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Abstract

Weighted voting is a well-known model of cooperation among agents in decision-
making domains. In such games, each player has a weight, and a coalition of players
wins if its total weight meets or exceeds a given quota. Usually, the agents’ power
in such games is measured by a power index, such as, e.g., Shapley–Shubik index.
In this paper, we study how an agent can manipulate its voting power (as measured
by Shapley–Shubik index) by distributing his weight among several false identities.
We show that such manipulations can indeed increase an agent’s power and provide
upper and lower bounds on the effects of such manipulations. We then study this
issue from the computational perspective, and show that checking whether a benefi-
cial split exists is NP-hard. We also discuss efficient algorithms for restricted cases
of this problem, as well as randomized algorithms for the general case.

1 Introduction

Collaboration and cooperative decision-making are important issues in many types of inter-
actions among self-interested agents. In many situations, agents must take a joint decision
leading to a certain outcome, which may have a different impact on each of the agents. A
standard and well-studied way of doing so is by means of voting, and in recent years, there
has been a lot of research on applications of voting to multiagent systems as well as on com-
putational aspects of various voting procedures. One of the key issues in this domain is how
to measure the power of each voter, i.e., his impact on the final outcome. In particular, this
question becomes important when the agents have to decide how to distribute the payoffs
resulting from their joint action: a natural approach would be to pay each agent according
to his contribution, i.e., his voting power.

This issue is traditionally studied within the framework of weighted voting games, which
provide a model of decision-making in many political and legislative bodies, and have also
been applied in the context of multiagent systems. In such a game, each of the agents
has a weight, and a coalition of agents wins the game if the sum of the weights of its
participants exceeds a certain quota. Having a larger weight makes it easier for an agent
to affect the outcome; however, the agent’s power is not always proportional to his weight.
For example, if the quota is so high that the only winning coalition is the one that includes
all agents, intuitively, all agents have equal power, irrespective of their weight. This idea
is formalized using the concept of a power index, which is a systematic way of measuring
a player’s influence in a weighted voting game. There are several ways to define power
indices. One of the most popular approaches relies on the fact that weighted voting games
form a subclass of coalitional games, and therefore one can use the terminology and solution
concepts that have been developed in the context of general coalitional games. In particular,
an important notion in coalitional games is that of the Shapley value [12], which is a classical
way to distribute the gains of the grand coalition in general coalitional games. In the context
of weighted voting, the Shapley value (also known as the Shapley–Shubik power index [13])
provides a convenient measure of an agent’s power and has been widely studied from both
a normative and a computational perspective.

As suggested above, power indices measure the agents’ power and can be used to de-
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termine their payoffs. However, to be applicable in real-world scenarios, this approach has
to be resistant to dishonest behavior, or manipulation, by the participating agents. In this
paper we study the effects of one form of manipulation in weighted voting games, namely,
false-name voting. Under this manipulation, an agent splits his weight between himself and
a “fake” agent who enters the game. While the total weight of all identities of the cheating
agent remains the same, his power (as measured by the Shapley–Shubik power index) may
change. In open anonymous environments, such as the internet, this behavior is virtually
impossible to detect, and therefore it presents a challenge to the designers of multiagent
systems that rely on weighted voting. The goal of this paper is to measure the effects of
false-name voting and analyze its computational feasibility. Our main results here are as
follows:

• We precisely quantify the worst-case effect of false-name voting on agents’ payoffs.
Namely, we show that in an n-player game, false-name voting can increase an agent’s
payoff by a factor of 2n/(n + 1), and this bound is tight. On the other hand, we show
that false-name voting can decrease an agent’s payoff by a factor of (n + 1)/2, and
this bound is also tight.

• We demonstrate that finding a successful manipulation is not a trivial task by proving
that it is NP-hard to verify if a beneficial split exists. However, we show that if all
weights are polynomially bounded, the problem can be solved in polynomial time, and
discuss efficient randomized algorithms for this problem.

We also study several variants of the problem, such as splitting into more than two identities,
as well as the dual problem of manipulation by merging, where several agents pretend to be
one.

2 Related Work

In his seminal paper, Shapley [12] considered coalitional games and the question of fair
allocation of the utility gained by the grand coalition. The solution concept introduced in
this paper became known as the Shapley value of the game. The subsequent paper [13]
studies the Shapley value in the context of simple coalitional games, where it is usually
referred to as the Shapley–Shubik power index. Another measure of a player’s influence in
voting games is the Banzhaf power index [1].

Both of these power indices have been well studied. Straffin [14] shows that each index
reflects certain conditions in a voting body. Paper [5] describes certain axioms that char-
acterize these two indices, as well as several others. These indices were used to analyze the
voting structures of the European Union Council of Ministers and the IMF [7, 6].

The applicability of the power indices to measuring political power in various domains
has raised the question of finding tractable ways to compute them. However, this problem
appears to be computationally hard. Indeed, the naive algorithm for calculating the Shapley
value (or the Shapley–Shubik power index) considers all permutations of the players and
hence runs in exponential time. Moreover, paper [3] shows that computing the Shapley
value in weighted voting games is #P-complete.

Despite this hardness result, several works show how to compute these power indices
in some restricted domains, or discuss ways to approximate them [9, 11, 8, 4]. A good
survey of algorithms for calculating power indices in weighted voting games is [10]. Many
of these approaches work well in practice, which justifies the use of these indices as payoff
distribution schemes in multiagent domains.

False-name manipulation has been studied in the context of non-cooperative games such
as auctions [16, 17], and, more recently, also in cooperative games [2, 15]. However, to the

74



best of our knowledge, ours is the first paper to systematically study this type of behavior
in weighted voting.

3 Preliminaries and Notation

Coalitional Games A coalitional game G = (I, v) is given by a set of agents I =
{a1, . . . , an}, |I| = n, and a function v : 2I → R that maps any subset (coalition) of
the agents to a real value. This value is the total utility these agents can guarantee to
themselves when working together. To simplify notation, we will sometimes write i instead
of ai.

A coalitional game is simple if v can only take values 0 and 1, i.e., v : 2I → {0, 1}. In
such games, we say that a coalition C ⊆ I wins if v(C) = 1, and loses if v(C) = 0. An agent
i is critical, or pivotal, to a winning coalition C if the agent’s removal from that coalition
would make it a losing coalition: v(C) = 1, v(C \ {i}) = 0.
Weighted Voting Games A weighted voting game G is a simple game that is described by
a vector of players’ weights w = (w1, . . . , wn) and a quota q. We write G = [w1, . . . , wn; q],
or G = [w; q]. In these games, a coalition is winning if its total weight meets or exceeds the
quota. Formally, for any J ⊆ I we have v(J) = 1 if

∑
i∈J wi ≥ q and v(J) = 0 otherwise.

We will often write w(J) to denote the total weight of a coalition J , i.e., w(J) =
∑

i∈J wi.
Also, we set wmax = maxi=1,...,n wi.
Shapley Value Intuitively, the Shapley value of an agent is determined by his marginal
contribution to possible coalitions. Let Πn be the set of all possible permutations (orderings)
of n agents. Each π ∈ Πn is a one-to-one mapping from {1, . . . , n} to {1, . . . , n}. Denote
by Sπ(i) the predecessors of agent i in π, i.e., Sπ(i) = {j | π(j) < π(i)}. The Shapley value
of the ith agent in a game G = (I, v) is denoted by ϕG(i) and is given by the following
expression:

ϕG(i) =
1
n!

∑
π∈Πn

[v(Sπ(i) ∪ {i})− v(Sπ(i))]. (1)

We will occasionally abuse notation and say that an agent i is pivotal for a permutation π
if it is pivotal for the coalition Sπ(i) ∪ {i}.

The Shapley-Shubik power index is simply the Shapley value in a simple coalitional
game (and therefore in the rest of the paper we will use these terms interchangeably). In
such games the value of a coalition is either 0 or 1, so the formula (1) simply counts the
fraction of all orderings of the agents in which agent i is critical for the coalition formed by
his predecessors and himself. The Shapley-Shubik power index thus reflects the assumption
that when forming a coalition, any ordering of the agents entering the coalition has an equal
probability of occurring, and expresses the probability that agent i is critical.

While there exist several other approaches to determining the players’ influence in a
game, the Shapley value has many useful properties that make it very convenient to work
with. We will make use of two of these properties, namely, the normalization property and
the dummy player property. The former simply states that the sum of Shapley values of
all players is equal to 1. The latter claims that the value of a dummy player is 0, where a
player i is called a dummy if he contributes nothing to any coalition, i.e., for any C ⊆ I we
have v(C ∪{i}) = v(C). It is easy to verify from the definitions that Shapley value has both
of these properties.
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4 False-Name Manipulations

As discussed in the introduction, it might be possible for a player to change his total payoff
by splitting his weight between several identities. We will start by providing a few examples
of such scenarios.

Example 1. Consider a voting game G = [8, 8, 1, 2; 11], i.e., a game with a quota of q = 11,
and four agents a1, . . . , a4, where a1 has weight w1 = 8, a2 has weight w2 = 8, a3 has weight
w3 = 1, and agent a4 has weight w4 = 2.

Using formula (1) to compute the Shapley value of a4, we get ϕG(a4) = 4/24. Now,
suppose agent a4 splits his weight equally between two new identities a′4 and a′′4 , resulting in
a new game G′ = [8, 8, 1, 1, 1; 11]. Calculating the Shapley value of a′4 and a′′4 in this game,
we get ϕG′(a′4) = ϕG′(a′′4) = 12/120. Hence, although the total weight of all identities
of player a4 is the same as in the original game, the total power held by the agent and his
false-name “accomplice” has increased, since ϕG′(a′4)+ϕG′(a′′4) = 24/120 > ϕG(a4) = 4/24.

Our next example shows that false-name manipulations are not necessarily beneficial.

Example 2. Consider a game G = [3, 3, 2; 4]. Agent a3 with the weight of w3 = 2 has
Shapley value of ϕG(a3) = 2/6. Splitting his weight between two identities a′3 and a′′3 results
in a game G′ = [3, 3, 1, 1; 4]. The Shapley values of the two identities a′3 and a′′3 of the agent
a3 in the new game are ϕG′(a′3) = ϕG′(a′′3) = 4/24, so we have ϕG(a3) = ϕG′(a′3)+ϕG′(a′′3).
Consequently, a3 neither gained nor lost power by splitting.

Moreover, weight-splitting can be risky for the manipulator, as illustrated by the follow-
ing example.

Example 3. Consider a game G = [2, 2, 2; 5]. Agent a3 with the weight of w3 = 2 has
Shapley value of ϕG(a3) = 2/6. By splitting into two agents, each with a weight of 1,
this agent can get the following game G′ = [2, 2, 1, 1; 5]. The Shapley values of the two
agents a′3 and a′′3 in the new game are ϕG′(a′3) = ϕG′(a′′3) = 2/24, so we have ϕG(a3) >
ϕG′(a′3)+ϕG′(a′′3). Hence, the splitting agent has lost power by splitting, i.e., it was harmful
for him to split.

4.1 Effects of Manipulation: Upper and Lower Bounds

We have seen that an agent can both increase and decrease his total payoff by splitting his
weight. In this subsection, we provide upper and lower bounds on how much he can change
his payoff by doing so. We restrict our attention to the case of splitting into two identities;
the general case is briefly discussed in Section 7.

To simplify notation, in the rest of this section we assume that in the original game
G = [w1, . . . , wn; q] the manipulator is agent an, and he splits into two new identities a′n
and a′′n, resulting in a new game G′.

Theorem 4. For any game G = [w1, . . . , wn; q] and any split of an’s into a′n and a′′n, we
have ϕG′(a′n)+ϕG′(a′′n) ≤ 2n

n+1ϕG(an), i.e., the manipulator cannot gain more than a factor
of 2n/(n + 1) < 2 by splitting his weight between two identities. Moreover, this bound is
tight, i.e., there exists a game in which agent an increases his payoff by a factor of 2n/(n+1)
by splitting into two identities.

Proof. Fix a split of an into a′n and a′′n. Let Πn−1 be the set of all permutations of the
first n − 1 agents. Consider any π ∈ Πn−1. Let P (π) be the set of all permutations of the
agents in G′ that can be obtained by inserting a′n and a′′n into π. Let Π∗

n+1 be the set of all
permutations π∗ of agents in G′ such that a′n or a′′n is pivotal for π∗. Finally, Let P ∗(π, k)
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be the subset of P (π) ∩ Π∗
n+1 that consists of all permutations π′ ∈ P (π) in which at least

one of the a′n and a′′n appears between the kth and the (k +1)st element of π′ and is pivotal
for π′. Every permutation in Π∗

n+1 appears in one of the sets P ∗(π, k) for some π, k, so we
have

ϕG′(a′n) + ϕG′(a′′n) =
|Π∗

n+1|
(n + 1)!

≤ 1
(n + 1)!

∑
π,k

|P ∗(π, k)|.

On the other hand, it is not hard to see that |P ∗(π, k)| ≤ 2n for any π, k: there are two
ways to place a′n and a′′n between the kth and the (k +1)st element of π, n−1 permutations
in P ∗(π, k) in which a′n appears after the kth element of π, but a′′n is not adjacent to it,
and n − 1 permutations in P ∗(π, k) in which a′′n appears after the kth element of π, but
a′n is not adjacent to it. Moreover, if P ∗(π, k) is not empty, then an is pivotal for the
permutation f(π, k) obtained from π by inserting an after the kth element of π. Moreover,
if (π1, k1) 6= (π2, k2) then f(π1, k1) 6= f(π2, k2). Hence,

ϕG(an) ≥ 1
n!

∑
π,k:P∗(π,k) 6=∅

1 ≥ 1
n! · 2n

∑
π,k

|P ∗(π, k)| ≥ n + 1
2n

(ϕG′(a′n) + ϕG′(a′′n)).

We conclude that the manipulator cannot gain more than a factor of 2n/(n + 1) < 2 by
splitting his weight between two identities.

To see that this bound is tight, consider the game G = [2, 2, . . . , 2; 2n] and suppose
that one of the agents (say, an) decides to split into two identities a′n and a′′n resulting
in the game G′ = [2, . . . , 2, 1, 1; 2n]. Clearly, in both games the only winning coalition
consists of all agents, so we have ϕG(an) = 1/n, ϕG′(a′n) = ϕG′(a′′n) = 1/(n + 1), i.e.,
ϕG′(a′n) + ϕG′(a′′n) = 2n

n+1ϕG(an).

We have seen that no agent can increase his payoff by more than a factor of 2 by splitting
his weight between two identities. In contrast, we will now show that an agent can decrease
his payoff by a factor of Θ(n) by doing so. This shows that a would-be manipulator has to be
careful when deciding whether to split his weight, and motivates the algorithmic questions
studied in the next two sections.

Theorem 5. In any weighted voting game, no agent can lower his payoff by more than
a factor of (n + 1)/2 by splitting his weight between two identities. Moreover, there exists
a weighted voting game in which splitting into two identities decreases the manipulator’s
payoff by a factor of (n + 1)/2.

Proof. To prove the first part of the theorem, fix a split of an into a′n and a′′n and consider
any permutation π of agents in G such that an is pivotal for π. It is easy to see that at
least one of a′n and a′′n is pivotal for the permutation f(π) obtained from π by replacing
an with a′n and a′′n (in this order). Similarly, at least one of a′n and a′′n is pivotal for the
permutation g(π) obtained from π by replacing an with a′′n and a′n (in this order). Moreover,
all permutations of agents in G′ obtained in this manner are distinct, i.e., for any π, π′ we
have g(π) 6= f(π′), and π 6= π′ implies f(π) 6= f(π′), g(π) 6= g(π′). Consequently, if Π∗

n is
the set of all permutations π of the agents in G such that an is pivotal for π, and Π∗

n+1 is
the set of all permutations π of the agents in G′ such that a′n or a′′n is pivotal for π, we have
|Π∗

n+1| ≥ 2|Π∗
n| and

ϕG′(a′n) + ϕG′(a′′n) =
|Π∗

n+1|
(n + 1)!

≥ 2|Π∗
n|

(n + 1)!
=

2
n + 1

ϕG(an).

To see that this bound is tight, consider the game G = [2, 2, . . . , 2; 2n − 1] and suppose
that one of the agents (say, an) decides to split into two identities a′n and a′′n resulting in
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the game G′ = [2, . . . , 2, 1, 1; 2n − 1]. In the original game G, the only winning coalition
consists of all agents, so we have ϕG(an) = 1/n. Now, consider any permutation π of
the players in G′. We claim that a′n is pivotal for π if and only if it appears in the nth
position of π, followed by a′′n. Indeed, if π(a′n) = n, π(a′′n) = n + 1, then all players in the
first n − 1 positions have weight 2, so w(Sπ(a′n)) = 2n − 2, w(Sπ(a′n) ∪ {a′n}) = 2n − 1.
Conversely, if π(a′n) = n + 1, we have w(Sπ(a′n)) = 2n − 1 = q, and if π(a′n) ≤ n − 1,
we have w(Sπ(a′n) ∪ {a′n}) ≤ 2(n − 1). Finally, if π(a′n) = n, but π(a′′n) 6= n + 1, we have
w(Sπ(a′n)∪ {a′n}) = 2n− 2 < q. Consequently, a′n is pivotal for (n− 1)! permutations, and,
by the same argument, a′′n is also pivotal for (a disjoint set of) (n−1)! permutations. Hence,
we have ϕG′(a′n) + ϕG′(a′′n) = 2(n−1)!

(n+1)! = 2
n+1ϕG(an).

5 Complexity of Finding a Beneficial Manipulation

We now examine the problem of finding a beneficial weight split in weighted voting games
from the computational perspective. Ideally, the manipulator would like to find a payoff-
maximizing split, i.e., a way to split his weight between two or more identities that results
in the maximal total payoff. A less ambitious goal is to decide whether there exists a
manipulation that increases the manipulator’s payoff. However, it turns out that even this
problem is computationally hard: in the rest of the section, we will show that checking
whether there exists a payoff-increasing split is NP-hard, even if the player is only allowed
to use two identities. To formally define the computational problem, we assume that all
weights and the quota are integer numbers given in binary.

Definition 6. An instance of Beneficial Split is given by a weighted voting game G =
[w1, . . . , wn; q] and a certain target agent ai. We are asked if there is a way for ai to split his
weight wi between several new agents a

(1)
i , . . . , a

(k)
i so that the sum of their Shapley values

is greater than the Shapley value of ai. Formally, an instance (G, ai) is a “yes”-instance if
there exists a k ≥ 2 and weights w

(1)
i , . . . , w

(k)
i such that

∑
j=1,...,k w

(j)
i = wi and in the new

game
G′ = [w1, . . . , wi−1, w

(1)
i , . . . , w

(k)
i , wi+1, . . . , wn; q]

we have ϕG′(a(1)
i ) + · · ·+ ϕG′(a(k)

i ) > ϕG(ai).

Remark 7. Note that we are looking for a strictly beneficial manipulation, i.e., one that
increases the total Shapley value of the manipulator. Indeed, if we were just interested in a
split that is not harmful, the problem would always have a trivial solution: by the dummy
axiom, assigning a weight of 0 to the new agent does not affect the Shapley value of all
agents and therefore is not harmful.

Our hardness proof is by a reduction from Partition, which is a classical NP-complete
problem. An instance of Partition is given by a set of n weights T = {t1, . . . , tn}. It is a
“yes”-instance if it is possible to split T into two subsets P1 ⊆ T , P2 ⊆ T so that P1∩P2 = ∅,
P1 ∪ P2 = T , and

∑
ti∈P1

ti =
∑

ti∈P2
ti, and a “no”-instance if no such partition exists.

The high-level idea of the reduction is as follows. Given an instance of Partition
T = {t1, . . . , tn}, we create a weighted voting game G with n + 2 agents a1, . . . , an, ax, ay,
weights w = (8t1, ..., 8tn, 1, 2), and a quota of q = 4

∑
i ti + 3. The weights are chosen

so that ay is a dummy if the original instance of Partition is a “no”-instance, but has
some power if it is a “yes”-instance. Moreover, when a partition exists, agent ay can gain
power by splitting into two agents of weight 1 each. It follows that T is a “yes”-instance of
Partition if and only if (G, ay) a “yes”-instance of Beneficial Split. For the rest of the
proof, we write A = {a1, . . . , an} and for any A′ ⊆ A we set w(A′) =

∑
i:ai∈A′ wi.
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Lemma 8. If T is a “no”-instance of Partition, then agent ay is a dummy player.

Proof. Suppose that T is a “no”-instance of Partiton. Consider any A′ ⊆ A. The set A can
be partitioned into two equal-weight subsets if and only if T can, so either w(A′) < w(A)/2,
or w(A′) > w(A)/2. We will show that in either case ay cannot be critical to either A′∪{ay}
or A′ ∪ {ax, ay}, i.e., ay is dummy player.

The weights of all agents in A are multiples of 8, so w(A)/2 is a multiple of 4. Similarly,
the weight of A′ is a multiple of 8. Hence, if w(A′) < w(A)/2, it follows that w(A′) ≤
w(A)/2 − 4 and w(A′ ∪ {ax, ay}) ≤ w(A)/2 − 4 + 3 < q. Therefore, A′ ∪ {ax, ay} (and a
forteriori A′ ∪ {ay}) is not a winning coalition, so ay cannot be pivotal for it.

Similarly, if w(A′) > w(A)/2, then w(A′) ≥ w(A)/2+4 > q, so A′ is a winning coalition.
Therefore ay cannot be critical for A′ ∪ {ay} or A′ ∪ {ax, ay}. We conclude that by the
dummy axiom the Shapley value of ay is 0.

Corollary 9. If T is a “no”-instance of Partition, then (G, ay) is a “no”-instance of
Beneficial Split.

Proof. By Lemma 8, if T is a “no”-instance of Partition, the agent ay is a dummy in
G. Now, take any possible split of ay into several agents a

(1)
y , . . . , a

(k)
y and consider any

permutation π of the agents in the new game. If there is a j ≤ k such that a
(j)
y is pivotal

for π, then ay is pivotal for the permutation obtained from π by deleting all agents a
(l)
y with

l 6= j and replacing a
(j)
y , with ay, a contradiction. We conclude that all a

(j)
y , j = 1, . . . , k

are dummy players and hence their total Shapley value is 0. Therefore, ay gains no power
by splitting and (G, ay) is a “no”-instance of Beneficial Split.

Lemma 10. If T is a “yes”-instance of Partition, then ay can increase his power by
splitting into two agents, i.e., (G, ay) is a “yes”-instance of Beneficial Split.

Proof. Let T be a “yes”-instance of Partition. Let 〈P1, P2〉 be a partition of T , so w(P1) =
w(P2). It corresponds to a partition 〈A1, A2〉 of A, where ai ∈ A1 if and only if ti ∈ P1;
obviously, we have w(A1) = w(A2). We denote |A1| = s, so |A2| = n− s.

It is easy to see that ay is critical for A1∪{ax, ay} as well as for A2∪{ax, ay}. There are
(s+1)!(n−s)! permutations of a1, . . . , an, ax, ay that put ay directly after some permutation
of A1 ∪ {ax}. Similarly, there are s!(n− s + 1)! permutations putting ay directly after some
permutation of A2 ∪ {ax}. Thus, for each partition Xi = 〈P i

1, P
i
2〉, where |P i

1| = s, we have
at least (s + 1)!(n − s)! + s!(n − s + 1)! distinct permutations where ay is critical. On the
other hand, as shown in Lemma 8, if A′ is a subset of A such that w(A′) 6= w(A)/2, then
ay is not critical for A′ ∪ {ay} or A′ ∪ {ay, ax}, since either w(A′) ≤ w(A)/2− 4 < q − 3 or
w(A′) ≥ w(A)/2 + 4 > q.

Let P be the set of all partitions of T , where each partition is counted only once, i.e.,
P contains exactly one of the 〈P1, P2〉 and 〈P2, P1〉. For each Pi = 〈P i

1, P
i
2〉 ∈ P, we denote

|P i
1| = si. There is a total of (n+2)! permutations of players in G. Thus, the Shapley value

of ay in G is

ϕG(ay) =
∑

Pi∈P
(si+1)!(n−si)!+si!(n−si+1)!

(n+2)! =
∑

Pi∈P
si!(n−si)!(si+1+n−si+1)

(n+2)! =∑
Pi∈P

si!(n−si)!(n+2)
(n+2)! =

∑
Pi∈P

si!(n−si)!
(n+1)! .

We now consider what happens when ay splits into two agents, a′y and a′′y , w(a′y) =
w(a′y) = 1, resulting in a game G′ = [8t1, . . . , 8tn, 1, 1, 1;

∑n
i=1 ti + 3].

Again, let 〈P1, P2〉, |P1| = si, |P2| = n− si, be a partition of T , so w(P1) = w(P2), and
let 〈A1, A2〉 be the corresponding partition of A. Consider any permutation π which places
a′′y directly after some permutation of A1 ∪ {ax, a′y}; clearly, a′′y is critical for π. Similarly,
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a′′y is critical for any permutation π′ which places a′′y directly after some permutation of
A2 ∪ {ax, a′y}. There are (si + 2)!(n − si)! permutations putting a′′y directly after some
permutation of A1 ∪ {ax, a′y} and si!(n − si + 2)! permutations putting a′′y directly after
some permutation of A2 ∪ {ax, a′y}.

Thus, for each partition Pi =< P i
1, P

i
2 >, where |P i

1| = si, we have (si + 2)!(n − si)! +
si!(n− si + 2)! permutations where a′′y is critical. Switching the roles of a′y and a′′y , both of
which have the same weight and are thus equivalent, we also get that there are (si +2)!(n−
si)!+si!(n−si +2)! permutations where a′y is critical. There are n+3 agents in G′, so there
is a total of (n+3)! permutations of the agents. Thus each partition Pi = (P i

1, P
i
2), |Pi| = si,

contributes si!(n−si)!
(n+1)! to the Shapley value of ay in G, and 2 (si+2)!(n−si)!+si!(n−si+2)!

(n+3)! to the
sum of the Shapley values of a′y or a′′y in G′. We will now show that for any partition Pi

2
(si + 2)!(n− si)! + si!(n− si + 2)!

(n + 3)!
>

si!(n− si)!
(n + 1)!

. (2)

Summing these inequalities over all partitions Pi will imply ϕG′(a′y) + ϕG′(a′′y) > ϕG(ay),
as desired. Inequality (2) can be simplified to

2
(s + 1)(s + 2) + (n− s + 1)(n− s + 2)

(n + 2)(n + 3)
> 1,

where we use s instead of si to simplify notation, or, equivalently, 2(s + 1)(s + 2) + 2(n −
s + 1)(n− s + 2)− (n + 2)(n + 3) > 0. Now, observe that 2(s + 1)(s + 2) + 2(n− s + 1)(n−
s + 2)− (n + 2)(n + 3) = (n− 2s)2 + n + 2 > 0 for any n. This proves inequality (2) for any
s, n. It follows that if there is a partition, agent ay always gains by splitting into two agents
of weight 1. Thus, if T is a “yes”-instance of Partition, then (G, ay) is a “yes”-instance of
Beneficial Split.

We summarize our results in the following theorem.

Theorem 11. Beneficial Split is NP-hard, even if the only allowed split is into two
identities with equal weights.

Proof. We transform an instance T of Partition into an instance (G, ay) of Beneficial
Split as explained above. We combine Corollary 9 and Lemma 10, and see that T is a
“yes” instance of Partition if and only if the (G, ay) is a “yes”-instance of Beneficial
Split. This completes the reduction.

Remark 12. Note that we have not shown that Beneficial Split is in NP, so we have not
proved that it is NP-complete. There are two reasons for this. First, if we allow splits into
an arbitrary number of identities, some of the candidate solutions may have exponentially
many new agents (e.g., an agent with weight wi can split into wi agents of weight 1), or
agents whose weights are rational numbers with superpolynomially many digits in their binary
representation. Second, even if we circumvent this issue by only considering splits into two
identities with integer weights, it is not clear how to verify in polynomial time whether a
particular split is beneficial. In fact, since computing the Shapley value in weighted voting
games is #P-complete, it is quite possible that Beneficial Split is not in NP.

6 Finding Beneficial Splits

In Section 5, we have shown that it is hard even to test if any beneficial split exists, let
alone to find the optimal split. This can be seen as a positive result, since complexity of
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finding beneficial splits serves as a barrier for this kind of manipulative behavior. However,
it turns out that in many cases manipulators can overcome this difficulty. Indeed, recall that
our hardness reduction is from Partition. While this problem is NP-hard, its hardness—
and hence the hardness of our problem—crucially relies on the fact that the weights of the
elements are represented in binary. Indeed, if the weights are given in unary, there is a
dynamic programming-based algorithm for Partition that runs is time polynomial in size
of the input (such algorithms are usually referred to as pseudopolynomial). In particular, if
all weights are polynomial in n, the running time of this algorithm is polynomial in n. In
many natural voting domains the weights of all agents are not too large, so this scenario is
quite realistic. It is therefore natural to ask if there exists a pseudopolynomial algorithm
for the problem of finding a beneficial split.

It turns out that the answer to this question is indeed positive as long as there is a
constant upper bound K on the number of identities that the manipulator can use and
all weights are required to be integer. To see this, recall that there is a pseudopolynomial
algorithm for computing the Shapley value of any player in a weighted voting game [10].
This algorithm is based on dynamic programming: for any weight W and any 1 ≤ k ≤ n,
it calculates the number of coalitions of size k that have weight W . One can use the
algorithm of [10] to find a beneficial split for a player ai with weight wi in a game G as
follows. Consider all possible splits wi = w

(1)
i + · · · + w

(K)
i , where w

(j)
i ∈ Z, w

(j)
i ≥ 0 for

j = 1, . . . ,K. Clearly, the number of such splits is at most (wi)K , which is polynomial in n
for constant K. Evaluate the Shapley values of all new agents in any such split and return
“yes” if and only if any of these splits results in an increased total payoff. Let A(G) be
the running time of the algorithm of paper [10] on instance G. The running time of our
algorithm is O((wi)KK ·A(G)), which is clearly pseudopolynomial.

We will now consider a more general setting, where only the weight of the manipulator
is polynomially bounded, while the weights of other players can be large. To simplify the
presentation, we limit ourselves to the case of two-way splits; however, our approach applies
to splits into any constant number of identities. We can use the same high-level approach
as in the previous case, i.e., considering all possible splits (because of the weight restriction,
there is only polynomially many of them), and computing the Shapley values of both new
agents for each split. However, if we were to implement the latter step exactly, it would take
exponential time. Therefore, in this version of our algorithm, we replace the algorithm of [10]
with an approximation algorithm for computing the Shapley value. Several such algorithms
are known: see, e.g., [8, 4]. We will use these algorithms in a black-box fashion. Namely,
we assume that we are given a procedure Shapley(G, ai, δ, ε) that for any given values of
ε > 0 and δ > 0 outputs a number v that with probability 1 − δ satisfies |v − ϕG(ai)| ≤ ε
and runs in time poly(n log wmax, 1/ε, 1/δ). We show how to use this procedure to design
an algorithm for finding a beneficial split and relate the performance of our algorithm to
that of Shapley(G, ai, δ, ε).

Our algorithm is described in Figure 1. It takes a pair of parameters (δ, ε) as an input,
and uses the procedure Shapley(G, ai, δ, ε) as a subroutine. The algorithm outputs “yes”
if it finds a split whose total estimated payoff exceeds the payoff of the manipulator in the
original game by at least 3ε. It can easily be modified to output the optimal split.

Proposition 13. With probability 1−3δ, the output of our algorithm satisfies the following:
(i) If the algorithm outputs “yes”, then (G, ai) admits a beneficial integer split; (ii) Con-
versely, if there is an integer split that increases the payoff to the manipulator by more than
6ε, our algorithm outputs “yes”. Moreover, the running time of our algorithm is polynomial
in nwi, 1/ε, and 1/δ.

Proof. Suppose that the algorithm outputs “yes”. We have Prob[v∗ < ϕG(ai) − ε] < δ,
Prob[v′ > ϕG′(a′i) + ε] < δ, Prob[v′′ > ϕG′(a′′i ) + ε] < δ. Hence, with probability at least
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FindSplit(G = [w; q], ai, δ, ε);
v∗ =Shapley(G, ai, δ, ε);
for j = 0, . . . , wi

w′
i = j, w′′

i = wi − j;
G′ = [w1, . . . , wi−1, w

′
i, w

′′
i , wi+1, . . . , wn; q];

v′ = Shapley(G′, a′i, δ, ε), v′′ =Shapley(G′, a′′i , δ, ε);
v = v′ + v′′;
if v > v∗ + 3ε then return yes;

return no;

Figure 1: Algorithm FindSplit(G = [w; q], ai, δ, ε)

1− 3δ, if v′ + v′′ > v∗ + 3ε, then ϕG′(a′i) + ϕG′(a′′i ) + 2ε > ϕG(ai)− ε + 3ε, or, equivalently,
ϕG′(a′i) + ϕG′(a′′i ) > ϕG(ai).

Conversely, suppose that there is a beneficial split of the form (w′
i, w

′′
i ) that improves

player ai’s payoff by at least 6ε. As before, with probability at least 1 − 3δ we have that
v∗ ≤ ϕG(ai) + ε and at the step j = w′

i it holds that v′ ≥ ϕG′(a′i) − ε, v′′ ≥ ϕG′(a′′i ) − ε.
Then v = v′ + v′′ ≥ ϕG′(a′i) + ϕG′(a′′i )− 2ε > ϕG(ai) + 6ε− 2ε ≥ v∗ + 3ε, so the algorithm
will output “yes”.

While our algorithm does not guarantee finding a successful manipulation, it is possible
to control the approximation quality (at the cost of increasing the running time), so that a
successful manipulation is found with high probability.

Thus we can see that manipulators have several ways to overcome the computational
difficulty of finding the optimal manipulation. Thus, other measures are required to avoid
such manipulations.

7 Extensions

In this section, we consider some variants of the model studied in the paper. Our results
here are rather preliminary and provide several interesting directions for future research.

Splitting into more than two identities So far, we have mostly discussed the gain (or
loss) that an agent can achieve by splitting into two identities. However, it is also possible
for an agent to use three or more false names. Potentially, the number of identities an agent
can use can be as large as his weight (and if the weights are not required to be integer,
it can even be infinite). It would be interesting to see which of our results hold in this
more general setting. For example, while our computational hardness result holds for splits
into any number of identities, the algorithmic results of the previous section only apply
to splits into a constant number of new identities. An obvious open problem here is to
design a pseudopolynomial algorithm for finding a beneficial integer split into any number
of identities, or to prove that this problem is NP-hard even for small weights (i.e., weights
that are polynomial in n). Another question of interest here is to extend the upper and
lower bounds of Section 4.1 for this setting.

Manipulation by merging Each situation in which splitting is harmful for an agent
directly corresponds to a situation where it is beneficial for several agents to merge, i.e.,
pretend that they are a single agent whose weight is equal to the total weight of the manip-
ulators.

Some of the results presented in the paper can easily be translated to this domain. In
particular, it is not hard to see that the proof of Theorem 11 can be adapted to show that
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it is NP-hard to check whether there exists a beneficial merge, and the results of Section 4.1
can be interpreted in terms of merging rather than splitting. However, this problem is very
different from the game-theoretic perspective, as it involves coordinated actions by several
would-be manipulators who then have to decide how to split the (increased) total payoff.
We propose it as a direction for future work.

8 Conclusions

We have considered false-name manipulations in weighted voting games. We have shown
that these manipulations can both increase and decrease the manipulator’s payoffs, and
provided tight upper and lower bounds on the effects of false-name voting. We have also
shown that testing whether a beneficial manipulation exists is NP-hard. One may ask why we
view this hardness result as an adequate barrier to manipulation, while using Shapley value
(which itself is #P-hard to compute) as a payoff division scheme and therefore assuming
that it can be computed. To resolve this apparent contradiction, note that the Shapley value
corresponds to the voting power, and the players may try to increase their voting power by
weight-splitting manipulation even if they cannot compute it. Also, when the Shapley value
is used to compute payments, the center, which performs this computation, may have more
computational power than individual agents. Furthermore, a payoff division scheme that is
based on approximate computation of Shapley value may still be acceptable to the agents,
whereas the manipulator may want to know for sure that attempted manipulation will not
hurt him (and we have seen that in some cases weight-splitting can considerably decrease
the agent’s payoffs), or provide him with sufficient benefits to offset the costs of splitting.
While the approximation algorithm discussed in the previous section can be used for this
purpose, it only works if the manipulator’s weight is small. Generalizing it to large weights
(i.e., showing that if a beneficial split exists, it can be found by testing a polynomial number
of splits) is an interesting open question.

In this paper, we presented results on false-name voting for the case when the payoffs
are distributed according to the Shapley value. An obvious research direction is to see if one
can derive similar results for other power indices, such as Banzhaf index, as well as other
solution concepts used in co-operative games such as, e.g., the nucleolus. More generally, it
would be interesting to design a payoff distribution scheme that is resistant to this type of
manipulation, or prove that it does not exist.

The study of weighted voting has many applications both in political science and in
multiagent systems. There are several possible interpretations for identity-splitting in these
contexts, such as obtaining a higher share of the grand coalition’s gains when these are
distributed according to the Shapley value, or obtaining more political power by splitting
a political party into several parties with similar political platforms. In the first case, a
false-name manipulation is hard to detect in open anonymous environments, and can thus
be very effective. In the second case, the manipulation is done using legitimate tools of
political conduct. Therefore, we conjecture that false-name manipulation is widespread
in the real world and may become a serious issue in multiagent systems. It is therefore
important to develop a better understanding of the effects of this behavior and/or design
methods of preventing it.
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