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Abstract

The problem of the manipulability of known social choice rules in the case of mul-
tiple choice is considered. Several concepts of expanded preferences (preferences
over the sets of alternatives) are elaborated. As a result of this analysis ordinal
and nonordinal methods of preferences expanding are defined. The notions of the
degree of manipulability are extended to the case under study. Using the results of
theoretical investigation, 22 known social choice rules are studied via computational
experiments to reveal their degree of manipulability.

1 Introduction

The problem of manipulation in voting is that the voter can achieve the best social decision
for herself by purposely changing her sincere preferences. Theoretical investigations of the
manipulation problem were first made in [5] [11]. There, it was shown that if some rather
weak conditions hold, any nondictatorial choice rule is manipulable. To which extent social
choice rules are manipulable was studied in [1] [7]. However, estimating the degree of manip-
ulability is a very difficult computational problem — to resolve it simplifying assumptions
are made. The main and the strongest assumption used is a tie-breaking rule, which allow to
consider manipulation problem in the framework of single-valued choice. According to such
rule from the set of winning alternatives only one winner is chosen. For example, in [1] [3]
in the case of multiple choice the outcome has been chosen with respect to the alphabetical
order. This is the most common type of tie-breaking rule because it is simple to implement.
But this method also breaks the symmetry between candidates, that can distort the results
of computation. The weaker tie-breaking rule was introduced in [9]. According to this rule,
a winner is chosen at random in the event of a tie.

Manipulation problem in the case of multiple choice has not been elaborated in detail not
only by its computational difficulty, but also because of absence of the common framework
allowing to construct preferences over sets of alternatives.
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2 The framework

We use notations from [1]. There is a finite set A consisting of m alternatives (m > 2). Let
A = 2A\ {∅} denote a set of all not-empty subsets of the set A. Each agent from a finite
set N = {1, ..., n} , n > 1, has preference Pi over alternatives from the set A and expanded
preference EPi over the set A.

Preferences Pi are assumed to be linear orders, i.e., Pi satisfies the following conditions:

• irreflexivity (∀x ∈ A xPx),
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• transitivity (∀x, y, z ∈ A xPy and yPz ⇒ xPz),

• connectedness (∀x, y ∈ A x 6= y either xPy or yPx).

An ordered n-tuple of preferences Pi is called a profile, −→P . A group decision is made by
a social choice rule using −→P and is considered to be an element of the set A. Let L denote
the set of all linear orders on A . Then the social choice rule can be defined as F : Ln −→ A.

Manipulation in the case of multiple choice can be described as follows. Let
−→
P = {P1, . . . , Pi, . . . , Pn}

be the profile of agents’ sincere preferences, while
−→
P −i = {P1, . . . , Pi−1, P

′
i , Pi+1, . . . , Pn}

is a profile in which all agents but i-th declare their sincere preferences, and P ′i is agent i’s
deviation from her sincere preference Pi. Let C(−→P ), C(−→P −i) denote social choice (a subset
of the set A) with respect to profile −→P and profile −→P −i, correspondingly. Then we say that
manipulation takes place if for i-th agent C(−→P −i)EPiC(−→P ), where EPi is the expanded
preference of i-th agent. In other words, we suppose that outcome when the i-th agent
deviates from her true preference is more preferable according to her expanded preference
(i.e., according to her preferences over sets) than in the case when she reveals her sincere
preference.

3 Basic assumptions for preferences expansion

Let us give some basic conditions of the relationship between preferences over alternatives
and expanded preferences over outcomes (sets of alternatives).

First condition was introduced in [6] and is also known as Kelly’s Dominance axiom.
Here we will use the stronger version of Kelly’s axiom introduced in [8]

Kelly’s Dominance axiom (strong). ∀i ∈ N and ∀−→P ,−→P ′ ∈ Ln, if(
∀x ∈ C(−→P ) and ∀y ∈ C(

−→
P ′) ⇒ xPiy or x = y

)
and(

∃z ∈ C(−→P ) and ∃w ∈ C(
−→
P ′)⇒ zPiw

) ,

then C(−→P ) (EP (Pi))C(
−→
P ′).

We should notice, that this assumption allows us to compare social choices which have
at most one alternative in the intersection.

Example. Let x1Pix6Pix7Pix9. Using this condition, we can say that
{x1, x6}EPi {x6, x9}, but we cannot compare sets {x1, x6, x7} and {x6, x7, x9}.

In other words, if two outcomes are different only by one alternative, the set which has
more preferable alternative must be more preferable than another set.

Gärdenfors principle. ∀i ∈ N , ∀−→P ∈ Ln and ∀y ∈ A/C(−→P )
1)
(
C(−→P )

)
EPi

(
C(−→P ) ∪ {y}

)
whenever ∀x ∈ C(−→P ) : xPiy

2)
(
C(−→P ) ∪ {y}

)
EPi

(
C(−→P )

)
whenever ∀x ∈ C(−→P ) : yPix

This condition is also known as Gärdenfors principle defined in [4]. It can be explained
in the following way. If we add to some set an alternative which is more (respectively,
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less) preferable than every alternative in the chosen set, new outcome should be more
(respectively, less) preferable than the old one.

In the literature, for example in [2], another conditions can be found. But almost all
of them do not allow us to compare every possible sets of alternatives. For example, for
lexicographic preferences (x1Pix2Pi . . . Pixm−1Pixm) we can not compare sets {x1, x6, x7}
and {x2, x4} or {x1, x100} and {x99, x101}. Thus, we should define algorithms of preferences
expanding which satisfy conditions mentioned above and allow us to compare all the sets of
alternatives.

4 Preference expanding methods

4.1 Lexicographic methods

4.1.1 Leximin

This algorithm of preferences expansion is introduced in [8] and is based on the well-known
maximin behaviour approach. Here we will use it in the form given in [10]. This method is
based on comparison of the worst alternatives of any two sets. If the worst alternatives are
the same, then we should compare second-worst altenatives and so on. If this is impossible,
that is, when one social choice is a subset of another social choice, then the greater set is
preferred to the lesser one.

Let us describe leximin method of preferences expanding. From preferences Pi ∈ L we
can recieve leximin expanded preferences EPi by the following algorithm.

Two social choices X,Y ∈ A are compared:

1. If |X| = |Y | = k, where k ∈ {1, . . . ,m− 1}, then sort alternatives from each social
choice from the most preferred to the least one, that is: X = {x1, . . . , xk} and Y =
{y1, . . . , yk}, where xjPixj+1 and yjPiyj+1 ∀j ∈ {1, . . . , k − 1}. Then X EPi Y if and
only if xhPiyh for the greatest h ∈ {1, . . . , k} for which xh 6= yh.

2. If |X| 6= |Y |, then sort alternatives from each social choice from the least preferred to
the most one, that is: X =

{
x1, . . . , x|X|

}
and Y =

{
y1, . . . , y|Y |

}
, where xj+1Pixj

∀j ∈ {1, . . . , |X| − 1} and yj+1Piyj ∀j ∈ {1, . . . , |Y | − 1}. There can be two cases:

(a) xh = yh ∀h ∈ {1, . . . ,min {|X| , |Y |}}. That is, one social choice is a subset of
another social choice. Then, it was already mentioned above, the greater set is
preferred to the lesser one, that is, X EPi Y if and only if |X| > |Y |.

(b) ∃h ∈ {1, . . . ,min {|X| , |Y |}} for which xh 6= yh. Then X EPi Y if and only if
xhPiyh for the least h ∈ {1, . . . ,min {|X| , |Y |}}, for which xh 6= yh.

For example, for three alternatives and preferences aPibPic over them, leximin expanded
preferences EPi will be

{a}EPi {a, b}EPi {b}EPi {a, c}EPi {a, b, c}EPi {b, c}EPi {c}

4.1.2 Leximax

This preferences expanding method is similar to the leximin one, but in this case the best of
any two social choices are compared. If the best alternatives are the same, then we should
compare second-best altenatives and so on. If this is impossible, that is, when one social
choice is a subset of another social choice, then the lesser set is preferred to the greater one.

For example, for three alternatives and preferences aPibPic over them, leximax expanded
preferences EPi will be
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{a}EPi {a, b}EPi {a, b, c}EPi {a, c}EPi {b}EPi {b, c}EPi {c}

4.2 Probabilistic methods

These methods of preferences expanding in contrast to lexicographic methods suggest that
for voter not only the presence of the alternative in a social choice is important, but the
probability that this alternative would be the final outcome is important as well. Here two
algorithms are considered: an ordering is constructed based on the probability of the best
alternative and an ordering is constructed based on the probability of the worst alternative.

4.2.1 Ordering based on the probability of the best alternative

This preference expanding algorithm is based on the element-wise comparison of two social
choices. If the best alternatives of two sets are the same, then the set, in which the proba-
bility that this alternative would be the final outcome is higher, is more preferable. In fact,
it will be the lesser set. If the best alternatives are the same and have equal probability to
be the final outcome, then next alternatives are compared in the same way.

Example. In the set {a, b, c} probability that alternative a would be the final outcome
equals 1

3 (we assume that each alternative of the winning set has equal probability to be
chosen as final outcome). In the set {a, c} this probability equals 1

2 . In other words, there
will be {a, c}EPi {a, b, c} by expanded preferences based on the probability of the best
alternative algorithm.

For example, for three alternatives and preferences aPibPic over them, expanded prefer-
ences EPi based on the probability of the best alternative will be:

{a}EPi {a, b}EPi {a, c}EPi {a, b, c}EPi {b}EPi {b, c}EPi {c}

4.2.2 Ordering based on the probability of the worst alternative

This preferences expanding method is similar to the previous, but in this case the probability
of the worst alternative is consider. The set in which this probability is higher is less
preferable.

For example, for three alternatives and preferences aPibPic over them, expanded prefer-
ences EPi based on the probability of the worst alternative will be:

{a}EPi {a, b}EPi {b}EPi {a, b, c}EPi {a, c}EPi {b, c}EPi {c}

4.3 Ordinal methods

This approach is based on the assumption of expected utility maximization introduced by
von Neuman and Morgenstern. Here we will use a particular case of this assumption.

1. First of all, we will assign utility of each alternative for its place in preferences. In
fact, we will rank the alternatives - the best one will receive the rank m, the next one
the rank m− 1, and so on. The worst alternative has the rank of 1.

2. We assume that each alternative has equal probability to be chosen as the final out-
come. It means that utility of the set of alternatives is equal to the average utility
value of all alternatives within this set.

In fact, even these assumptions do not allow us to compare all social choices when m > 2.
For example, for three alternatives and preferences aPibPic over them, there are sets {a, b, c},
{a, c}, {b}, which have equal utility of 2 according to this approach. So, we need to consider
additional assumptions.
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4.3.1 Lexicographic expansions

These methods suggest the use of lexicographic approach to the sets which are uncompared
by ordinal method itself. Note that new expanded preferences may differ from lexicographic
preferences.

4.3.2 Probabilistic expansions

This methods suggest the use of probabilistic approach to the sets which are uncompared
by ordinal method itself. For example, for four alternatives and preferences aPibPicPid over
them, expanded preferences EPi based on ordinal method with the probability of the worst
alternative approach are (the groups of the sets for which expansion is used are underlined):

{a}EPi {a, b}EPi{b}EPi {a, b, c}EPi {a, c}EPi
EPi {a, b, d}EPi{b, c}EPi {a, b, c, d}EPi {a, d}EPi

EPi {a, c, d}EP i {c}EPi {b, c, d}EPi {b, d}EPi {c, d}EPi {d}

4.3.3 Attitude to risk expansions

These methods are based on attitude to risk approach. In the case when the expected
utility of several sets is equal, the risk-averse voter will prefer the set with the lowest
variance and risk-lover voter will prefer the set with the highest variance. For up to 6
alternatives expanded preferences based on ordinal method with this expansions coincide
with expanded preferences based on ordinal method with probabilistic expansion. If the
number of alternatives is greater than 7 the coincidence does not hold.

Example. Let us consider lexicographic preferences x1Pix2Pi . . . Pixn, where n ≥ 7.
There are sets {x1, x5, x6} and {x2, x3, x7} which have the equal rank and the equal variance.
So, these sets are uncompared by ordinal method with attitude to risk expansions.

For three alternatives these methods yield the same results as probabilistic methods,
but for four alternatives this fact does not hold. For example, for four alternatives and the
preferences aPibPicPid over them, expanded preferences EPi based on ordinal method with
risk-lover expansion are (the groups of the sets for which expansion is used are underlined):

{a}EPi {a, b}EPi{a, c}EPi {a, b, c}EPi {b}EPi
EPi {a, b, d}EPi{a, d}EPi {a, b, c, d}EPi {b, c}EPi

EPi {a, c, d}EP i {b, d}EPi {b, c, d}EPi {c}EPi {c, d}EPi {d}

4.3.4 Cardinality expansions

This approach is based on comparison of the cardinality of sets which are uncomapred by
ordinal method itself. We assume, that when expected utility of several sets is equal, then for
voter a cardinality is important. There are two methods: one assumes that the greater set
is preferred to smaller one in case of the same rank, and the other assume that the smaller
set is preferred to the greater one. Note that these assumptions are rather non-binding.
It allows us to compare all sets only when there are three alternatives. However, even in
this case this method do not give different results. For example, for three alternatives and
preferences aPibPic over them, expanded preferences EPi based on ordinal method with
greater set approach yield the same result as leximax method and ordinal method with
leximax expansion:

{a}EPi {a, b}EPi {a, b, c}EPi {a, c}EPi {b}EPi {b, c}EPi {c}
For more than four alternatives cardinality expansion itself don’t allows to compare all

sets of alternatives. So, additional expansions mentioned above should be added in this
case.
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5 Indices of manipulability

Number of alternatives being m, the total number of possible linear orders is obviously equal
to m!, and total number of profiles with n agents is equal to (m!)n. In [7] to measure a
degree of manipulability of social choice rules the following index was introduced (we call it
Kelly’s index and denote as K) :

K = d0
(m!)n ,

where d0 is the number of profiles in which manipulation takes place1.
In [1] index of freedom of manipulation is introduced. We also introduce two similar

indices: the degree of nonsensitivity to preference change and probability of getting worse.
Let us note that for an agent there are (m! − 1) linear orders to use instead of her sincere
preference. Denote as κ+

i (i = 1, ..., n; 0 ≤ κ+
i ≤ m! − 1) the number of orderings in

which voter is better off, κ0
i - the number of orderings when the result of voting remain

the same and κ−i -the number of orderings in which voter is worse off. It is obvious that
κ+
i + κ0

i + κ−i = (m! − 1). Dividing each κi to (m! − 1) one can find the share of each
type of orderings for an agent i in this profile. Summing up each share over all agents and
dividing it to n one can find the average share in the given profile. Summing the share over
all profiles and dividing this sum to (m!)n we obtain three indices

I1 =
∑(m!)n

j=1

∑n

i=1
κi

(m!)n·n·(m!−1)

where κi is κ+
i , κ0

i or κ−i . It is obvious that I+
1 + I0

1 + I−1 = 1.
These indices K and I1 (as well as index J) measure the degree of manipulability in

terms of the share of manipulable profiles or the share of orderings using which an agent
can manipulate.

The following two indices show the efficiency of manipulation, i.e., to which extent
an agent can be better off via manipulating her sincere ordering. Let under a profile −→P
social decision be the set C

(−→
P
)

which stands at k-th place from the top in the expanded

preferences of i-th agent. Let after her manipulation the social decision be a set C
(−→
P ′
)

which stands in the expanded preferences of the i-th agent at j-th place from the top, and
let j < k. Then θ = j − k shows how is the i-th agent better off. Let us sum up θ for
all advantageous orderings κ+

i (defined above), and let us divide the obtained value to κ+
i .

Denote this index through Zi, which shows an average ”benefit” (in terms of places) of
manipulation of the agent i gained via manipulaiton κ+

i orderings from (m!− 1). Summing
up this index over all agents and over all profiles, we obtain the index under study

I2 =
∑(m!)n

j=1

∑n

i=1
Zi

(m!)n·n

The next criterion I3 is a modification of I2. Instead of evaluating the ”average” benefit
Zi for i-th agent, we evaluate the value

Zmax
i = max(Z1, ..., Zκi).

In other words, the value Zmax
i show the maximal benefit which can be obtained by

agent i. Summing up this index over all agents and over all profiles, we obtain our next
index under study

1In [1] an extended version of Kelly’s index was introduced. Denote by λk the number of profiles in which

exactly k voters can manipulate. Construct index Jk =
λk

(m!)n which shows the share of profiles in which

exactly k voters can manipulate. Obviously, K = J1 + J2 + ... + Jn. Then one can consider the vectorial
index J = (J1, J2, ..., Jn).
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I3 =
∑(m!)n

j=1

∑n

i=1
Zmax

i

(m!)n·n

The indices K, I1, I2, I3, J have been calculated for each of the rules introduced in the
next section. The indices I1, I2 and I3 were introduced in [1].

6 Social Choice Rules

The calculation of indices is performed for up to m = 5 alternatives for 22 social choice
rules. In this work the results only for 5 rules will be given.

1. Plurality Rule
Choose alternatives, that have been admitted to be the best by the maximum number

of agents, i.e.

a ∈ C(−→P )⇐⇒ [∀x ∈ A n+(a,−→P ) ≥ n+(x,−→P )],

where n+(a,−→P ) = card{i ∈ N | ∀y ∈ A aPiy}
2. Approval Voting.
Let us define

n+(a,−→P , q) = card{i ∈ N | card{Di(a)} ≤ q − 1},

i.e., n+(a,−→P , q) means the number of agents for which a is placed on q’th place in their
orderings. Thus, if q = 1, then a is the first best alternative for i-th voter; if q = 2, then
a is either first best or second best option, etc. The integer q can be called as degree of
procedure.

Now we can define Approval Voting Procedure with degree q

a ∈ C(−→P )⇔ [∀x ∈ A n+(a,−→P , q) ≥ n+(x,−→P , q)],
i.e., the alternatives are chosen that have been admitted to be between q best by the maxi-
mum number of agents.

It can be easily seen that Approval Voting Procedure is a direct generalization of Plurality
Rule; for the latter q = 1.

3. Borda’s Rule.
Put to each x ∈ A into correspondence a number ri(x,

−→
P ) which is equal to the cardi-

nality of the lower contour set of x in Pi ∈ −→P , i.e. ri(x,
−→
P ) = |Li(x)| = |{b ∈ A : xPib}|.

The sum of that numbers over all i ∈ N is called Borda’s count for alternative x,

r(a,−→P ) =
n∑
i=1

ri(a, Pi).

Alternative with maximum Borda’s count is chosen., i.e.

a ∈ C(−→P )⇐⇒ [∀b ∈ A, r(a,−→P ) ≥ r(b,−→P )].

4. Black’s Procedure.
If Condorset winner exists, it is to be chosen. Otherwise, Borda’s Rule is applied.

5. Threshold rule.
Let v1(x) be the number of agents for which the alternative x is the worst in their

ordering, v2(x) is the number of agents placing the x second worst, and so on, vm(x)
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the number of agents considering the alternative x the best. Then we order the alternatives
lexicographically. The alternative x is said to V -dominate the alternative y if: v1(x) < v1(y)
or, if there exists k not more than m, s.t. vi(x) = vi(y), i = 1, ..., k − 1, and vk(x) < vk(y).
In other words, first, the number of worst places are compared if these numbers are equal
then the number of second worst places are compared and so on. The alternatives which
are not dominated by other alternatives via V are chosen.

7 Computation scheme

The calculation of indices is performed for up to m = 5 alternatives. For small number
of voters n all possible profiles are checked for manipulability and respective indices are
evaluated. For greater number of voters the statistical scheme is used.

For each profile under consideration in both exhaustive and statistical schemes, all m!-1
manipulating orderings for each voter are generated and the respective choice sets of ma-
nipulating profiles are compared with the choice of the original profile, using all introduced
methods of the preference extensions.

8 Results

In the case of 3 alternatives there are 4 different types of extended preferences. For example,
if preferences over are aPibPic then the extended preferences are as follows:

1. Leximin method, Ordinal method with leximin or greater set extensions.

{a}EPi {a, b}EPi {b}EPi {a, c}EPi {a, b, c}EPi {b, c}EPi {c}

2. Leximax method, Ordinal method with leximax or lesser set extensions.

{a}EPi {a, b}EPi {a, b, c}EPi {a, c}EPi {b}EPi {b, c}EPi {c}

3. Probabilistic method based on the probability of the worst alternative, Ordinal method
with risk-averse extension.

{a}EPi {a, b}EPi {b}EPi {a, b, c}EPi {a, c}EPi {b, c}EPi {c}

4. Probabilistic method based on the probability of the best alternative, Ordinal method
with risk-lover extension.

{a}EPi {a, b}EPi {a, c}EPi {a, b, c}EPi {b}EPi {b, c}EPi {c}

The results of Kelly’s index calculation for 3 and 4 voters are presented in the tables
1 and 2 correspondingly. In the brackets near the name of the rule the results from [1]
are given. One can see that in most cases, especially in the case of 4 voters, the degree of
manipulability in the case of single-valued choice is underestimated. We also can state that
for almost all rules Method 1 and Method 3 have the same Kelly’s index as well as Methods
2 and 4.

In Figures 1 and 2 the results of calculation for the larger number of voters are given.
Kelly’s index is shown on the Y-axis and the logarithm of the number of voters is shown on
the X-axis. The calculation was made for each number of voters from 3 to 25 and then for
29, 30, 39, 40 and so on up to 100. That explains changes at the figures when number of
voters is more than 25.

We can make several conclusions from these figures.

34



Method 1 Method 2 Method 3 Method 4
Plurality (0,1667) 0,2222 0 0,2222 0

Approval q=2 0,1111 0,6111 0,1111 0,6111
Borda (0,2361) 0,3056 0,4167 0,3056 0,4167
Black (0,1111) 0,0556 0,1667 0,0556 0,1667

Threshold 0,3056 0,4167 0,3056 0,4167

Table 1: The case of 3 alternatives and 3 voters

Method 1 Method 2 Method 3 Method 4
Plurality (0,1852) 0,3333 0,3333 0,3333 0,3333

Approval q=2 0,2963 0,2963 0,2963 0,2963
Borda (0,3102) 0,3611 0,4028 0,3611 0,4028
Black (0,1435) 0,2361 0,2778 0,2778 0,2361

Threshold 0,4028 0,4028 0,4028 0,4028

Table 2: The case of 3 alternatives and 4 voters

Figure 1: Kelly’s index for Leximin extension method.
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Figure 2: Kelly’s index for Leximax extension method.

1. The answer on the question which rule is less manipulable depends on the method
of preferences extension. For example, for the number of voters divisible by 3 Ap-
proval voting rule is less manipulable than Plurality rule for Method 1 and is more
manipulable for Method 2.

2. If the number of voters is small Threshold rule is less manipulable than Borda rule.
But when the number of voters is high enough Borda rule is better in Kelly’s sense.
The exact minimum number of voters needed depends on the method used.

3. Black’s Procedure is least manipulable almost for any number of voters and for any
method.

4. Kelly’s index for Black’s Procedure and Method 1 depends on even or odd number of
the voters considered. At the same time for rules such as Plurality, Approval voting
and Threshold, there is a cycle length of m. In this case there is a cycle length of 3.
The dependence from the number of alternatives is explained by differences in number
and cardinality of ties produced by rules. For example, the set {a, b, c} can appear as
the result of plurality voting only in the case when the number of voters is divisible
by the number of alternatives.

In Figure 3 the results of calculation of I1 index for 3 alternatives, 3 voters and Method
1 are given. The left part of each row is the degree of freedom of manipulation. The right
part is the probability of getting worse. The middle part is the degree of nonsensitivity to
preference change. In Figure 4 the results of calculation of I1 index for 3 alternatives, 100
voters and Method 1 are given. We can see that the bigger the number of voters is, the less
is freedom of manipulation as well as the probability of getting worse.
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Figure 3: I1 for Leximin extension method and 3 alternatives.

Figure 4: I1 for Leximin extension method and 100 alternatives.
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