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Abstract

A recurring theme in the mathematical social sciences is how to select the “most
desirable” elements given a binary dominance relation on a set of alternatives.
Schwartz’s tournament equilibrium set (TEQ) ranks among the most intriguing,
but also among the most enigmatic, tournament solutions proposed so far in this
context. Due to its unwieldy recursive definition, little is known about TEQ. In
particular, its monotonicity remains an open problem to date. Yet, if TEQ were
to satisfy monotonicity, it would be a very attractive solution concept refining both
the Banks set and Dutta’s minimal covering set. We show that the problem of de-
ciding whether a given alternative is contained in TEQ is NP-hard. Furthermore,
we propose a heuristic that significantly outperforms the naive algorithm for com-
puting TEQ. Early experimental results support the conjecture that TEQ is indeed
monotonic.

1 Introduction

A recurring theme in the mathematical social sciences is how to select the “most desirable”
elements given a binary dominance relation on a set of alternatives. Examples are diverse
and include selecting socially preferred candidates in social choice settings (e.g., Fishburn,
1977; Laslier, 1997), finding valid arguments in argumentation theory (e.g., Dung, 1995;
Dunne, 2007), determining the winners of a sports tournament (e.g., Dutta and Laslier,
1999), making decisions based on multiple criteria (e.g., Bouyssou et al., 2006), choosing
the optimal strategy in a symmetric two-player zero-sum game (e.g., Duggan and Le Breton,
1996), and singling out acceptable payoff profiles in cooperative game theory (Gillies, 1959;
Brandt and Harrenstein, 2008). In social choice theory, where dominance-based solutions
are most prevalent, the dominance relation can simply be defined as the pairwise majority
relation, i.e., an alternative a is said to dominate another alternative b if the number of
individuals preferring a to b exceeds the number of individuals preferring b to a. As is
well known from Condorcet’s paradox (de Condorcet, 1785), the dominance relation may
contain cycles and thus need not have a maximum, even if each of the underlying individual
preferences does. As a consequence, the concept of maximality is rendered untenable in
most cases, and a variety of so-called solution concepts that take over the role of maximality
in non-transitive relations have been suggested (see, e.g., Laslier, 1997).

The tournament equilibrium set (TEQ) introduced by Schwartz (1990) ranks among
the most intriguing, but also among the most enigmatic, solution concepts that has been
proposed for tournaments, i.e., asymmetric and complete dominance relations. Due to
its unwieldy recursive definition, however, preciously little is known about TEQ (Dutta,
1990; Laffond et al., 1993). In particular, whether TEQ satisfies the important property of
monotonicity remains an open question to date. If it does, TEQ constitutes a most attractive
tournament solution, refining both the minimal covering set and the Banks set (Laslier, 1997;
Laffond et al., 1993).

Recent work in computer science has addressed the computational complexity of almost
∗An earlier version of this paper appeared in the proceedings of the 23rd AAAI Conference on Artificial

Intelligence (AAAI).
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all common solution concepts (see, e.g., Woeginger, 2003; Alon, 2006; Conitzer, 2006; Brandt
et al., 2007). The minimal covering set and the tournament equilibrium set, however, have
remained notable exceptions. Laslier writes that “Unfortunately, no algorithm has yet been
published for finding the minimal covering set or the tournament equilibrium set of large
tournaments. For tournaments of order 10 or more, it is almost impossible to find (in the
general case) these sets at hand” (Laslier, 1997, p.8). The minimal covering set has recently
been shown to be computable in polynomial time (Brandt and Fischer, 2008). In this paper
we prove that the same is not true for TEQ, unless P equals NP. We first give an arguably
simpler alternative to Woeginger’s (2003) NP-hardness proof for membership in the Banks
set. Then the construction used in that proof is modified so as to obtain the analogous
result for TEQ. In contrast to the Banks set, there is no obvious reason to suppose that
the TEQ membership problem is in NP; it may very well be even harder. In the second
part of the paper, we propose and evaluate a heuristic for computing TEQ that performs
reasonably well on tournaments with up to 150 alternatives. Experiments further support
the conjecture that TEQ is indeed monotonic.

2 Preliminaries

A tournament T is a pair (A,�), where A is a finite set of alternatives and � an irreflex-
ive, anti-symmetric, and complete binary relation on A, also referred to as the dominance
relation. Intuitively, a � b signifies that alternative a beats b in a pairwise comparison. We
write T for the class of all tournaments and have T (A) denote the set of all tournaments on
a fixed set A of alternatives. If T is a tournament on A, then every subset X of A induces
a tournament T |X = (X,�|X), where �|X = {(x, y) ∈ X ×X : x � y}.

As the dominance relation is not assumed to be transitive in general, there need not
be a so-called Condorcet winner, i.e., an alternative that dominates all other alternatives.
A tournament solution S is defined as a function that associates with each tournament T
on A a subset S(T ) of A. The definition of a tournament solution commonly includes the
requirement that S(T ) be non-empty if T is defined on a non-empty set of alternatives and
that it select the Condorcet winner if there is one (Laslier, 1997, p.37). For X a subset of A,
we also write S(X) for the more cumbersome S(T |X), provided that the tournament T is
known from the context. A tournament solution S is said to be monotonic if for any two
tournaments T, T ′ ∈ T (A) which only differ in that b � a in T and a � b in T ′, a ∈ S(T ) im-
plies that also a ∈ S(T ′), i.e., reinforcing an alternative cannot cause it to be excluded from
the solution set. Monotonicity is a vital property that all reasonable tournament solutions
satisfy. In this paper, we will be concerned with two particular tournament solutions, the
Banks set and Schwartz’s tournament equilibrium set (TEQ). For a proper formal definition,
however, we need some auxiliary notions and notations.

Let R be a binary relation on a set A. We write R∗ for the transitive reflexive closure
of R. By the top cycle TC A(R) we understand the maximal elements of the asymmetric
part of R∗. A subset X of A is said to be transitive if R is transitive on X. For X ⊆ Y ⊆ A,
X is called maximal transitive in Y if X is transitive and no proper superset of X in Y is.
Clearly, since A is finite, every transitive set is contained in a maximal transitive set. Given
a set Z = {Zi}i∈I of pairwise disjoint subsets of A, a subset X of A will be called a choice
set for Z if it contains precisely one element from each subset Zi ∈ Z.

In tournaments, maximal transitive sets are also referred to as Banks trajectories. The
Banks set BA(T ) of a tournament T then collects the maximal elements of the Banks
trajectories.

Definition 1 (Banks set) Let T be a tournament on A. An alternative a ∈ A is in the
Banks set BA(T ) of T if a is a maximal element of some maximal transitive set in T .
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Figure 1: Example due to Schwartz, 1990, where BA(T ) = {a, b, c, d} and TEQ(T ) =
{a, b, c}. The TEQ relation → is indicated by thick edges.

The tournament equilibrium set TEQ(T ) of a tournament T on A is defined as the top
cycle of a particular subrelation of the dominance relation, referred to as the TEQ relation
in the following. The underlying idea is that an alternative is only “properly” dominated,
i.e., dominated according to the subrelation, if it is dominated by an element that is selected
by some tournament solution concept S. To make this idea precise, for X ⊆ A, we write
DX(a) = { b ∈ X : b � a } for the dominators of a in X, omitting the subscript when
X = A. Thus, for each alternative a one examines the set D(a) of its dominators, and
solves the subtournament T |D(a) by means of the solution S. In the subrelation a is then
only dominated by the alternatives in S(D(a)). This of course, still leaves open the question
as to the choice of the solution concept S. Now, in the case of TEQ, S is taken to be TEQ
itself! This recursion is well-defined because for any X ⊆ A and a ∈ X, the set DX(a) is a
proper subset of X. Thus, in order to determine the TEQ relation in a subtournament T ,
one has to calculate the TEQ of smaller and smaller subtournaments of T .

Definition 2 (Tournament equilibrium set) Let T ∈ T (A). For each subset X ⊆ A,
define the tournament equilibrium set TEQ(X) for X as

TEQ(X) = TC X(→X),

where →X is defined as the binary relation on X such that for all x, y ∈ X,

x →X y if and only if x ∈ TEQ(DX(y)).

Recall that in particular, TEQ(∅) = ∅. The TEQ relation →X is a subset of the dominance
relation �, and if DX(x) 6= ∅, then there is some y ∈ DX(x) with y →X x. Furthermore,
Definition 2 directly yields a recursive algorithm to compute TEQ. Some reflection reveals
that this naive algorithm requires time exponential in |A| in the worst case.

It can easily be established that the Banks set and TEQ both select the Condorcet winner
of a tournament if there is one. Moreover, in a cyclic tournament on three alternatives,
the Banks set and TEQ both consist of all alternatives. In more complex tournaments,
however, the Banks set and TEQ may differ. Consider, for example, the tournament T
depicted in Figure 1. We first calculate the TEQ relation →. Thus, e.g., for alternative e
we find D(e) = {a, c, d}, which constitutes a three-cycle, and so TEQ(D(e)) = {a, c, d}.
Accordingly, a → e, c → e, as well as d → e. Doing this for all alternatives, we find
TEQ(T ) = {a, b, c} as the top cycle TC (→) of the relation →. By contrast, the Banks set
consists of the four elements a, b, c and d. E.g., d ∈ BA(T ), because {d, c, e} is a maximal
transitive set with maximal element d. Nevertheless, TEQ is always included in the Banks
set.
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Proposition 1 (Schwartz, 1990) Let T = (A,�) be a tournament. Then, TEQ(T ) ⊆
BA(T ).

Proof: We prove by structural induction on X that TEQ(X) ⊆ BA(X) for all subsets X
of A. The case X = ∅ is trivial, as then TEQ(X) = BA(X) = ∅. So, assume that
TEQ(X ′) ⊆ BA(X ′), for all X ′ ( X. We prove that TEQ(X) ⊆ BA(X) as well. To this
end, consider an arbitrary a ∈ TEQ(X). Either DX(a) = ∅ or DX(a) 6= ∅. In the former
case, a is the Condorcet winner in X and therefore a ∈ BA(X). In the latter case, x →X a
for some x ∈ X. Having assumed that a ∈ TEQ(X), i.e., a ∈ TC (→X), there is also an
x′ ∈ X with a →X x′. Accordingly, a ∈ TEQ(DX(x′)). By the induction hypothesis, also
a ∈ BA(DX(x′)). Therefore, there is some maximal transitive set Y in DX(x′) of which a
is the maximal element. Then, Y ∪ {x′} is a transitive set in X. Now let Y ′ ⊆ X be
a maximal transitive set in X containing Y ∪ {x′} with a′ as maximal element. Observe
that a′ ∈ BA(X). Then, a′ � x′ and so a′ ∈ DX(x′). Now consider Y ′ ∩DX(x′). Clearly,
Y ∩DX(x′) is a transitive set in DX(x′) which contains a′ as its maximal element. Moreover,
Y ⊆ Y ′∩DX(x′). By maximality of Y it then follows that Y = Y ′∩DX(x′) and that a = a′.
We may conclude that a ∈ BA(X). �

Otherwise, little is known and much surmised about the theoretical properties of TEQ.
For example, Schwartz (1990) conjectured that the top cycle of the TEQ relation is always
weakly connected, a property of TEQ we will refer to as CTC for connected top cycle.
Laffond et al. (1993) showed that TEQ satisfying CTC is equivalent to it having a number
of useful properties. In particular, TEQ is monotonic if and only if CTC holds. Moreover,
CTC implies the inclusion of TEQ in the minimal covering set (see, e.g., Laslier, 1997),
another appealing tournament solution. Thus, if TEQ satisfies CTC it might be considered
a very strong solution concept. Otherwise, TEQ lacks the vital property of monotonicity
and as such it would be severely flawed as a tournament solution.

3 An Alternative NP-Hardness Proof for Membership
in the Banks Set

We begin our investigation of the computational complexity of the TEQ membership prob-
lem by giving an alternative proof for NP-hardness of the analogous problem for the Banks
set. The latter was first demonstrated by Woeginger (2003) using a reduction from graph
three-colorability. Our proof works by a reduction from 3SAT , the NP-complete satisfiabil-
ity problem for Boolean formulas in conjunctive normal form with exactly three literals per
clause (see, e.g., Papadimitriou, 1994). It is arguably simpler than Woeginger’s, and a much
similar construction will be used in the next section to prove NP-hardness of membership
in TEQ. The tournaments used in both reductions will be taken from a special class T ∗.

Definition 3 (The class T ∗) A tournament (A,�) is in the class T ∗ if it satisfies the
following properties. There is some odd integer n ≥ 1, the number of layers in the tour-
nament, such that A = C ∪ U1 ∪ · · · ∪ Un, where C, U1, . . . , Un are pairwise disjoint and
C = {c0, . . . , cn}. Each Ui is a singleton if i is even, and Ui = {u1

i , u
2
i , u

3
i } if i is odd.

The complete and asymmetric dominance relation � is such that for all ci ∈ Ci, cj ∈ Cj,
ui ∈ Ui, uj ∈ Uj (0 ≤ i, j ≤ n):

(i) ci � cj, if i > j,

(ii) ui � cj, if i = j,

(iii) cj � ui, if i 6= j,
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Figure 2: Tournament TBA
ϕ for the 3CNF formula ϕ = (¬p∨s∨q)∧ (p∨s∨r)∧ (p∨q∨¬r).

Omitted edges are assumed to point downwards.

(iv) ui � uj, if i < j and at least one of i and j is even,

(v) uk
i � ul

i, if i is odd and k ≡ l − 1 (mod 3)

We also refer to c0 by d, for “decision node” and to
⋃

1≤i≤n Un by U . For i = 2k, we
have as a notational convention Ui = Yk = {yk} and set Y =

⋃
1≤2k≤n Yk.

Observe that this definition fixes the dominance relation between any two alternatives except
for some pairs of alternatives that are both in U .

As a next step in the argument, we associate with each instance of 3SAT a tournament
in the class T ∗. An instance of 3SAT is given by a formula ϕ in 3-conjunctive normal
form (3CNF ), i.e., ϕ = (x1

1∨x2
1∨x3

1)∧· · ·∧(x1
m∨x2

m∨x3
m), where each x ∈ {x1

i , x
2
i , x

3
i : 1 ≤

i ≤ m} is a literal. For each clause x1
i ∨x2

i ∨x3
i we assume x1

i , x2
i and x3

i to be distinct literals.
We moreover assume the literals to be indexed and by Xi we denote the set {x1

i , x
2
i , x

3
i }.

For literals x we have x̄ = ¬p if x = p, and x̄ = p if x = ¬p, where p is some propositional
variable. We may also assume that if x and y are literals in the same clause, then x 6= ȳ. We
say a 3CNF ϕ = (x1

1 ∨x2
1 ∨x3

1)∧ · · · ∧ (x1
m ∨x2

m ∨x3
m) is satisfiable if there is a choice set V

for {Xi}1≤i≤m such that v′ = v̄ for no v, v′ ∈ V . Next we define for each 3SAT formula ϕ
the tournament TBA

ϕ .

Definition 4 (Banks construction) Let ϕ be a 3CNF (x1
1∨x2

1∨x3
1)∧· · ·∧(x1

m∨x2
m∨x3

m).
Define TBA

ϕ = (C ∪ U,�) as the tournament in the class T ∗ with 2m − 1 layers such that
for all 1 ≤ j < 2m,

Uj =

{
Xi if j = 2i− 1,
{yi} if j = 2i

and such that for all x ∈ Xi and x′ ∈ Xj (1 ≤ i, j ≤ m),

x � x′ if both j < i and x′ = x̄ or both i < j and x′ 6= x̄.

Observe that in conjunction with the other requirements on the dominance relation of a
tournament in T ∗, this completely fixes the dominance relation � of TBA

ϕ .
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An example of a tournament TBA
ϕ for a 3CNF ϕ is shown in Figure 2. We are now in

a position to present our alternative proof that the Banks membership problem is NP-
complete.

Theorem 1 The problem of deciding whether a particular alternative is in the Banks set
of a tournament is NP-complete.

Proof: Membership in NP is obvious. For a fixed alternative d, we can simply guess a
transitive subset of alternatives V with d as maximal element and verify that V is also
maximal with respect to set inclusion.

For NP-hardness, we show that TBA
ϕ contains a maximal transitive set with maximal

element d if and only if ϕ is satisfiable. First observe that V is a maximal transitive subset
with maximal element d in TBA

ϕ only if both

(i) for all 1 ≤ i < 2m there is a u ∈ Ui such that u ∈ V , and

(ii) there are no 1 ≤ i < j < 2m, u ∈ Ui, u′ ∈ Uj with u, u′ ∈ V such that uj � ui.

Regarding (i), if there is an 1 ≤ i < 2m such that no element of Ui is contained in V , we can
always add ci to V in order to obtain a larger transitive set. If (ii) were not to hold, both i
and j have to be odd for uj to dominate ui. However, in light of (i), there has to be k with
i < k < j and u′′ ∈ Uk such that u′′ ∈ V . It follows that V is not transitive because u, u′′,
and u′ form a cycle. If there is maximal transitive set V with maximal element d complying
with both (i) and (ii), a satisfying assignment of ϕ can be obtained by letting all literals
contained in X ∩ V be true.

For the opposite direction, assume that ϕ is satisfiable. Then there is a choice set W for
{Xi}1≤i≤m such that x′ = x̄ for no x, x′ ∈ W . Obviously V = W ∪ {y1, . . . , ym−1} ∪ {d}
does not contain any cycles and thus is transitive with maximal element d. In order to
obtain a larger transitive set with a different maximal element, we need to add ci for some
1 ≤ i ≤ m to V . However, V ∪ {ci} always contains a cycle consisting of ci, d, and u for
some u ∈ Ui, contradicting the transitivity of V ∪ {ci}. We have thus shown that d is the
maximal element of some maximal transitive set in TBA

ϕ containing V as a subset. �

4 NP-hardness of Membership in TEQ

In this section we prove that the problem of deciding whether a particular alternative is in
the TEQ of a tournament is NP-hard. To this end, we refine the construction that was used
in the previous section to prove NP-completeness of membership in the Banks set.

Definition 5 (TEQ construction) Let ϕ be a 3CNF (x1
1∨x2

1∨x3
1)∧· · ·∧(x1

m∨x2
m∨x3

m).
Further for each 1 ≤ i < m, let there be a set Zi = {z1

i , z2
i , z3

i }. Define TTEQ
ϕ as the

tournament (A,�) in T ∗ with 4n− 3 layers such that A = C ∪U1 ∪ · · · ∪U4n−3 and for all
1 ≤ i ≤ m,

Uj =


Xi if j = 4i− 3,
Zi if j = 4i− 1,
{yi} otherwise.

As in the Banks construction, we let for all x ∈ Xi and x′ ∈ Xj (1 ≤ i, j ≤ m)

x � x′ if both j < i and x′ = x̄ or both i < j and x′ 6= x̄.

Finally, for all 1 ≤ i, j ≤ m, xk
i ∈ Xi and zl

j ∈ Zj,

xk
i � zl

j if and only if i < j or both i = j and k = l.
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Figure 3: Tournament TTEQ
ϕ for the 3CNF formula ϕ = (¬p∨s∨q)∧(p∨s∨r)∧(p∨q∨¬r).

An example for such a tournament is shown in Figure 3.
We now proceed to show that a 3SAT formula ϕ is satisfiable if and only if the decision

node d is in the tournament equilibrium set of TTEQ
ϕ . We make use of the following lemma.

Lemma 1 Let T = (C ∪U,�) be a tournament in T ∗ and let B ⊆ C ∪U such that d ∈ B.
Then, for each u ∈ U ∩B there exists some c ∈ C ∩B such that c →∗

B u.

Proof: Let ci ∈ C ∩B be such that DB(ci) ∩C = ∅, i.e., ci is the alternative in C with the
highest index among those included in B. Then,

ci →B c for all c ∈ B ∩ C with c 6= ci. (1)

For this, merely observe that by construction ci is the Condorcet winner in DB(c). Hence,
ci ∈ TEQ(DB(c)) and ci →B c.

The lemma itself then follows from the stronger claim that for each u ∈ U ∩ B there is
some c ∈ C ∩ B with both c →∗

B u and c ∈ TEQ(B). This claim we prove by structural
induction on supersets B of {d}.

If B = {d}, U ∩B = ∅ and the claim is satisfied trivially. So let {d} be a proper subset
of B. Again, if U ∩ B = ∅, the claim holds trivially. So we may assume there be some
u ∈ U ∩B. Then, d ∈ DB(u) by construction of T . If DB(u)∩U = ∅, DB(u) is a non-empty
subset of C ∩B, and so is TEQ(DB(u)). It follows that for some c ∈ TEQ(DB(u)) ∩ C we
have c →B u. If, on the other hand, DB(u)∩U 6= ∅, the induction hypothesis is applicable
and we have c ∈ TEQ(DB(u)) for some c ∈ C ∩ B. Hence, c →B u. With u having been
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chosen arbitrarily, we actually have that for all u ∈ U ∩ B, there is some c ∈ C ∩ B with
c →B u. It remains to be shown that there is some c ∈ C ∩ TEQ(B) with c →∗

B u.
To this end, again consider ci ∈ C ∩ B such that DB(ci) ∩ C = ∅. It suffices to show

that ci →∗
B b for all b ∈ B, as then both ci ∈ TEQ(B) ∩ C and ci →∗

B u. So, consider an
arbitrary b ∈ B. If b = ci, the case is trivial. If b ∈ C ∩ B but b 6= ci, we are done by (1).
If instead b ∈ U ∩ B, then c →∗

B b for some c ∈ C ∩ B, as we have shown in the first part
of the proof. If c = ci, we are done. Otherwise, we can apply (1) to obtain ci →B c′ →∗

B b
and hence ci →∗

B b. �

We are now ready to state the main theorem of this paper.

Theorem 2 Deciding whether a particular alternative is in the tournament equilibrium set
of a tournament is NP-hard.

Proof: By reduction from 3SAT . Consider an arbitrary 3CNF ϕ and construct the tourna-
ment TTEQ

ϕ = (C ∪ U,�). This can be done in polynomial time. We show that

ϕ is satisfiable if and only if d ∈ TEQ(TTEQ
ϕ ).

For the direction from left to right, observe that by an argument analogous to the proof of
Theorem 1 it can be shown that ϕ is satisfiable if and only if d ∈ BA(TTEQ

ϕ ). So assuming
that ϕ is not satisfiable yields d /∈ BA(TTEQ

ϕ ). By the inclusion of TEQ in the Banks set
(Proposition 1), it follows that d /∈ TEQ(TTEQ

ϕ ).
For the opposite direction, assume that ϕ is satisfiable. Then there is a choice set W for

{Xi}1≤i≤m such that x′ = x̄ for no x, x′ ∈W . Obviously W∪{y1, . . . , ym−1}∪{zj
i ∈ Z : xj

i ∈
W} = {u1, . . . , un} contains no cycles and thus is transitive. Without loss of generality we
may assume that ui ∈ Ui for all 1 ≤ i ≤ n. For each 1 ≤ i ≤ n + 1, define a subset Di of
alternatives as follows. Set Dn+1 = A and Di =

⋂
i≤j≤n+1 D(uj) for each 1 ≤ i ≤ n. Hence,

D1 ( · · · ( Dn+1. In an effort to simplify notation, we write →i and Di(x) for →Di
and

DDi
(x), respectively. It then suffices to prove that

d ∈ TEQ(Dk), for all 1 ≤ k ≤ n + 1. (2)

The theorem then follows as the special case in which k = n+1. We first make the following
observations concerning the TEQ relation →i in each Di, for each 1 ≤ i, j ≤ n + 1:

(i) uj ∈ Di if and only if j < i,

(ii) cj ∈ Di if and only if j < i,

(iii) ci →i+1 cj if j < i ≤ n,

(iv) ui →i+1 ci, if i ≤ n.

For (i), observe that if j < i, uj ∈ D(ui) by transitivity of the set {u1, . . . , un}. Hence,
uj ∈ Di. If on the other hand j ≥ i, then uj /∈ D(uj) and thus uj /∈ Di. For (ii), observe that
cj ∈ D(ui) for all i 6= j and thus cj ∈ Di if j < i. However, cj /∈ D(uj) and hence cj /∈ Di

if j ≥ i. For (iii), merely observe that ci is the Condorcet winner in Di+1(cj), if j < i ≤ n.
To appreciate (iv), observe that by construction Di+1(ci) has to be either a singleton {ui}
for some ui ∈ Ui, or Ui itself. The former is the case if Ui ⊆ Y , or if Ui ⊆ X and i 6= n.
The latter holds if Ui = Un or if Ui ⊆ Z. In either case, TEQ(Di+1(ci)) = Di+1(ci) and
ui →i+1 ci holds. For the case in which Ui ⊆ X with i 6= n, let Ui = {ui, u

′
i, u
′′
i }. By

construction, Ui+2 ⊆ Z and u′i, u
′′
i /∈ D(ui+2). Accordingly, u′i, u

′′
i /∈ Di+1. From ui ∈ Di+1

it then follows that Di+1 ∩ Ui = {ui}.
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Algorithm 1 Tournament Equilibrium Set
procedure TEQ(X)
R← ∅
B ← C ← arg mina∈X |D(a)|
loop

R← R ∪ {(b, a) : a ∈ C ∧ b ∈ TEQ(D(a))}
D ← ⋃

a∈C TEQ(D(a))
if D ⊆ B then return TC B(R) end if
C ← D
B ← B ∪ C

end loop

We are now in a position to prove (2) by induction on k. For k = 1, observe that d is
a Condorcet winner in D1 and thus d ∈ TEQ(D1). For the induction step, let k = i + 1.
With observation (i) we know that ui ∈ Di+1 and, in virtue of the induction hypothesis,
also that d ∈ TEQ(Di). Hence, d →i+1 ui. Moreover, by observations (iii) and (iv),
ci →i+1 d →i+1 ui →i+1 ci, i.e., ci, d and ui constitute a →i+1-cycle. In virtue of Lemma 1
and observation (ii), we may conclude that ci →∗

i+1 a for all a ∈ Di+1. Accordingly,
{ci, d, ui} ⊆ TC Di+1

(→i+1) and d ∈ TEQ(Di+1), which concludes the proof. �

5 A Heuristic for Computing TEQ

Computational intractability of the TEQ membership problem implies that TEQ cannot be
computed efficiently either. Nevertheless, the running time of the naive algorithm, which
straightforwardly implements the recursive definition of TEQ, can be greatly reduced when
assuming that TEQ satisfies CTC. This assumption can fairly be made. For if CTC were
not to hold, TEQ would be non-monotonic and thus compromised as a solution concept,
the issue of computing it moot.

Algorithm 1 computes TEQ by starting with the set B of all alternatives that have
dominator sets of minimal size (i.e., the so-called Copeland winners). These alternatives
are good candidates to be included in TEQ and the small size of their dominator sets speeds
up the computation of their TEQ-dominators. Then, all alternatives that TEQ-dominate
any alternative in B are iteratively added to B until no more such alternatives can be
found, in which case the algorithm returns the top cycle of →B . Of course, the worst-case
running time of this algorithm is still exponential, but experimental results suggest that it
outperforms the naive algorithm by a factor of about five in uniform random tournaments
with up to 150 vertices (see Table 1). We implemented two versions of the naive algo-
rithm, which differ in the subroutine that determines the top cycle. The first one uses the
Floyd-Warshall algorithm with an asymptotic complexity of O(n3), whereas the second one
employs Kosaraju’s algorithm with a complexity of O(n2) (see, e.g., Cormen et al., 2001).
Surprisingly, the variant relying on Floyd-Warshall performs slightly better on moderately
sized instances due to factors hidden in the asymptotic notation that are amplified as a
consequence of TEQ’s recursive definition.

While choosing tournaments uniformly at random might be useful for benchmarking
algorithms, it raises a number of conceptual problems. First, in voting and most other
applications uniform random tournaments do not represent a reasonably realistic model
of social preferences. Secondly, these tournaments are “almost” regular and tournament
solutions almost always select all alternatives in regular tournaments. One model of random
tournaments that have more structure can be obtained by defining an arbitrary linear order
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|A| Floyd-Warshall Kosaraju Algorithm 1
Uniform random tournaments (p = 0.5)

50 0.48 s 0.59 s 0.09 s
100 53.33 s 65.73 s 9.57 s
150 1 166 s 1 429 s 210 s

Structured random tournaments (p = 0.8)
50 13.87 s 16.56 s 0.01 s

100 18 416 s 21 382 s 8.46 s
150 — — 1273 s

Table 1: Experimental evaluation of algorithms that compute TEQ. Average running time
for ten instances on a 3.2GHz Core2Duo machine. Both versions of the naive algorithm
did not terminate within 24 hours when run on structured random tournaments with 150
vertices.

on the alternatives a1, . . . , am and letting ai � aj for i < j with probability p > 0.5.
Letting p = 1 yields a “completely structured” transitive tournament. The more structure
a tournament possesses, the more Algorithm 1 outperforms the naive algorithm, due to the
increasing number of large dominator sets that have to be analyzed by the latter at every
level of the recursion. In large structured tournaments, the performance gap becomes rather
impressive (see Table 1). For example, the naive algorithm requires more than five hours
to compute the TEQ of a structured random tournament with 100 vertices whereas it takes
Algorithm 1 about eight seconds.1

We have further used the naive algorithm to try to disprove CTC (and thus TEQ’s mono-
tonicity), but failed to find a counterexample by an exhaustive search in all tournaments
with up to ten vertices (roughly ten million non-isomorphic tournaments), all regular tour-
naments with up to 13 vertices, and all locally transitive tournaments with up to 20 vertices.
We also investigated a fairly large number of uniform and structured random tournaments,
again to no avail. This can be considered mild evidence that TEQ is indeed monotonic.
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