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Abstract

In this paper, we study the computational complexity of the unweighted coalitional manipu-
lation (UCM) problem under some common voting rules. We showthat the UCM problem
under maximin is NP-complete. We also show that the UCM problem under ranked pairs is
NP-complete, even if there is only one manipulator. Finally, we present a polynomial-time
algorithm for the UCM problem under Bucklin.

1 Introduction

Voting is a methodology for a group of agents (or voters) to make a joint choice from a set of
alternatives. Each agent reports his or her preferences over the alternatives; then, avoting rule is
applied to aggregate the preferences of the agents—that is,to select a winning alternative. However,
sometimes a subset of the agents can report their preferences insincerely to make the outcome more
favorable to them. This phenomenon is known asmanipulation. A rule for which no group of
agents can ever beneficially manipulate is said to begroup strategy-proof; if no single agent can ever
beneficially manipulate, the rule is said to bestrategy-proof(a weaker requirement).

Unfortunately, any strategy-proof voting rule will fail tosatisfy some natural property. The cele-
brated Gibbard-Satterthwaite theorem [10, 16] states thatwhen there are three or more alternatives,
there is no strategy-proof voting rule that satisfies non-imposition (for every alternative, there exist
votes that would make that alternative win) and non-dictatorship (the rule does not simply always
choose the most-preferred alternative of a single fixed voter). However, the mere existence of ben-
eficial manipulations does not imply that voters will use them: in order to do so, voters must also
be able todiscoverthe manipulation, and this may be computationally hard. Recently, the approach
of using computational complexity to prevent manipulationhas attracted more and more attention.
In early work [2, 1], it was shown that when the number of alternatives is not bounded, the second-
order Copeland and STV rules are hard to manipulate, even by asingle voter. More recent research
has studied how to modify other existing rules to make them hard to manipulate [3, 7].

Some attention has been given to a problem known asweighted coalitional manipulation(WCM)
in elections. In this setting, there is a coalition of manipulative voters trying to coordinate their ac-
tions in a way that makes a specific alternative win the election. In addition, the voters are weighted;
a voter with weightk counts ask voters voting identically. Previous work has established that this
problem is computationally hard under a variety of prominent voting rules, even when the number
of candidates is constant [6, 11].

However, and quite surprisingly, the current literature contains few results regarding theun-
weightedversion of the coalitional manipulation problem (UCM), which is in fact more natural in
most settings. Recently, it has been shown that UCM is NP-complete under a family of voting
rules derived from the Copeland rule, even with only two manipulators [8]. Zuckerman et al. [20]
have established, as corollaries of their main theorems, that unweighted coalitional manipulation is
tractable under the Veto and Plurality with Runoff voting rules.

In this paper, we study the computational complexity of the unweighted coalitional manipu-
lation problem under the maximin, ranked pairs, and Bucklinrules. After briefly recalling basic
notations and definitions, we show that the UCM problem undermaximin is NP-complete for any
fixed number of manipulators (at least two). We then show thatthe UCM problem under ranked
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pairs is NP-complete, even when there is only one manipulator (just as this is hard for second-order
Copeland and STV). Finally, we present a polynomial-time algorithm for the UCM problem under
Bucklin.

2 Preliminaries

Let C be the set ofalternatives(or candidates). A linear order onC is a transitive, antisymmetric,
and total relation onC. The set of all linear orders onC is denoted byL(C). An n-voter profileP on
C consists ofn linear orders onC. That is,P = (R1, . . . , Rn), where for everyi ≤ n, Ri ∈ L(C).
The set of all profiles onC is denoted byP (C). In the remainder of the paper, we letm denote the
number of alternatives (that is,|C|).

A voting ruler is a function from the set of all profiles onC to C, that is,r : P (C) → C. The
following are some common voting rules studied in this paper.

1. (Positional) scoring rules: Given ascoring vector~v = (v(1), . . . , v(m)), for any voteV ∈
L(C) and anyc ∈ C, let s(V, c) = v(j), wherej is the rank ofc in V . For any profile

P = (V1, . . . , Vn), let s(P, c) =
n∑

i=1

s(Vi, c). The rule will selectc ∈ C so thats(P, c)

is maximized. Two examples of scoring rules areBorda, for which the scoring vector is
(m− 1, m− 2, . . . , 0), andplurality, for which the scoring vector is(1, 0, . . . , 0).

2. Maximin: Let NP (ci, cj) denote the number of votes that rankci ahead ofcj . The winner is
the alternativec that maximizesmin{NP (c, c′) : c′ ∈ C, c′ 6= c}.

3. Bucklin: An alternativec’s Bucklin score is the smallest numberk such that more than half of
the votes rankc among the topk alternatives. The winner is the alternative that has the smallest
Bucklin score. (Sometimes, ties are broken by the number of votes that rank an alternative
among the topk, but for simplicity we will not consider this tie-breaking rule here.)

4. Ranked pairs[17]: This rule first creates an entire ranking of all the alternatives.NP (ci, cj)
is defined as for the maximin rule. In each step, we consider a pair of alternativesci, cj that
we have not previously considered (as a pair): specifically,we choose the remaining pair with
the highestNP (ci, cj). We then fix the orderci > cj , unless this contradicts previous orders
that we fixed (that is, it violates transitivity). We continue until we have considered all pairs
of alternatives (hence, in the end, we have a full ranking). The alternative at the top of the
ranking wins.

All of these rules allow for the possibility that multiple alternatives end up tied for the win. Techni-
cally, therefore, they are reallyvoting correspondences; a correspondence can select more than one
winner. In the remainder of this paper, we will sometimes somewhat inaccurately refer to the above
correspondences as rules. We will consider two variants of the manipulation problem: one in which
the goal is to make the preferred alternative the unique winner, and one in which the goal is to make
sure that the preferred alternative is among the winners. Westudy theconstructivemanipulation
problem, in which the goal is to make a given alternative win.

Definition 1 An unweighted coalitional manipulation (UCM)instance is a tuple(r, PNM , c, M),
wherer is a voting rule,PNM is the non-manipulators’ profile,c is the alternative preferred by the
manipulators, andM is the set of manipulators.

Definition 2 The UCM unique winner (UCMU) problem is: Given a UCM instance
(r, PNM , c, M), we are asked whether there exists a profileP M for the manipulators such that
r(PNM ∪ PM ) = {c}.
Definition 3 TheUCM co-winner (UCMC)problem is: Given a UCM instance(r, PNM , c, M),
we are asked whether there exists a profilePM for the manipulators such thatc ∈ rPNM ∪ PM .
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3 Maximin

In this section, we show that the UCMU and UCMC problems undermaximin are NP-complete, by
giving a reduction from thetwo vertex disjoint paths in directed graphproblem, which is known to
be NP-complete [12].

Definition 4 The two vertex disjoint paths in directed graphproblem is: We are given a directed
graphG and two disjoint pairs of vertices(u, u′) and(v, v′), whereu, u′, v, v′ are all different from
each other. We are asked whether there exist two directed pathsu → u1 → . . . → uk1 → u′ and
v → v1 → . . .→ vk2 → v′ such thatu, u′, u1, . . . , uk1 , v, v′, v1, . . . , vk2 are all different from each
other.

For any profileP and any pair of alternativesc1, c2, let DP (c1, c2) denote the number of times
thatc1 is ranked higher thanc2 in P minus the number of times thatc2 is ranked higher thanc1 in
P . That is,

DP (c1, c2) = |{R ∈ P : c1 �R c2}| − |{R ∈ P : c2 �R c1}|
The next lemma has previously been used by others [13, 4].

Lemma 1 Given a profileP andF : C × C → Z such that

1. for all c1, c2 ∈ C, c1 6= c2, F (c1, c2) = −F (c2, c1), and

2. either for all pairs of alternativesc1, c2 ∈ C (with c1 6= c2), F (c1, c2) is even, or for all pairs
of alternativesc1, c2 ∈ C (with c1 6= c2), F (c1, c2) is odd,

there exists a profileP such that for allc1, c2 ∈ C, c1 6= c2, DP (c1, c2) = F (c1, c2) and |P | ≤
1
2

∑
c1,c2:c1 6=c2

|F (c1, c2)− F (c2, c1)|.

Theorem 1 The UCMU and UCMC problems under maximin are NP-complete forany fixed num-
ber of manipulators (as long as it is at least 2).

Proof of Theorem 1: It is easy to verify that the UCMU and UCMC problems under maximin
are in NP. We first show that UCMU is NP-hard, by giving a reduction from the two vertex disjoint
paths in directed graph problem. Let the instance of the two vertex disjoint paths in directed graph
problem be denoted byG = (V, E), (u, u′) and (v, v′) whereV = {u, u′, v, v′, c1, . . . , cm−5}.
Without loss of generality, we assume that every vertex is reachable fromu or v (otherwise, we can
remove the vertex from the instance). We also assume that(u, v′) 6∈ E and(v, u′) 6∈ E (since such
edges cannot be used in a solution). LetG′ = (V, E ∪ {(v′, u), (u′, v)}), that is,G′ is the graph
obtained fromG by adding(v′, u) and(u′, v). We construct a UCMU instance as follows.
Set of alternatives:C = {c, u, u′, v, v′, c1, . . . , cm−5}.
Alternative preferred by the manipulators : c.
Number of unweighted manipulators: |M | (for some|M | ≥ 2).
Non-manipulators’ profile: PNM satisfying the following conditions:

1. For anyc′ 6= c, DP NM (c, c′) = −4|M |.
2. DP NM (u, v′) = DP NM (v, u′) = −4|M |.
3. For any(s, t) ∈ E such thatDP NM (t, s) is not defined above, we letDP NM (t, s) = −2|M |−

2.

4. For anys, t ∈ C such thatDP NM (t, s) is not defined above, we let|DP NM (t, s)| = 0.
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The existence of such aPNM , whose size is polynomial inm, is guaranteed by Lemma 1.
We can assume without loss of generality that each manipulator ranksc first. Therefore, for any

c′ 6= c, DP NM∪P M (c, c′) = −3|M |.
We are now ready to show thatMaximin(PNM ∪ PM ) = {c} if and only if there exist two

vertex disjoint paths fromu to u′ and fromv to v′ in G. First, we prove that if there exist such paths
in G, then there exists a profilePM for the manipulators such thatMaximin(PNM ∪PM ) = {c}.
Let u → u1 → . . . → uk1 → u′, v → v1 → . . . → vk2 → v′ be two vertex disjoint paths.
Let V ′ = {u, u′, v, v′, u1, . . . , uk1 , v1, . . . , vk2}. Then, because any vertex is reachable fromu or
v in G, there exists a connected subgraphG∗ of G′ (which still includes all the vertices) in which
u→ u1 → . . .→ uk1 → u′ → v → v1 → . . .→ vk2 → v′ → u is the only cycle. Therefore, there
exists a linear orderO overV \ V ′ such that for anyt ∈ V \ V ′, either 1. there existss ∈ V \ V ′

such thats �O t and(s, t) ∈ E, or 2. there existss ∈ V ′ such that(s, t) ∈ E. We let

PM ={(|M | − 1)(c � u � u1 � . . . � uk1 � u′ � v � v1 � . . . � vk2 � v′ � O)}
∪ {c � v � v1 � . . . � vk2 � v′ � u � u1 � . . . � uk1 � u′ � O}

Then, we have the following calculation

dmin = minc′ 6=c DP NM∪P M (c, c′) = −4|M |+ |M | = −3|M |.
DP NM∪P M (u, v′) = −4|M |+ (|M | − 1)− 1 = −3|M | − 2 < −3|M | = dmin.

DP NM∪P M (v, u′) = −4|M |+ 1− (|M |+ 1) = −5|M |+ 2 < −3|M | = dmin.

For anyt ∈ C\{c, u, v}, there existss ∈ C\{c} such that(s, t) ∈ E andDP M (t, s) = −|M |,
which means thatDP NM∪P M (t, s) = −2|M | − 2− |M | = −3|M | − 2 < −3|M | = dmin.

HenceMaximin(PNM ∪ PM ) = {c}.
Next, we prove that if there exists a profilePM for the manipulators such that

Maximin(PNM ∪ PM ) = {c}, then there exist two vertex disjoint paths fromu to u′ and
from v to v′. We define a functionf : V → V such thatDP NM∪P M (t, f(t)) < −3|M |. We
note that sinceMaximin(PNM ∪ PM ) = {c}, for any t 6= c, there must exists such that
DP NM∪P M (t, s) < −3|M |, ands must be a parent oft in G′. If there exists more than one
suchs, definef(t) to be any one of them. It follows that if(t, f(t)) is neither(u, v′) or (v, u′),
then(f(t), t) ∈ E andDP M (t, f(t)) = −|M |, which means thatf(t) � t in each vote ofP M ;
otherwise, if(t, f(t)) is (u, v′) or (v, u′), thenDP M (t, f(t)) ≤ |M |−2, which means thatf(t) � t
in at least one vote ofPM . There must existl1 < l2 ≤ m such thatf l1(u) = f l2(u). That is,
f l1(u), f l1+1(u), . . . , f l2−1(u), f l2(u) is a cycle inG′. We assume that for anyl1 ≤ l′1 < l′2 < l2,
f l′1(u) 6= f l′2(u). Now we claim that(v′, u) and(u′, v) must be both in the cycle, because

1. if neither of them is in the cycle, then in each vote ofPM , we must havef l2(u) � f l2−1(u) �
f l1(u) = f l2(u), which contradicts the assumption that each vote is a linearorder;

2. if exactly one of them is in the cycle—without loss of generality,f l1(u) = v, f l1+1(u) = u′—
then in at least one of the votes ofPM , we must havef l2(u) � f l2−1(u) � . . . � f l1(u) =
f l2(u), which contradicts the assumption that each vote is a linearorder.

Now, without loss of generality, let us assume thatf l1(u) = u, f l1+1(u) = v′, f l3(u) =
v, f l3+1(u) = u′, wherel3 ≤ l2−2. We immediately obtain two vertex disjoint pathsu = f l1(u) =
f l2(u) → f l2−1(u) → . . . → f l3+1(u) = u′ andv = f l3(u) → f l3−1(u) → . . . → f l1+1(u) =
v′. Therefore, UCMU under maximin is NP-complete.

For UCMC, we use almost the same reduction, except we modify it as follows:

2’. Let DP NM (u, v′) = DP NM (v, u′) = −4|M |+ 2.

3’. For any(s, t) ∈ E such thatDP NM (t, s) is not defined above, we letDP NM (t, s) = −2|M |.
�

430



4 Ranked pairs

In this section, we prove that the UCMU and UCMC problems under ranked pairs are NP-complete
(even for a single manipulator) by giving a reduction from 3SAT.

Definition 5 The 3SAT problem is: Given a set of variablesX = {x1, . . . , xq} and a formula
Q = Q1 ∧ . . . ∧Qt such that

1. for all 1 ≤ i ≤ t, Qi = li,1 ∨ li,2 ∨ li,3, and

2. for all 1 ≤ i ≤ t and1 ≤ j ≤ 3, li,j is either a variablexk, or the negation of a variable
¬xk,

we are asked whether the variables can be set to true or false so thatQ is true.

Theorem 2 The UCMU and UCMC problems under ranked pairs are NP-complete, even when
there is only one manipulator.

Proof of Theorem 2: It is easy to verify that the UCMU and UCMC problems under ranked pairs
are in NP. We first prove that UCMU is NP-complete. Given an instance of 3SAT, we construct a
UCMU instance as follows. Without loss of generality, we assume that for any variablex, x and¬x
appears in at least one clause, and none of the clauses contain bothx and¬x.
Set of alternatives:C = {c, Q1, . . . , Qt, Q

′
1, . . . , Q

′
t}

⋃{x1, . . . , xq,¬x1, . . . ,¬xq}⋃{Ql1,1 , Ql1,2 , Ql1,3 , . . . , Qlt,1 , Qlt,2 , Qlt,3}
⋃{Q¬l1,1, Q¬l1,2 , Q¬l1,3 , . . . , Q¬lt,1 , Q¬lt,2 , Q¬lt,3}.

Alternative preferred by the manipulator : c.
Number of unweighted manipulators: |M | = 1.
Non-manipulators’ profile: PNM satisfying the following conditions.

1. For anyi ≤ t, DP NM (c, Qi) = 30,DP NM (Q′
i, c) = 20; for anyx ∈ C \{Qi, Q

′
i : 1 ≤ i ≤ t},

DP NM (c, x) = 10.

2. For anyj ≤ q, DP NM (xj ,¬xj) = 20.

3. For anyi ≤ t, j ≤ 3, if li,j = xk, thenDP NM (Qi, Q
i
xk

) = 30, DP NM (Qi
xk

, xk) = 30,
DP NM (¬xk, Qi

¬xk
) = 30, DP NM (Qi

¬xk
, Q′

i) = 30; if li,j = ¬xk, thenDP NM (Qi, Q
i
¬xk

) =
30, DP NM (Qi

xk
, xk) = 30, DP NM (¬xk, Qi¬xk

) = 30, DP NM (Qi
xk

, Q′
i) = 30,

DP NM (Qi
¬xk

, Qi
xk

) = 20.

4. For anyx, y ∈ C, if DP NM (x, y) is not defined in the above steps, thenDP NM (x, y) = 0.

For example, whenQ1 = x1 ∨ ¬x2 ∨ x3, DP NM is illustrated in Figure 1.
The existence of such aPNM is guaranteed by Lemma 1, and the size ofPNM is in polynomial

in t andq.
First, we prove that if there exists an assignmentv of truth values toX so thatQ is satisfied,

then there exists a voteRM for the manipulator such thatRP (PNM ∪{RM}) = {c}. We construct
RM as follows.

• Let c be on the top ofRM .

• For anyk ≤ q, if v(xk) = > (that is,xk is true), thenxk �RM ¬xk, and for anyi ≤ t, j ≤ 3
such thatli,j = ¬xk, let Qi

xk
�RM Qi

¬xk
.

• For anyk ≤ q, if v(xk) = ⊥ (that is,xk is false), then¬xk �RM xk, and for anyi ≤ t, j ≤ 3
such thatli,j = ¬xk, let Qi

¬xk
�RM Qi

xk
.

• The remaining pairs of alternatives are ranked arbitrarily.
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Q1

Q′
1

x1

¬x1

Q1
x1

Q1
¬x1

x2

¬x2

Q1
x2

Q1
¬x2

x3

¬x3

Q1
x3

Q1
¬x3

c

Figure 1: For any verticesv1, v2, if there is a solid edge fromv1 to v2, thenDP NM (v1, v2) = 30; if
there is a dashed edge fromv1 to v2, thenDP NM (v1, v2) = 20; if there is no edge betweenv1 and
v2 andv1 6= c, v2 6= c, thenDP NM (v1, v2) = 0; for anyx such that there is no edge betweenc and
x, DP NM (c, x) = 10.

If xk = >, thenDP NM∪{RM}(xk,¬xk) = 21, and for anyi ≤ t, j ≤ 3 such thatli,j = ¬xk,
DP NM∪{RM}(Qi

¬xk
, Qi

xk
) = 19. It follows that no matter how ties are broken when applying

ranked pairs toPNM ∪ {RM}, if xk = >, thenxk � ¬xk in the final ranking. This is because for
any li,j = ¬xk, DP NM∪{RM}(Qi¬xk

, Qi
xk

) = 19 < 21 = DP NM∪{RM}(xk,¬xk), which means
that before trying to fixxk � ¬xk, there is no directed path from¬xk to xk.

Similarly if xk = ⊥, thenDP NM∪{RM}(xk,¬xk) = 19, and for anyi ≤ t, j ≤ 3 such that
li,j = ¬xk, DP NM∪{RM}(Qi

¬xk
, Qi

xk
) = 21. It follows that ifxk = ⊥, then¬xk � xk, and for any

i ≤ t, j ≤ 3 such thatli,j = ¬xk, Qi
¬xk
� Qi

xk
in the final ranking. This is becauseQi

¬xk
� Qi

xk

will be fixed beforexk � ¬xk.
BecauseQ is satisfied underv, for each clauseQi, at least one of its three literals is true underv.

Without loss of generality, we assumev(li,1) = >. If li,1 = xk, then before trying to addQ′
i � c, the

directed pathc→ Qi → Qxk
→ xk → ¬xk → Q¬xk

→ Q′
i has already been fixed. Therefore,c �

Q′
i in the final ranking, which means that for any alternativesx in C \ {c, Q1, . . . , Qt, Q

′
1, . . . , Q

′
t},

c � x in the final ranking becauseDP NM∪{RM}(c, x) > 0. Hence,c is the unique winner of
PNM ∪ {RM} under ranked pairs.

Next, we prove that if there exists a voteRM for the manipulator such thatRP (PNM∪{RM}) =
{c}, then there exists an assignmentv of truth values toX such thatQ is satisfied. We construct
the assignmentv so thatv(xk) = > if and only if xk �RM ¬xk, andv(xk) = ⊥ if and only
if ¬xk �RM xk. We claim thatv(Q) = >. If, on the contrary,v(Q) = ⊥, then there exists a
clause (Q1, without loss of generality) such thatv(Q1) = ⊥. We now construct a way to fix the
pairwise rankings such thatc is not the winner under ranked pairs, as follows. For anyj ≤ 3,
if there existsk ≤ q such thatli,j = ¬xk, thenxk �RM ¬xk becausev(¬xk) = ⊥. Therefore,
DP NM∪RM

(xk,¬xk) = 21. Then, after trying to add all pairsx � x′ such thatDP NM∪RM
(x, x′) >

21 (that is, all solid directed edges in Figure 1), it follows that xk � ¬xk can be added to the final
ranking. We choose to addxk � ¬xk first, which means thatQ1

xk
� Q1

¬xk
in the final ranking

(otherwise, we haveQ1¬xk
� Q1

xk
� xk � ¬xk � Q1¬xk

, which is a contradiction).
For anyj ≤ 3, if there existsk ≤ q such thatli,j = xk, then¬xk �RM xk becausev(xk) = ⊥.

Therefore,DP NM∪RM
(xk,¬xk) = 19. We note that after trying to add all pairsx � x′ such that

DP NM∪RM
(x, x′) > 19, Q1

xk
6� Q1¬xk

. We recall that for anyj ≤ 3, if there existsk ≤ q such that
li,j = ¬xk, thenQ1

¬xk
6� Q1

xk
. Hence, it follows thatQ′

1 � c is consistent with all pairwise rankings
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added so far. Then, sinceDP NM∪RM
(Q′

1, c) ≥ 19, if Q′
1 � c has not been added, we choose to add

it first of all pairwise rankings of alternativesx � x′ such thatDP NM∪RM
(x, x′) = 19, which means

thatQ′
1 � c in the final ranking—in other words,c is not at the top in the final ranking. Therefore,

c is not the unique winner, which contradicts the assumption thatRP (P NM ∪ {RM}) = {c}.
For UCMC, we modify the reduction as follows: we letPNM be such that for anyi ≤ t,

DP NM (Q′
i, c) = 22, and for anyj ≤ q, DP NM (xj ,¬xj) = 22. �

Similarly, we can prove that when|M | is a constant greater than one, UCMU and UCMC under
ranked pairs remain NP-complete.

Theorem 3 The UCMU and UCMC problems under ranked pairs are NP-complete, even when the
number of manipulators is fixed to some constant|M | > 1.

Proof of Theorem 3: We prove UCMU is NP-complete. The proof is similar to that of Theorem 2.
We letPNM satisfy the following conditions.

1. For anyi ≤ t, DP NM (c, Qi) = 30|M |,DP NM (Q′
i, c) = 22|M |−2; for anyx ∈ C \{Qi, Q

′
i :

1 ≤ i ≤ t}, DP NM (c, x) = 10|M |.
2. For anyj ≤ q, DP NM (xj ,¬xj) = 22|M | − 2.

3. For anyi ≤ t, j ≤ 3, if li,j = xk, thenDP NM (Qi, Q
i
xk

) = 30|M |, DP NM (Qi
xk

, xk) =
30|M |, DP NM (¬xk, Qi

¬xk
) = 30|M |, DP NM (Qi

¬xk
, Q′

i) = 30|M |; if li,j = ¬xk, then
DP NM (Qi, Q

i¬xk
) = 30|M |, DP NM (Qi

xk
, xk) = 30|M |, DP NM (¬xk, Qi¬xk

) = 30|M |,
DP NM (Qi

xk
, Q′

i) = 30|M |, DP NM (Qi
¬xk

, Qi
xk

) = 20|M |.
4. For anyx, y ∈ C, if DP NM (x, y) is not defined in the above steps, thenDP NM (x, y) = 0.

First, if there exists an assignmentv of truth values toX so thatQ is satisfied, then we letRM

be defined as in the proof for Theorem 2. It follows thatRP (P NM ∪ {|M |RM}) = {c} (all the
manipulators can voteRM ).

Next, if there exists a profilePM for the manipulators such thatRP (PNM ∪ PM ) = {c}, then
we construct the assignmentv so thatv(xk) = > if xk �V ¬xk for all V ∈ PM , andv(xk) = ⊥ if
¬xk �V xk for all V ∈ PM ; the values of all the other variables are assigned arbitrarily. Then by
similar reasoning as in the proof for Theorem 2, we know thatQ is satisfied underv.

For UCMC, the proof is similar (by slightly modifying theDP NM as we did in the proof of
Theorem 2). �

5 Bucklin

In this section, we present a polynomial-time algorithm forthe UCMU problem under Bucklin (a
polynomial-time algorithm for the UCMC problem under Bucklin can be obtained similarly). For
any alternativex, any natural numberd, and any profileP , letB(x, d, P ) denote the number of times
thatx is ranked among the topd alternatives inP . The idea behind the algorithm is as follows. Let
dmin be the minimal depth so thatc is ranked among the topdmin alternatives in more than half of
the votes (when all of the manipulators rankc first). Then, we check if there is a way to assign the
manipulators’ votes so that none of the other alternatives is ranked among the topdmin alternatives
in more than half of the votes.

Algorithm 1
Input: A UCM instance(Bucklin, PNM , c, M), C = {c, c1, . . . , cm−1}.

1. Calculate the minimal depthdmin such thatB(c, dmin, PNM ) + |M | > 1
2 (|NM |+ |M |).
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2. If there existsc′ ∈ C, c′ 6= c such thatB(c′, dmin, PNM ) > 1
2 (|NM | + |M |), then output

that there is no successful manipulation. Otherwise, for any c′ ∈ C, c′ 6= c, let dc′ =

b 12 (|NM |+ |M |)c −B(c′, dmin, PNM ), kc′ =
{ |M | if dc′ ≥ |M |

dc′ otherwise
.

3. If
∑

c′ 6=c kc′ < (dmin − 1)|M |, then output that there is no successful manipulation.

4. Letj = 1, t = 1, and for anyl ≤ |M |, let Rl rankc at the top. Repeat Step 4am− 1 times:

4a. If kct > 0, then ct is ranked in the next position (lower than
the candidates that have already been ranked in previous steps) in
R mod (j−1,|M|)+1, R mod (j,|M|)+1, . . . , R mod (j+kct−2,|M|)+1, respectively, where
for any natural numbera, b, mod (a, b) is the common residue ofa( mod b). Let j ←
mod (j + kct − 1, |M |) + 1, t← t + 1.

5. For anys ≤ |M |, completeRs arbitrarily. OutputPM = (R1, . . . , R|M|).

Claim 1 Algorithm 1 correctly solves the UCMU problem. It runs in timeO(m|NM |+|NM ||M |+
|M |m).

Proof of Claim 1: Let us first consider the case where Algorithm 1 outputs that there is no success-
ful manipulation. There are two cases.

1. There existsc′ ∈ C, c′ 6= c such thatB(c′, dmin, PNM ) > 1
2 (|NM |+ |M |).

2.
∑

c′ 6=c kc′ < (dmin − 1)|M |. In this case, for anyPM , there existsc′ 6= c such that|M | ≥
B(c′, dmin, PM ) > kc′ , which means thatB(c′, dmin, PNM ∪ PM ) > 1

2 (|NM |+ |M |).
In both cases, more than half of the voters rankc′ among the topdmin alternatives. Therefore,c
cannot be the unique winner.

Now let us consider the case where Algorithm 1 outputs somePM . In this case, for anyt ≤
m − 1, B(ct, dmin, PM ) ≤ kct . Therefore, for anyt ≤ m − 1, B(ct, dmin, PNM ∪ PM ) ≤
B(ct, dmin, PNM ) + kct ≤ 1

2 (|NM |+ |M |), which means thatBucklin(P NM ∪ PM ) = {c}.
Step 1 runs in timeO(m|NM |), Step 2 runs in timeO(|M ||NM |), Step 3 runs in timeO(|M |),

and Step 4 and Step 5 run in timeO(m|M |). Therefore, Algorithm 1 runs in timeO(m|NM | +
|NM ||M |+ |M |m). �

6 Discussion

Number of manipulators 1 constant

Copeland (specific tie-breaking) P [2] NP-hard [8]
STV NP-hard [1] NP-hard [1]
Veto P [20] P [20]

Plurality with Runoff P [20] P [20]
Cup P [6] P [6]

Maximin P [2] NP-hard
Ranked pairs NP-hard NP-hard

Bucklin P P
Borda P [2] ?

Table 1: Complexity of UCM under prominent voting rules. Boldface results appear in this paper.
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In this paper, we studied the computational complexity of unweighted coalitional manipulation
under the maximin, ranked pairs, and Bucklin rules. The UCM problem is NP-complete under the
maximin rule for any fixed number (at least two) of manipulators. The UCM problem is also NP-
complete under the ranked pairs rule; in this case, the hardness holds even if there is only a single
manipulator, similarly to the second-order Copeland and STV rules. We gave a polynomial-time
algorithm for the UCM problem under the Bucklin rule. Table 1summarizes our results, and puts
them in the context of previous results on the UCM problem.

It should be noted that all of these hardness results, as wellas the ones mentioned in the introduc-
tion, areworst-caseresults. Hence, there may still be an efficient algorithm that can find a beneficial
manipulation formostinstances. Indeed, several recent results suggest that finding manipulations
is usually easy. Procaccia and Rosenschein have shown that,when the number of alternatives is a
constant, manipulation of positional scoring rules is easyeven with respect to “junta” distributions,
which arguably focus on hard instances [15]. Conitzer and Sandholm have given some sufficient
conditions under which manipulation is easy and argue that these conditions are usually satisfied in
practice [5]. Zuckerman et al. have given manipulation algorithms with the property that if they
fail to find a manipulation when one exists, then, if the manipulators are given some additional vote
weights, the algorithm will succeed [20]. The asymptotic probability of manipulability has also been
characterized (except for knife-edge cases) for a very general class of voting rules [18] (building on
earlier work [14]). In a similar spirit, several quantitative versions of the Gibbard-Satterthwaite the-
orem have recently been proved [9, 19]. One weakness of all ofthese results (except [20]) is that
they make assumptions about the distribution of instances.In this paper, we have focused on the
worst-case framework, which does not suffer from this weakness. This does mean that when we
show that manipulation is hard, it may still be the case that it is usually easy.

There are many interesting problems left for future research. For example, settling the complex-
ity of UCM under positional scoring rules such as Borda is a challenging open problem.
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