP

Pareto dominates L. Contradiction.

The grounded extension turns out to be Pareto optimal for a different population of agents.
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Theorem 2. If agents have rejection-minimising preferences then the grounded extension is Pareto
optimal.

Proof. This follows from the fact that the grounded extension coincides with labellings with minimal
out labellings [3]. Thus any other outcome would have strictly more out labels, resulting in at least
one agent being made worse-off.

It is also possible to prove the following.

Theorem 3. If agents have rejection-minimising preferences, then for any outcome L ∈ L, either L
is the grounded extension, or L is Pareto dominated by the grounded extension.

Proof. Let LG denote the grounded extension, and let L ∈ L be any outcome. If L = LG then
we are done. Assume that L 6= LG. Since LG has minimal out among all outcomes in L, then
out(LG) ⊂ out(L). Thus, for each agent i, if argument α ∈ Ai and α ∈ out(LG) then α ∈
out(L). Therefore, out(LG) ∩ Ai ⊂ out(L) ∩ Ai, and so |out(LG) ∩ Ai| ≤ |out(L) ∩ Ai|
which implies that LG �i L. In addition, there also exists some agent j and argument α′ such that
α′ ∈ Aj , α′ 6∈ out(LG) and α′ ∈ out(L). Therefore, |out(LG) ∩ Ai| < |out(L) ∩ Ai| which
implies that LG �j L. That is, LG Pareto dominates L.

The two previous theorems lead to a corollary.

Corollary 1. The grounded extension characterises exactly the Pareto optimal outcome among a
rejection minimising population.

The following result relates to decisive agents.

Theorem 4. If agents have decisive preferences, then all Pareto optimal outcomes are semi-stable
extensions.

Proof. This follows from the fact that any semi-stable extension coincides with a labelling in which
undec is minimal with respect to set inclusion [3]. The actual proof is similar in style to Theorem 1
and so due to space constraints we do not include the details.

Note that any finite argumentation framework must have at least one semi-stable extension [4].
Moreover, when at least one stable extension exists, the semi-stable extensions are equal to the stable
extensions, which themselves coincide with an empty undec [4], which is ideal for decisive agents.

Corollary 2. For agents with decisive preferences, if there exists a stable extension, then the stable
extensions fully characterise the Pareto optimal outcomes for agents with decisive preferences.

If a population of agents have all-or-nothing preferences then we can provide a partial charac-
terisation of the Pareto optimal outcomes.

Theorem 5. If agents have all-or-nothing preferences, then there exists a Pareto optimal preferred
extension.

Proof. We can prove this theorem by studying the possible cases. Let L be the set of all labellings.
Case 1: If for all L ∈ L, it is the case that for all i ∈ I , Ai 6⊆ in(L), then all agents are indifferent
between all labellings, and thus all are Pareto optimal, including all preferred extensions.
Case 2: Assume there exists labelling L such that there exists an agent i with Ai ⊆ in(L) and
which is Pareto optimal. If L is also a preferred extension then we are done. If L is not a preferred
extension, then there must exist a preferred extension L′ such that in(L) ⊆ in(L′). Since L was
Pareto optimal, then for all agents j, it must be the case that L ∼j L′ and so L′ is Pareto optimal.
Case 3: Assume there exists a labelling L such that there exists an agent i with Ai ⊆ in(L) and
which is not Pareto optimal. Thus, L is Pareto dominated by some labelling L∗ and so there must
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exist an agent j such that Aj 6⊆ in(L) and Ai,Aj ⊆ in(L∗). If L∗ is not Pareto optimal then there
must exist an agent k and a labelling L∗∗ such that Ak 6⊆ L∗ and Ai,Aj ,Ak ⊆ L∗∗. Continue this
process until the final labelling is Pareto optimal. This is guaranteed to terminate since we have a
finite set of agents and labellings. Apply Case 2.

If agents have all-or-nothing preferences, then it is possible that a preferred extension can Pareto
dominate another preferred extension.

Example 3. Consider the graph below, in which there are two preferred extensions.

α2 α1

α3α4

α2 α1

α3α4

L1 L2

in out

Suppose we have two agents with all-or-nothing preferences and with A1 = {α2, α3} and A2 =
{α1, α4}. Outcome L2 Pareto dominates outcome L1.

If agents have focal-argument preferences, then we can also provide a partial characterization of
the Pareto optimal outcomes.

Theorem 6. If agents have focal-argument preferences, then there exists a Pareto optimal preferred
extension.

The proof is similar to Theorem 5 and so due to space constraints we do not include the details.
Theorem 7 says that if the population of agents have aggressive preferences, then every Pareto

optimal outcome is a preferred extension.

Theorem 7. If agents have aggressive preferences then all Pareto optimal outcomes are preferred
extensions.

Proof. Let L be a Pareto optimal outcome. Assume that L is not a preferred extension. Since L
is not a preferred extension, then there must exist a preferred extension L′ such that out(L) ⊂
out(L′). Thus, there must exist an agent i with Ai and |out(L′)∩Ai| > |out(L)∩Ai|, and for all
agents j such that Aj ∈ out(L), |out(L′) ∩ Aj | ≥ |out(L) ∩ Aj | and so L′ Pareto dominates L.
Contradiction.

However, not all preferred extensions are Pareto optimal, as is demonstrated in the following
example.

Example 4. Consider the graph below, in which there are two preferred extensions.

α1 α2

L1 L2

α5 α3

α4

α1 α2

α5 α3

α4

in out undec
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Population Type Pareto Optimality
Individual acceptance
maximisers

Pareto optimal outcomes ⊆ preferred extensions
(Theorem 1)

Individual rejection
minimisers

Pareto optimal outcome = grounded extension
(Theorem 2, 3, and Corollary 3)

Decisive Pareto optimal outcomes ⊆ semi-stable extensions
(Theorem 4); if a stable extension exists, then Pareto
optimal outcomes = stable extensions (Corollary 2)

All-or-nothing Some preferred extension (Theorem 5) and possibly
other complete extensions

Focal argument Some preferred extension (Theorem 6) and possibly
other complete extensions

Aggressive Pareto optimal outcomes ⊆ preferred extensions
(Theorem 7)

Table 2: Classical extensions & Pareto optimality

Suppose we have three agents with aggressive preferences such thatA1 = {α2, α4},A2 = {α1, α3}
and A3 = {α5}. Then L1 �1 L2, L1 �3 L2 and L1 ∼2 L2. That is, L1 Pareto dominates L2.

We summarise the results from this section in Table 2. These results are important since they
highlight a limitation in the definitions of extensions in classical argumentation. In some cases,
Pareto optimal outcomes are fully characterised by an extension (e.g. grounded extension and re-
jection minimising agents). In other cases, however, classical extensions do not provide a full char-
acterisation (e.g. for acceptance maximising agents, every Pareto optimal outcome is a preferred
extension but not vice versa). In such cases, we need to explicitly refine the set of extensions in
order to select the Pareto optimal outcomes (e.g. generate all preferred extensions, then iteratively
eliminate dominated ones).

5 Restrictions on the Argumentation Framework
In Section 4 we placed no restrictions on the topological structure of the argumentation framework,
nor on the structure of the argument sets of agents. In this section we impose a restriction on
the argumentation framework which induces coherency in the framework, and then show that this
provides refined characterizations of the Pareto optimal outcomes.

Definition 15 (Coherent [6]). An argumentation framework, AF , is coherent if each preferred ex-
tension of AF is stable.

We introduce an extended definition of defeat.

Definition 16 (Indirect defeat [6]). Let α, β ∈ A. We say that α indirectly defeats β if and only if
there is an odd length path from α to β in the argument graph.

Dung introduced the notion of an argumentation framework being limited-controversial, which is
equivalent to there being no odd-length cycles in the argumentation graph. That is, an argumentation
framework is limited-controversial if no argument indirectly defeats itself. Given this restriction on
the argumentation framework, the following result is obtained.

Theorem 8. Every limited-controversial argumentation framework is coherent [6].

Theorem 8 and Definition 15 together imply Corollary 3.

Corollary 3. If an argumentation framework, AF , contains no odd-length cycles, then all of its
preferred extensions are stable. That is, if LP is a preferred extension of AF then undec(LP ) = ∅.

We now introduce a restriction on the sets of arguments that agents can maintain. In particular,
we assume that for each agent i, the set of arguments, Ai, contains no arguments which indirectly
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defeat each other, given the argumentation framework, AF . For example, referring to the figure in
Example 2, argument α4 indirectly defeats α1, α3 and α5. Thus, we assume that no agent’s argument
set contains both α4 and either α1, α3 or α5. Intuitively, this property implies that each agent’s
arguments must be conflict-free (i.e. consistent), both explicitly and implicitly. Explicit consistency
implies that no argument defeats another. Implicit consistency implies that other agents cannot
possibly present a set of arguments that reveal an indirect defeat among one’s own arguments. More
concretely, exposing an indirect defeat chain can be seen as exposing a fallacy in one’s arguments.

If the argument sets of the agents contain no indirect defeats with respect to the argumentation
framework, then there are no odd-length cycles in the entire argument graph since, otherwise, at
least one agent would have an argument that indirectly defeats itself. This allows us to provide a
further characterization of the Pareto optimal outcomes for certain classes of agents’ preferences.

Theorem 9. Assume that agents have decisive preferences and that no agent has an argument set
that contains indirect defeats. Then the set of stable extensions completely characterises the Pareto
optimal outcomes.

Proof. From Corollary 3 any labelling LP that corresponds to a preferred extension must be a stable
extension. From Corollary 2 if stable extensions exists then they fully characterise the set of Pareto
optimal outcomes for decisive agents.

Theorem 10. Assume that agents have acceptability-maximising preferences, and that no agent has
an argument set that contains indirect defeats. Then,

• there exists at least one stable extension, and

• every Pareto optimal outcome is a stable extension.

Proof. Dung proved that every argumentation framework has at least one preferred extension
(Corollary 12 [6]). Given the restriction on the agents’ argument sets, there are no odd-length cy-
cles and so all preferred extensions are stable (Corollary 3). By Theorem 1 if an outcome is Pareto
optimal then it must be a preferred extension, and, thus, a stable extension.

Finally, Theorems 9 and 10 allow us to characterize the Pareto optimal outcomes even when the
agent population contains different preferences.

Corollary 4. For agent populations consisting of both acceptability-maximising and decisive prefer-
ences, if agents’ argument sets contain no indirect defeats with respect to the argumentation frame-
work, then every Pareto optimal outcome is a stable extension.

6 Further Refinement using Social Welfare
While Pareto optimality is an important way of evaluating outcomes, it does have some limitations.
First, as highlighted above, there may be many Pareto optimal outcomes, and it can be unclear why
one should be chosen over another. Second, sometimes Pareto optimal outcomes may be undesirable
for some agents. For example, in a population of individual acceptability maximising agents, a
preferred extension which accepts all arguments of one agent while rejecting all other arguments is
Pareto optimal.

Social welfare functions provide a way of combining agents’ preferences in a systematic way
in which to compare different outcomes, and in particular, allow us to compare Pareto optimal
extensions. We assume that an agent’s preferences can be expressed by a utility function in the
standard way and that it is possible to compare utility functions of the agents in a meaningful way.
A social welfare function is an increasing function of individual agents’ utilities and is related to the
notion of Pareto optimality in that any outcome that maximises social welfare is also Pareto optimal.
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Thus by searching for social-welfare maximising outcomes we select outcomes from among the set
of Pareto optimal ones.

While there are many types of social welfare functions, two important ones are the utilitarian
and egalitarian social welfare functions.3 Example 5 illustrates how these functions can be used to
compare different Pareto optimal outcomes.

Example 5. Consider the graph below with four preferred extensions.

α1 α2 α3 α4L2

in out

α5

α1 α2 α3 α4L3 α5

α1 α2 α3 α4L4 α5

α1 α2 α3 α4L1 α5

Assume that there are two agents withA1 = {α1, α3, α5} andA2 = {α2, α4}, and that these agents
have acceptability maximising preferences with utility functions ui(L,Ai) = |in(L) ∩ Ai|. L1, L3

and L4 are all Pareto optimal. L1 and L3 both maximise the utilitarian social welfare, while L3

also maximises the egalitarian social welfare function.

The above analysis shows that by taking into account welfare properties, it is possible to provide
more fine grained criteria for selecting among classical extensions (or labellings) in argumentation
frameworks. Such refined criteria can be seen as a sort of welfare semantics for argumentation.

7 Discussion and Conclusion
Until recently, argumentation-based semantics have been compared mainly on the basis of how they
deal with specific benchmark problems (argument graph structures with odd-cycles etc.). Recently,
it has been argued that argumentation semantics must be evaluated based on more general intuitive
principles [2]. Our work can be seen to be a contribution in this direction. We introduced a new
perspective on analysing and designing argument acceptability criteria in abstract argumentation
frameworks. Acceptability criteria can now be evaluated not only based on their logically intuitive
properties, but also based on their welfare properties in relation to a society of agents.

Our framework and results can be used to decide which argument evaluation rule to use given the
type of agent population involved. While we formulated the problem as being multiagent in nature,
our findings can also be extended to single-agent settings. In situations where there are several
extensions, the agent can be consulted as to its preferences, in order to select the extension that the
agent prefers.

The results are also of key importance to argumentation mechanism design (ArgMD) [7] where
agents may argue strategically – e.g. possibly hiding arguments. ArgMD aims to design rules
of interaction such that self-interested agents produce, in equilibrium, a particular desirable social
outcome (i.e. the rules implement a particular social choice function). Understanding what social

3Given some outcome o, the utilitarian social welfare function returns the sum of the agents’ utilities for o, while the
egalitarian social welfare function returns mini ui(o, θi).
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outcomes are desirable (in this case, Pareto optimal) for different kinds of agents is an important
step in the ArgMD process. Indeed, a major future research direction, opened by this paper, is the
design of argumentation mechanisms that implement Pareto optimal social choice functions under
different agent populations.
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