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Abstract

The needed amount of information to make a social choice is the cost of information process-
ing, and it is a practically important feature of social choice rules. We introduce informational
aspects into the analysis of social choice rules and prove that (i) if an anonymous, neutral,
and monotonic social choice rule operates on minimal informational requirements, then it is a
supercorrespondence of either the plurality rule or the antiplurality rule, and (ii) if the social
choice rule is furthermore Pareto efficient, then it is a supercorrespondence of the plurality
rule.
Keywords: antiplurality rule, minimal informational requirement, plurality rule, social choice
rule.

1 Introduction

Each social choice rule utilizes information on the agents’ preferences at different levels. For exam-
ple, it is intuitively clear that dictatorship needs much less information than the Borda rule; under
dictatorship, we need to know only the most preferred alternative of a dictator, while under the Borda
rule, we need to know the whole preferences of all agents. Without some electronic device (this is
the case in most situations where collective choice is to be made)2, processing a large amount of
information is not an easy task. The required amount of information can be considered as the cost of
information processing; the larger the amount of information to process, the more time and human
resources are needed and the more risk of making errors is involved.

Therefore, the informational requirement is a practically important feature of each social choice
rule. That is, when the information processing cost is high, informational requirements should be
one of the most important criteria of social choice rules in evaluating them. Therefore, in this paper,
we incorporate the informational aspects into social choice. The fundamental problem we are to deal
with is the following, “Given a group of social choice rules satisfying some “reasonable” properties,
which of them operates on the smallest amount of information?” In other words, we incorporate
minimal informational requirements into the axiomatic analysis of social choice rules.

Our main results are (i) if an anonymous, neutral, and monotonic social choice rule operates on
minimal informational requirements, then it utilizes only information about either the top ranked
alternatives or the bottom ranked alternatives by the agents and it is a supercorrespondence of either
the plurality rule or the antiplurality rule, and (ii) if the social choice rule is furthermore efficient,
then it utilizes only information about the top ranked alternatives by the agents and it is a supercorre-
spondence of the plurality rule. Thus, the plurality rule and the antiplurality rule are characterized as
the most selective social choice rules among anonymous, neutral, and monotonic social choice rules
which operate on minimal informational requirements, and the plurality rule can be characterized
as the most selective social choice rule among anonymous, neutral, monotonic, and efficient social
choice rules which operate on minimal informational requirements.

This last result is the easiest one to interpret. The plurality rule is widely used in our daily lives,
and many people would agree that, compared with other “reasonable” social choice rules, the main

1I am grateful to three anonymous referees of this conference for helpful comments, especially, for letting me notice the
literature on communication complexity.

2In some area of the world, electronic voting systems are adopted in some “big” elections. However, it is very unlikely
that all social choices ranging from national elections to the choice of restaurant for a dinner are made with a electronic
device, at least in the near future. Major obstacles for electronic voting systems are the cost of introducing the system and the
reliability of hardware and software. Actually, in Japan, the result of the election in Kani city in 2003 was cancelled due to a
hardware problem, and in Aki ward of Hiroshima city, electronic voting is abandoned in 2006 due to the financial constraint.
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advantage of the plurality rule lies in its simplicity and selectivity (i.e., the set of “winners” is small).
Our last result theoretically supports this common sense.

Let us mention some related literature. Conitzer and Sandholm (2005) presentcommunication
complexitiesof eleven major voting rules.3 (See Kushilevitz and Nisan (1997) for a survey on the
literature on communication complexity. A seminal work is Yao (1979).) In their model, each agent
sends a bit of his private information necessary to make a social choice to the others sequentially.
That is, the agents “communicate” to compute the value of a voting rule. Communication complexity
of a voting rule is defined as the worst-case number of bits in the best protocol to compute the value
of the voting rule. Communication complexity can be considered as a kind of informational size of a
voting rule. Among many differences, the most significant and essential one between my approach
and Kushilevitz and Nisan (1997) is that I introduce a minimal informational requirement as an
“axiom” and hence measuring the informational size of some specific social choice rules is not my
objective while it is in Kushilevitz and Nisan (1997).

Many social choice rules are proposed and axiomatically characterized in the theory of social
choice.4 Being prevalent in the real world, the plurality rule is axiomatically characterized by Richel-
son (1978); Roberts (1991); Ching (1996); Yeh (2008), among others. Our contribution to this liter-
ature is to characterize the plurality rule (and the antiplurality rule) based on minimal informational
requirements and selectivity.

Some researchers consider social choice rules which rely on limited information on preferences.
(For example, Moulin (1980); Roberts (1991); Yeh (2008), among others.) However, in their anal-
yses, such restrictions are put as assumptions and do not intend to study the amount of necessary
information to make a social choice under each social choice rule.

In sum, analyses in this paper such as investigation of the minimal informational size needed to
be a “reasonable” social choice rule and characterizations based on minimal informational require-
ments seem to be novel in the literature, and would give useful insights in the evaluation of social
choice rules.

In Section 2, we give basic notation and definitions. In Section 3, a series of results are presented.
Proofs are collected in Section 4.

2 Basic notation and definitions

Let N = {1, . . . , n} be a finite set of agents and letX be a finite set of alternatives with|X| = m ≥
2. LetL denote the set of all linear orders (complete, transitive, and antisymmetric binary relations)
on X. An elementRN = (R1, . . . , Rn) of LN is called a preference profile. A linear orderRi in
a preference profileRN is agenti’s preference, andPi is the strict part ofRi. For each preference
R ∈ L and for each integerk with 1 ≤ k ≤ m, let rk(R) denote thekth ranked alternative with
respect toR. For eachi ∈ N , a functionφi of L onto a finite setKi is called amessage function
and a setKi is called amessage space. A triple (φN ,KN , f) is called arule, whereφN is a profile
of message functions(φ1, . . . , φn), KN is the Cartesian product of message spacesKi, andf is
a correspondence ofKN into X. When the agents have a preference profileRN , then they report
a message profileφN (RN ) = (φ1(R1), . . . , φn(Rn)) ∈ KN andf makes a choice based on the
received messageφN (RN ).

For our purpose, the labels or the names of messages are inessential and we restrict the form of
message spaces (and message functions) to a specific form without loss of generality. This can be
done as follows; let(φN ,KN , f) be a rule with a general form.

3More precisely, Conitzer and Sandholm (2005) present the asymptotic lower and upper bounds of communication com-
plexities of voting rules. (For example, the plurality rule belongs toΘ(n log2 m).) This is a standard way to measure
efficiency of an algorithm in computer science.

4See Sen (1986) and Moulin (1988), among others, for surveys of the literature.
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• (Message spaces) For eachi ∈ N , we can define the partitionMi of L induced byφ−1
i .

Formally,Mi = {φ−1
i (ki) | ki ∈ Ki}. Then, we can regard thisMi as a message space

equivalent toKi in the sense that there exists a natural bijection betweenKi andMi; let τi be
the bijection betweenKi andMi defined byτi(ki) = φ−1

i (ki).

• (Message functions) For eachi ∈ N and for eachRi ∈ L, let φ′
i(Ri) be the element ofMi

such thatRi ∈ φ′
i(Ri). Note that ifφi(Ri) = k, thenτi(k) = φ′

i(Ri). Thus, underφ′
i, agent

i reportsφ′
i(Ri), which is a message corresponding toφ(Ri). Formally,φ′

i = τi ◦ φi.

• (Social choice rule) For eachMN ∈ ∏
i∈N Mi = MN , let f ′(MN ) be f(kN ), where

kN ∈ KN is the message profile corresponding toMN in the sense thatτN (kN ) =
(τ1(k1), . . . , τn(kn)) = MN . Formally,f ′ = f ◦ τ−1

N .

Now, we have a new rule(φ′
N ,MN , f ′) which is equivalent to(φN ,KN , f) in the sense that the

only difference is the labels or the names of messages. In(φN ,KN , f), agenti reportsφi(Ri).
When we just relabel this messageφi(Ri) asτi(φi(Ri)), then we have a rule(φ′

N ,MN , f ′).
Thus, without loss of generality, we can restrict our attention to the rules such that message

spaces are partitions ofL and message functions assign each preference the set in the partition to
which that preference belongs. In the following, unless otherwise stated, we assume that every rule
takes this restricted form.

In the restricted form of rules, a profile of message functionsφN is uniquely determined by
a profileMN of message spaces (partitions ofL). Thus, in the following, we drop the message
functions and write(MN , f) for a rule. Given a rule(MN , f), when we speak ofφN , then it
should be always understood to be the profile of message functions such thatφi(Ri) = Mi ∈ Mi

with Ri ∈ Mi. In sum, given a rule(MN , f), agents are required to report a profile of sets of linear
ordersMN ∈ MN such that the profile of their preferencesRN belongs toMN , andf makes a
choice based onMN .

It is worth noting that a profile of message spacesMN (and hence a profile of message functions
φN ) as well asf is set by the social choice rule designer, and not the variable determined by the
agents. We introduce message spaces to clarify what information a social decision requires and to
define the informational size of each social choice rule.

Next, we define the informational size of a rule, which is a core concept of this paper.

Definition 2.1 For each rule(MN , f), the sum of the numbers of possible messages
∑

i∈N |Mi|
is called theinformational size of(MN , f).

Definition 2.2 (The plurality rule) The plurality rule chooses the alternatives ranked as the top by
the largest number of agents. In our model, this rule can be written as follows. For eachx ∈ X,
let M(x) = {R ∈ L | r1(R) = x}. (The set of preferences which rankx at the top.) For each
i ∈ N , let Mp

i = {M(x) | x ∈ X}. Then,Mp
i is a partition ofL. For each message profile

MN ∈ ∏
i∈N Mp

i = Mp
N and for eachx ∈ X, let Nx(MN ) = |{i ∈ N | Mi = M(x)}|. (The

number of agents whose message isM(x).) Finally, for each message profileMN , let fp(MN ) =
{x ∈ X | Nx(MN ) ≥ Ny(MN ) ∀y ∈ X}. Then,(Mp

N , fp) is called theplurality rule. Its
informational size isnm. (Remember thatn is the number of the agents andm is the number of
alternatives.)

In the plurality rule,fp makes choice based on information contained in a message profileMN in
Mp

N . From the viewpoint offp, it is known that the agenti’s preference is in a reported message
Mi, but it is not known which is the agenti’s preference inMi. However, the plurality rule can be
defined based on this restricted information, because eachMi ∈ Mp

i tells what is the alternative
ranked as the top.

Thus, in our model, by introducing message spaces between a choice rule and preferences, we
can measure the amount of needed information to make a social choice.
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Definition 2.3 (The antiplurality rule) The antiplurality rule chooses the alternatives ranked as the
bottom by the smallest number of agents. For eachx ∈ X, let M(x) = {R ∈ L | rm(R) = x}.
(The set of preferences which rankx at the bottom.) For eachi ∈ N , letMa

i = {M(x) | x ∈ X}.
Then,Ma

i is a partition ofL. For each message profileMN ∈ ∏
i∈N Ma

i = Ma
N and for each

x ∈ X, let Nx(MN ) = |{i ∈ N | Mi = M(x)}|. (The number of agents whose message isM(x).)
Finally, for each message profileMN , let fa(MN ) = {x ∈ X | Nx(MN ) ≤ Ny(MN ) ∀y ∈ X}.
Then,(Ma

N , fa) is called theantiplurality rule. Its informational size isnm.

At this point, several remarks are in order. First, the reader would notice that to define the in-
formational size and to describe the procedure of making a social choice, it suffices to consider a
correspondence which assigns a social outcome to each message profile. For example, in defining
the plurality rule, we could definegp as a correspondence ofXN to X such that for each message
profilexN = (x1, . . . , xn) ∈ XN , gp(xN ) is the set of alternatives which are reported by the largest
number of agents. If we defined thisgp as the plurality rule, then there would be no agents’ “pref-
erences” in the model. The reason to incorporate preferences into our model is that our objective is
to find the rules which operate on the minimal information requirements among the rules satisfying
some plausible properties such as (weak) monotonicity and efficiency, and these properties refer to
agents’ preferences. (If our objective were to find the social choice rule which operates on minimal
informational requirements without any restriction, then the answer would be constant social choice
rules, or “custom”, which needs no information to make a social choice.)

Next, although we callφi (derived fromMi) a message function and use the word “report”, we
do not need to interpret them literally. The only role ofφi is to specify what kind of information
is necessary to make a social choice. Thus, we could consider the following model; agents report
a preference profileRN and the central institution which is responsible to make a social decision
would take two steps to make a decision. At the first stage, pick up necessary information according
to φN from RN , and at the second stage, process informationφN (RN ) = MN ∈ MN and make a
social decision.

Thirdly, we modelf as a correspondence and not a function. There are two reasons for this.
First, we do not exclude the cases where the society is to choose a set of “satisfactory” alternatives
(not necessarily the “best” alternatives). In this case, the social outcome is naturally formulated
as sets of alternatives. Second, even when the society is to choose the “best” alternatives, almost
all practically important rules such as the plurality rule, the Borda rule, the Copeland rule, and the
Simpson rule (See Moulin, 1988), are formulated as correspondences. When we ultimately need
to choose a single outcome whereasf can choose multiple alternatives, then it is done by some
tie-breaking rule, but this is outside the scope of our analysis.

We define several properties of a rule.

Definition 2.4 A rule (MN , f) is said to satisfy

• anonymityif for every permutationσ of N and for everyRN ∈ LN , (f ◦ φN )(RN ) =
(f ◦ φN )(Rσ

N ), whereRσ
N is defined by for eachi ∈ N , Rσ

i = Rσ(i).

• neutrality if for every permutationρ of X and for everyRN ∈ LN , ρ[(f ◦ φN )(RN )] = (f ◦
φN )[ρ(RN )], whereρ(RN ) = (ρ(R1), . . . , ρ(RN )) is defined by for eachi ∈ N , ρ(Ri) =
{(x, y) ∈ X2 | (ρ−1(x), ρ−1(y)) ∈ Ri}.

• (weak) monotonicityif for any RN andR′
N such thatx ∈ f(φN (RN )), RN andR′

N coincide
on (X \ {x})2 and x = rk(Ri) = rk′(R′

i) with k′ ≤ k for all i ∈ N , we havex ∈
f(φN (R′

N )).

• (Pareto) efficiencyif for any distinctx, y ∈ X with xPiy for all i ∈ N , y ̸∈ f(φN (RN )).
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Anonymity requires symmetric treatment of the agents and neutrality requires symmetric treatment
of alternatives. Monotonicity requires that whenx is chosen atRN and the position ofx (weakly)
improves through the change fromRN to R′

N while the relative comparison of any other pair of
alternatives is unchanged, thenx is still chosen atR′

N . In the literature, it is often called weak
monotonicity to distinguish from the so called Maskin monotonicity which does not appear in this
paper. Note that monotonicity (in the sense of this paper) is much weaker than the Maskin mono-
tonicity because the relative rankings exceptx are fixed from the change fromRN to R′

N . Efficiency
requires that when an alternativey is dominated by some alternativex, theny cannot belong to the
social outcome. Although efficiency is one of the most standard axioms in social choice theory and
in economic theory, its relevance depends on the context under consideration. For example, in this
paper, as mentioned earlier, we do not exclude cases where the society is to choose a set of “sat-
isfactory” alternatives. In such a case, the fact thaty is dominated byx does not imply thaty is
not satisfactory, and hencey can belong to the social outcome. Based on this observation, we give
results with and without efficiency in the next section.

Next, we define formally the minimality of informational requirements.

Definition 2.5 Given a set of rulesF , a rule(MN , f) is said tooperate on minimal informational
requirements inF if the informational size of(MN , f) is not larger than the informational size
of any other rules inF . In this case, the informational size of(MN , f) is called theminimal
informational size inF .

3 Results

In this section, we give a series of results. LetAN denote the set of nonconstant5 rules satisfying
anonymity and neutrality, letANM denote the set of nonconstant rules satisfying anonymity, neu-
trality, and monotonicity, and letANMP denote the set of rules satisfying anonymity, neutrality,
monotonicity, and efficiency. Throughout this section, assumem ≥ 2. (Whenm = 1, then there is
no room for “choice”.)

Theorem 3.1 If a rule (MN , f) operates on minimal informational requirements inAN , then

(i) its informational size isnm, and more specifically,

(ii) there existsh ∈ {1, . . . ,m} such that for anyi ∈ N , Mi = {Mi(x) | x ∈ X}, where
Mi(x) = {Ri ∈ L | rh(Ri) = x}.

The second statement of the theorem implies that we can associate each message with one alter-
native inX and that this relation is a bijection. Moreover, the statement explicitly specifies what
information a rule(MN , f) depends on; it relies on information what are thehth ranked alternatives
in RN . Consider that agenti with a preferenceRi changes his preference toR′

i. Then, agenti sends
the same message iffrh(Ri) = rh(R′

i).
For example, the plurality rule and the antiplurality rule operate on minimal informational re-

quirements inAN with h = 1 andh = m, respectively. Also, the rule(MN , f) such that eachMi

is the one defined in the second statement of the theorem withh = 2 andf chooses the alternatives
second ranked by the largest number of agents also operates on minimal informational requirements
in AN .

Before the next theorem, we prepare the following terminology.

Definition 3.1 A rule (MN , f) is said to be asupercorrespondenceof a rule(M′
N , f ′) is for every

preference profileRN , f(φN (RN )) ⊃ f ′(φ′
N (RN )) holds.

5A rule (MN , f) is said to benonconstantif the correspondencef ◦ φN is nonconstant onLN .
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When a rule(MN , f) is a supercorrespondence of a rule(M′
N , f ′), then, a rule(MN , f) is less

selective than(M′
N , f ′). Of course, selectivity is not always a plausible axiom. For example,

when you want to chooses a set ofsatisfactory(and not necessarily the best) alternatives, then
selectivity is not an appealing condition for rules. However, in many cases, we want to choose the
socially best alternatives, and in such situations, we usually do not want to rely on a tie-breaking rule
(usually, some random device) as much as possible. We want to determine a final social outcome
by preferencesas much as possible. For instance, in elections where we want to choose one winner,
it is absurd to use a rule(MN , f) such that each voter reports his most preferred candidate andf
chooses the candidates who receive at least one vote. (The final outcome is determined by some
random device, which is outside our model.)

Theorem 3.2 If a rule (MN , f) operates on minimal informational requirements inANM, then

(i) h in Theorem 3.1 is either1 or m, and

(ii) If h = 1, then(MN , f) is a supercorrespondence of the plurality rule and ifh = m, then
(MN , f) is a supercorrespondence of the antiplurality rule.

This theorem shows that if monotonicity is additionally required, then necessary information to
make a social choice is either the top ranked alternatives or the bottom ranked alternatives by the
agents. If the rule relies on information on the top ranked alternatives, then, the alternatives chosen
by the plurality rule are contained in the value of the rule. If the rule relies on information on the
bottom ranked alternatives, then the alternatives chosen by the antiplurality rule are contained in the
value of the rule.

Because the antiplurality rule is not efficient6 whenm ≥ 3 and it is equal to the plurality rule
whenm = 2, Theorem 3.2 readily implies the following theorem.

Theorem 3.3 If a rule (MN , f) operates on minimal informational requirements inANMP, then
it is a supercorrespondence of the plurality rule.

This theorem gives a new characterization of the plurality rule; it is the most selective rule among
the rules operating on minimal informational requirements inANMP. When you want to choose
the socially best alternatives, then it is natural to adopt a rule inANMP. Theorem 3.3 shows that
if you care for the informational processing cost and selectivity, then the answer is the plurality rule.

We conclude this section with the following remark. We defined the informational size of
(MN , f) simply by

∑
i∈N |Mi|. Our results do not depend on this specific way of defining the

informational size. Letg be any strictly increasing function on the positive orthant ofRn, then-
dimensional Euclidean space, and let us defineg(|M1|, . . . , |Mn|) to be the informational size of
(MN , f). Then, we can obtain the same results with this definition of the informational size.

4 Proofs

In this section, we introduce many permutations ofN andX. For simplicity, when we describe a
permutation, we do not specify the part on which the permutation is the identity function. For ex-
ample, when we say thatσ is the permutation ofN exchangingi andj, then it should be understood
thatσ is the identity function onN \ {i, j}.

6For example, letX = {x, y, z} and letRN be a preference profile such thatxRiyRiz for all i ∈ N . Then, the
antiplurality rule chooses{x, y} while y is dominated byx.
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4.1 Proof of Theorem 3.1

We proceed to establish Theorem 3.1 through a series of lemmas. Let(MN , f) be a rule which
operates on minimal informational requirements inAN . Because the plurality rule is inAN , the
informational size of(MN , f) is not greater thannm.

Lemma 4.1 Mi = Mj for all i, j ∈ N .

Proof. Suppose to the contrary thatMi ̸= Mj for somei, j ∈ N .
CLAIM 1: At least one of the following two statements holds:

(i) There existM∗
i ∈Mi andM1

j ,M2
j ∈Mj such thatM∗

i ∩M1
j ̸= ∅ andM∗

i ∩M2
j ̸= ∅.

(ii) There existM1
i ,M2

i ∈Mi andM∗
j ∈Mj such thatM1

i ∩M∗
j ̸= ∅ andM2

i ∩M∗
j ̸= ∅.

Proof of Claim 1. Suppose that neither of the statements holds. Because (i) does not hold, for any
Mi ∈ Mi, there existsMj such thatMi ⊂ Mj . Because (ii) does not hold, for anyMj ∈ Mj ,
there existsMi ∈ Mi such thatMj ⊂ Mi. Thus, for anyMi ∈ Mi, there existMj ∈ Mj and
M ′

i ∈ Mi such thatMi ⊂ Mj ⊂ M ′
i . BecauseMi is a partition ofL, this implies thatMi = Mj .

Therefore,Mi = Mj , which is a contradiction. ¤
Without loss of generality, assume that statement (i) of Claim 1 holds.

CLAIM 2: f(M1
j , M−j) = f(M2

j , M−j) for all M−j ∈M−j .
Proof of Claim 2. Suppose to the contrary thatf(M1

j ,M−j) ̸= f(M2
j ,M−j) for someM−j ∈

M−j . Let Rj and R′
j be such thatRj ∈ M∗

i ∩ M1
j and R′

j ∈ M∗
i ∩ M2

j . Let R−j be
an element ofM−j . f(φN (Rj , R−j)) ̸= f(φN (R′

j , R−j)). Now, interchange the preferences
of agentsi and j. (Let σ denote the permutation interchanging agentsi and j.) Then, by
anonymity,f(φN ([(Rj , R−j)σ])) ̸= f(φN ([(R′

j , R−j)σ])). However, becauseRj , R
′
j ∈ M∗

i ,
φN ([(Rj , R−j)σ]) = φN ([(R′

j , R−j)σ]), which is a contradiction. ¤
Claim 2 implies that distinct messagesM1

j andM2
j can be integrated into one message without

any essential change. Formally, letM′
j = {Mj | Mj ∈ Mj \ {M1

j ,M2
j } or Mj = M1

j ∪M2
j }.

For i ∈ N \ {j}, letM′
i = Mi. LetM′

N =
∏

i∈N M′
i. For each message profileMN ∈ M′

N ,
let f ′(MN ) = f(MN ) if Mj ̸= M1

j ∪ M2
j andf ′(MN ) = f(M1

j ,M−j) if Mj = M1
j ∪ M2

j .
We claim thatf ′(φ′

N (RN )) = f(φN (RN )) for every preference profileRN . If Rj ̸∈ M1
j ∪ M2

j ,
thenf ′(φ′

N (RN )) = f ′(MN ) = f(MN ) = f(φN (RN )). If Rj ∈ M1
j , thenf ′(φ′

N (RN )) =
f ′(M1

j ∪M2
j ,M−j) = f(M1

j ,M−j) = f(φN (RN )). If Rj ∈ M2
j , thenf ′(φ′

N (RN )) = f ′(M1
j ∪

M2
j ,M−j) = f(M1

j ,M−j) = f(M2
j ,M−j) = f(φN (RN )). (φ′

N is a profile of message functions
associated withM′

N .) Therefore,(M′
N , f ′) is inAN whereas the informational size of(M′

N , f ′)
is less than that of(f,MN ), which is a contradiction to the fact that(MN , f) attains the minimal
informational size inAN . ¥

Consider the casem = 2. Let X = {x, y}, let Ri be the linear order such thatr1(Ri) = x and
r2(Ri) = y and letR′

i be the linear order such thatr1(R′
i) = y andr2(R′

i) = x. Then, by Lemma
4.1, eitherMi = {{Ri, R

′
i}} for all i ∈ N or Mi = {{Ri}, {R′

i}} for all i ∈ N . In the former
case holds, because there is only one possible message profile,f ◦ φN should be constant onLN ,
which is a contradiction. Thus, the latter case holds. Therefore, we complete the proof of Theorem
3.1 for the casem = 2. (h can be either1 or 2.) In the following, we assumem ≥ 3.

Lemma 4.2 For anyi ∈ N , for any permutationρ of X, and for anyM ∈Mi, ρ(M) ∈Mi.

Proof. Supposeρ(M) ̸∈ Mi for someM ∈Mi. There are two cases to consider.
CASE 1: ρ(M) ( M ′ for someM ′ ∈ Mi. BecauseM ( ρ−1(M ′), there existsM∗ ∈ Mi such
thatM∗ ̸= M andM∗ ∩ ρ−1(M ′) ̸= ∅.
CLAIM : f(M,M−i) = f(M∗,M−i) for all M−i ∈M−i.
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Proof of Claim. Suppose to the contrary thatf(M,M−i) ̸= f(M∗,M−i) for someM−i ∈
M−i. Let Ri be any element ofM , let R−i be any element ofM−i, and let R̂i be any el-
ement ofρ−1(M ′) ∩ M∗. Then, (f ◦ φN )(Ri, R−i) ̸= (f ◦ φN )(R̂i, R−i). By neutrality,
(f ◦ φN )[ρ(Ri), ρ(R−i)] ̸= (f ◦ φN )[ρ(R̂i), ρ(R−i)]. However, becauseρ(Ri), ρ(R̂i) ∈ M ′,
φN [ρ(Ri), ρ(R−i)] = φN [ρ(R̂i), ρ(R−i)], which is a contradiction. ¤

This claim shows that we can integrate distinct messagesM andM∗ into one message without
any substantial change. See the argument following Claim 2 in the proof of Lemma 4.1. The same
reasoning applies here, and we have a contradiction.

CASE 2: ρ(M) ∩ M1 ̸= ∅ and ρ(M) ∩ M2 ̸= ∅ for someM1,M2 ∈ Mi. In this case,
we claim f(M1,M−i) = f(M2,M−i) for all M−i ∈ M−i. Suppose not. Then, for any
R1

i ∈ ρ(M) ∩M1 and for anyR2
i ∈ ρ(M) ∩M2, (f ◦ φN )(R1

i , R−i) ̸= (f ◦ φN )(R2
i , R−i). By

neutrality,(f ◦ φN )(ρ−1(R1
i ), ρ

−1(R−i)) ̸= (f ◦ φN )(ρ−1(R2
i ), ρ

−1(R−i)). However, because
ρ−1(R1

i ), ρ
−1(R2

i ) ∈ M , we haveφN (ρ−1(R1
i ), ρ

−1(R−i)) = φN (ρ−1(R2
i ), ρ

−1(R−i)), which is
a contradiction.

Thus,f(M1,M−i) = f(M2,M−i) for all M−i ∈M−i. This implies that we can integrateM1

andM2 into one message without affecting any essential aspects of a rule(MN , f). By the same
argument as in the proof of Lemma 4.1, we have a contradiction. ¥

Lemma 4.3 For any i ∈ N , there existsh ∈ {1, . . . ,m} such that for anyM ∈ Mi, rh(M) =
{x ∈ X | rh(Ri) = x for someRi ∈ M} is a singleton.

Proof. Suppose to the contrary that for anyh ∈ {1, . . . ,m}, there existsM ∈Mi such thatrh(M)
is not a singleton. LetM ′ be any element ofMi and letRi andR′

i be any elements ofM andM ′,
respectively. Letρ be the permutation ofX such thatρ(Ri) = R′

i. Then,ρ(M) ∩ M ′ ̸= ∅. By
Lemma 4.2,ρ(M) ∈ Mi. BecauseMi is a partition ofL, ρ(M) = M ′. This implies thatrh(M ′)
is not a singleton. This argument shows that for anyh ∈ {1, . . . ,m} and for anyM ∈ Mi, there
existR,R′ ∈ M such thatrh(R) ̸= rh(R′).
CLAIM 1: For anyh ∈ {1, . . . ,m}, for anyM ∈Mi, and for anyx ∈ X, there existsR ∈ M such
thatrh(R) = x. In other words,rh(M) = X for all h ∈ {1, . . . ,m} andM ∈Mi.
Proof of Claim 1. Suppose not. Then, there existh ∈ {1, . . . ,m} andM ∈Mi such thatrh(M) ̸=
X. We claim that|rh(M)| = m− 1.

Suppose|rh(M)| ≤ m− 2. Let X \ rh(M) = {y1, . . . , yh1} and letrh(M) = {x1, . . . , xh2}.
Because|rh(M)| ≤ m − 2, h1 ≥ 2. Becauserh(M) is not a singleton,h2 ≥ 2. For each pair
(ℓ1, ℓ2) such that1 ≤ ℓ1 ≤ h1 and1 ≤ ℓ2 ≤ h2, let ρℓ2

ℓ1
be the permutation exchangingyℓ1 and

xℓ2 . Then,M ̸= ρℓ2
ℓ1

(M) ̸= ρ
ℓ′
2

ℓ′
1
(M) for anyℓ1, ℓ

′
1, ℓ2, ℓ

′
2 with (ℓ1, ℓ2) ̸= (ℓ′1, ℓ

′
2). By Lemma 4.2,

ρℓ2
ℓ1

(M) ∈Mi for all ℓ1, ℓ2. Thus,|Mi| ≥ h1 ·h2 +1 ≥ 2 ·max{h1, h2}+1 ≥ m+1 > m. Then,
by Lemma 4.1, the informational size of(MN , f) is greater thannm, which is a contradiction.
Thus,|rh(M)| = m− 1.

Let {x} = X \ rh(M). LetR be any element ofM and leth′ be such thatrh′(R) = x. Because
rh′(M) is not a singleton (see the statement right above Claim 1), there existsR′ ∈ M such that
rh′(R′) ̸= x. Let h′′ be such thatrh′′(R′) = x. Note thath′ ̸= h′′ andh′, h′′ ̸= h. Let y denote
rh′′(R) and letρ be the permutation ofX such thatρ(R) = R′. Then, becauseρ(M) ∩M ̸= ∅ and
Mi is a partition ofL, ρ(M) = M . Note thatρ(y) = x. Becausey ∈ rh(M), there existsR′′ ∈ M
such thatrh(R′′) = y. For suchR′′, rh(ρ(R′′)) = x, which is a contradiction toρ(R′′) ∈ M . ¤
CLAIM 2: f(MN ) = X for all MN ∈MN .
Proof of Claim 2. Suppose to the contrary thatf(MN ) ̸= X for someMN ∈ MN . Let RN be
any element ofMN . Then,(f ◦ φN )(RN ) ̸= X. Let x be an element ofX \ (f ◦ φN )(RN ). By
neutrality, there existsR′

N such thatx ∈ (f ◦ φN )(R′
N ). Let M ′

N be the element ofMN such that
R′

N ∈ M ′
N .
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rh(R0i) rh(Ri) Operation on Ri Operation on R00ix x Do not change Do not change

Not x Interchange rh+1(Ri) and x Lift x to hth positiony Do not change Do not change

Not x x Interchange rh�1(Ri) and y Lift x to the top

(Let y = rh(R0i)) Others First, interchange x and rm(Ri) and Lift x to the top

next, interchange y and rh�1(Ri)
Table 1: The profilesR′′

N andR∗
N in the proof of Theorem 3.2

Let i be any agent and leth be such thatrh(Ri) = x. By Claim 1,rh(M ′
i) = X. Thus, inM ′

i ,
we can findR′′

i such thatrh(R′′
i ) = x. Let R′′

N be a profile of suchR′′
i . Note that the positions of

x in R′′
N are the same as inRN . Also, becauseR′′

N belongs toM ′
N , φ′

N (R′
N ) = φ′

N (R′′
N ). Thus,

x ∈ (f ◦φN )(R′′
N ). LetρN be a profile of permutations such thatρi(R′′

i ) = Ri. Note thatρi(x) = x
for all i ∈ N . By neutrality,x ∈ (f ◦ φN )(ρ(R′′

N )) = (f ◦ φN )(RN ), which is a contradiction.¤
Claim 2 implies that a rule(f, φN ) is constant, which is a contradiction. ¥

Lemma 4.3 shows that eachMi ∈Mi is contained in{Ri ∈ L | rh(Ri) = x} for somex ∈ X.
Thus, if thehth ranked alternatives in two preferencesR andR′ are different, thenR andR′ belong
to distinctMi andM ′

i in Mi. This implies that there are at leastm elements inMi. If |Mi| > m,
then by Lemma 4.1, the informational size of(MN , f) is greater thannm, which is a contradiction.
Thus,|Mi| = m for all i ∈ N , and the informational size of(MN , f) is nm.

For eachMi ∈ Mi, let C(Mi) denote the element ofX such thatMi ⊂ {Ri ∈ L | rh(Ri) =
C(Mi)}. We show that thisC is a bijection. Because|Mi| = m = |X|, it suffices to show thatC
is onto. Letx be any element ofX. Then, because{Ri ∈ L | rh(Ri) = x} is not the empty set and
Mi is a partition ofL, there existsMi ∈ Mi such thatMi ⊂ {Ri ∈ L | rh(Ri) = x}, and hence
C(Mi) = x. Thus,C is a bijection. This implies that for anyMi ∈Mi, for anyM ′

i ∈Mi \ {Mi},
and for anyRi ∈ M ′

i , rh(Ri) is notC(Mi). Thus,Mi ( {Ri ∈ L | rh(Ri) = C(Mi)} leads to a
contradiction to the fact thatMi is a partition ofL. Therefore, for eachMi ∈ Mi, Mi = {Ri ∈
L | rh(Ri) = C(Mi)}. That is, eachMi ∈ Mi is associated with an alternativeC(Mi) in X and
Mi consists of all preferences which rankC(Mi) at thehth position. BecauseC is a bijection, we
complete the proof of the Theorem 3.1.

4.2 Proof of Theorem 3.2

Let (MN , f) be a rule which operates on minimal informational requirements inANM.
First, we prove the statement (i). Ifm = 2, then this statement is a direct consequence of

Theorem 3.1. Thus, letm ≥ 3. Suppose to the contrary that1 < h < m, and we claim that(MN , f)
is constant. LetRN andR′

N be any preference profiles. We prove(f ◦φN )(RN ) = (f ◦φN )(R′
N ).

First, we show(f ◦φN )(RN ) ⊂ (f ◦φN )(R′
N ). Let x be any element of(f ◦φN )(RN ). Now,

make a new preference profileR′′
N from RN according to the third column of Table 7.1. (At this

stage, see only the first three columns.) Depending onrh(R′
i) andrh(Ri), there are five possible
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cases as described in the first two columns of Table 7.1. The third column specifies the operation on
Ri in each case. Note that these operations are feasible because neitherh = 1 norh = m.

Let R′′
N denote the resulting preference profile. It can be seen thatrh(Ri) = rh(R′′

i ) for all
i ∈ N . Thus, (f ◦ φN )(RN ) = (f ◦ φN )(R′′

N ) andx is also in(f ◦ φN )(R′′
N ). Now, apply

the operation onR′′
N described in the forth column of Table 7.1, and letR∗

N denote the resulting
preference profile. Then, by monotonicity,x ∈ (f ◦φN )(R∗

N ). It can be seen thatrh(R′
i) = rh(R∗

i )
for all i ∈ N , and hence(f ◦ φN )(R′

N ) = (f ◦ φN )(R∗
N ). Therefore,x ∈ (f ◦ φN )(R′

N ), and we
complete the proof of the relation(f ◦ φN )(RN ) ⊂ (f ◦ φN )(R′

N ).
By the symmetric argument, we can prove(f ◦ φN )(RN ) ⊃ (f ◦ φN )(R′

N ).
BecauseRN andR′

N was arbitrary, we can conclude(MN , f) is a constant rule, which is a
contradiction. Thus,h should be either1 or m.

Next, we prove the second statement of the theorem.
CASE 1: h = 1. By Theorem 3.1,MN is equal to the domain offp. In this case, we prove
fp(MN ) ⊂ f(MN ) for all MN ∈ MN . Supposefp(MN ) ̸⊂ f(MN ) for someMN ∈ MN . Let x
be an element offp(MN ) \ f(MN ), and letRN be such thatRi ∈ Mi for all i ∈ N .

We claim thatfp(MN )∩ f(MN ) = ∅. Suppose to the contrary that there existsy ∈ fp(MN )∩
f(MN ). Then,y ∈ (fp ◦φp

N )(RN )∩(f ◦φN )(RN ). (Note thatφp
N = φN .) Letσ be a permutation

of N such thatσ({i ∈ N | r1(Ri) = x}) = {i ∈ N | r1(Ri) = y} andσ({i ∈ N | r1(Ri) =
y}) = {i ∈ N | r1(Ri) = x}. By anonymity,y ∈ (f ◦ φN )(Rσ

N ). Let ρ be the permutation ofX
exchangingx andy. By neutrality,x ∈ (f ◦ φN )(ρ(Rσ

N )). Note that the twon-tuples of top ranked
alternatives inRN andρ(Rσ

N )) are the same. Becauseh = 1, (f ◦ φN )(RN ) = (f ◦ φN )(ρ(Rσ
N )).

Thus,x ∈ (f ◦ φN )(RN ) = f(MN ), which is a contradiction.
Let z be any element of(f ◦ φN )(RN ). By the above argument,z ̸∈ (fp ◦ φp

N )(RN ). Let Nx

be a subset of{i ∈ N | r1(Ri) = x} such that|Nx| = |{i ∈ N | r1(Ri) = z}|. Then, letσ′ be
the permutation such thatσ′(Nx) = {i ∈ N | r1(Ri) = z} andσ′({i ∈ N | r1(Ri) = z}) = Nx.
By anonymity,z ∈ (f ◦ φN )(Rσ′

N ). Let ρ′ be the permutation exchangingx andz. By neutrality,
x ∈ (f ◦ φN )(ρ′(Rσ′

N )). For eachi ∈ {j ∈ N | r1(Rj) = x} \ Nx, lift x to the top inρ′(Rσ′
i ).

Let R′′
N denote the resulting preference profile. By monotonicity,x ∈ (f ◦ φN )(R′′

N ). It can
be seen that the twon-tuples of top ranked alternatives inRN andR′′

N are the same, and hence
x ∈ (f ◦ φN )(RN ) = f(MN ), which is a contradiction. Therefore,fp(MN ) ⊂ f(MN ) for all
MN ∈MN .

CASE 2: h = m. Supposefa(MN ) ̸⊂ f(MN ) for someMN ∈ MN . Let x be an ele-
ment offa(MN ) \ f(MN ), and letRN be such thatRi ∈ Mi for all i ∈ N .

We claim thatfa(MN )∩ f(MN ) = ∅. Suppose to the contrary that there existsy ∈ fa(MN )∩
f(MN ). Then,y ∈ (fa ◦ φa

N )(RN ) ∩ (f ◦ φN )(RN ). There are two cases to consider.
First, assume{i ∈ N | rm(Ri) = y} = ∅. Then,{i ∈ N | rm(Ri) = x} is also the empty

set. Letρ be the permutation ofX exchangingx andy. By neutrality,x ∈ (f ◦ φN )(ρ(RN )).
Note that the twon-tuples of the bottom ranked alternatives inRN andρ(RN ) are the same. Thus,
x ∈ (f ◦ φN )(RN ) = f(MN ), which is a contradiction.

Next, assume{i ∈ N | rm(Ri) = y} ̸= ∅. Then,|{i ∈ N | rm(Ri) = y}| = |{i ∈ N |
rm(Ri) = x}| > 0. Let σ be a permutation ofN such thatσ({i ∈ N | rm(Ri) = y}) =
{i ∈ N | rm(Ri) = x} and σ({i ∈ N | rm(Ri) = x}) = {i ∈ N | rm(Ri) = y}. By
anonymity,y ∈ (f ◦ φN )(Rσ

N ). Let ρ be the permutation ofX exchangingx andy. By neutrality,
x ∈ (f ◦ φN )(ρ(Rσ

N )). Note that the twon-tuples of the bottom ranked alternatives inRN and
ρ(Rσ

N ) are the same. Thus,x ∈ (f ◦ φN )(RN ), which is a contradiction. Therefore, in any case,
fa(MN ) ∩ f(MN ) = ∅.

Let z be any element of(f ◦ φN )(RN ). By the above argument,z ̸∈ (fa ◦ φa
N )(RN ), that is,

|{i ∈ N | rm(Ri) = z}| > |{i ∈ N | rm(Ri) = x}|. Let Nz be a subset of{i ∈ N | rm(Ri) = z}
such that|Nz| = |{i ∈ N | rm(Ri) = x}|. Let σ′ be a permutation ofN such thatσ′(Nz) = {i ∈
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N | rm(Ri) = x} andσ′({i ∈ N | rm(Ri) = x}) = Nz. By anonymity,z ∈ (f ◦φN )(Rσ′
N ). Letρ′

be the permutation ofX exchangingx andz. By neutrality,x ∈ (f ◦ φN )(ρ(Rσ′
N )). Now, for each

i ∈ {j ∈ N | rm(Rj) = z} \Nz, takez to the second place from the bottom atρ(Rσ′
i ). Let R′

N be
the resulting preference profile. Note that the twon-tuples of bottom ranked alternatives inρ(Rσ

N )
andR′

N are the same, and hencex ∈ (f ◦φN )(R′
N ). Now, for eachi ∈ {j ∈ N | rm(Rj) = z}\Nz,

lift x to the top of his preference. LetR′′
N denote resulting preference profile. By monotonicity,

x ∈ (f ◦ φN )(R′′
N ). Then, it can be seen that the twon-tuples of bottom ranked alternatives

in R′′
N andRN are the same. Thus,x ∈ (f ◦ φN )(RN ), which is a contradiction. Therefore,

fa(MN ) ⊂ f(MN ) for all MN ∈MN .
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