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Abstract

Don Saari has developed a geometric approach to the analysis of paradoxes of pref-
erence aggregation such as the Condorcet paradox or Arrow’s general possibility
theorem. In this paper we extend this approach to judgment aggregation. In par-
ticular we use Saari’s representation cubes to provide a geometric representation of
profiles and majority rule outcomes. We then show how profile decompositions can
be used to derive restrictions on profiles that guarantee logically consistent majority
outcomes. Moreover, we use our framework to determine the likelihood of incon-
sistencies. Finally, current distance-based approaches in judgment aggregation are
discussed within our framework.

1 Introduction

The problem of judgment aggregation consists in aggregating individual judgments on an
agenda of logically interconnected propositions into a collective set of judgments on these
propositions. This relatively new literature (see List and Puppe [6] for a survey) is centred
on problems like the discursive dilemma which are structurally similar to paradoxes and
problems in social choice theory like the Condorcet paradox and Arrow’s general possibility
theorem. For the analysis of such paradoxes Saari [9] has successfully introduced a geometric
approach, the extension of which to judgment aggregation seems promising.

A major difference of judgment aggregation to social choice theory lies in the represen-
tation of the information involved. While binary relations over a set of alternatives are
a canonical representation of preferences, a natural representation of judgments are binary
valuations over a set of propositions, where the logical interconnections between these propo-
sitions determine the set of admissible valuations. E.g. the agenda of the famous discursive
dilemma {p, q, p ∧ q} is associated the set of admissible, i.e. logically consistent valuations
{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}.

In this paper we want to use Saari’s tools to derive and analyse results in judgment
aggregation. In section 2 we introduce the formal framework. Section 3 uses Saari’s repre-
sentation cubes to provide a unified geometric representation of profiles and majority rule
outcomes. This will clarify which problems can occur in judgment aggregation using ma-
jority rule on certain domains. Applying Saari’s idea of a profile decomposition, we also
show how majority inconsistencies can be avoided with the help of restrictions on the dis-
tribution of individual valuations, i.e. a kind of generalized domain restriction. This leads
us to the determination of the likelihood of inconsistencies under majority rule for different
agendas in section 4. In section 5, we apply our approach to illuminate current results on
distance-based judgment aggregation. Finally, section 6 concludes the paper.

2 Formal Framework

Let J be the set of propositions on which judgments have to be made. Most problems in
the literature on judgment aggregation can be formulated with the help of vectors of binary
valuations x = (x1, x2, ..., x|J|) ∈ X ⊆ {0, 1}|J|, where xj = 1 means that proposition j is
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believed and X denotes the set of all admissible (logically consistent) valuations (see Dokow
and Holzman [2]).

A profile of individual valuations is represented by a vector p = (p1, p2, ..., p|X|) which
associates with every binary valuation xk ∈ X the fraction pk of individuals with this
valuation. This is an anonymous representation of voters’ valuations as only the distribution
of the valuations matters.

A judgment aggregation rule is a mapping f that associates with every profile p =
(p1, p2, ..., p|X|) a valuation f(p) ∈ {0, 1}|J|. If f(p) ∈ X for all p we will call its domain
f -consistent.

Saari [9] analyses preference aggregation using a geometric approach. For the simplest
setting consider three alternatives a, b, c. This gives rise to three issues, i.e. pairwise com-
parisons, namely between a and b, b and c and c and a. A ”1” for the first issue (i.e. the
comparison between a and b) means that a is preferred to b, written a ≻ b. On the other
hand, a ”0” indicates the opposite preference, i.e. b ≻ a. Defining the average support for

issue j by xj =
∑

i∈N xi
j

n , where N denotes the set of individuals, a preference profile maps
into a point x ∈ [0, 1]|J| in the hypercube with dimension |J | = 3 (the number of issues, i.e.
pairwise comparisons). See figure 1.

Figure 1: Saari’s representation cube

In figure 1, the vertex (0, 0, 1) thus represents the preference where b ≻ a, c ≻ b and
c ≻ a or - for simplicity - the ranking cba. As there are eight vertices but only six transitive
rankings of the three alternatives, there are two vertices representing irrational voters with
cyclic preferences, namely (0, 0, 0) and (1, 1, 1). If we exclude those vertices, we see that the
convex hull of the remaining six vertices is the representation polytope, i.e. every preference
profile maps into a point in this polytope.

3 Majority (In)consistency and Domain Restrictions

The same 3-dimensional hypercube can be used for a simple judgment aggregation problem
with 3 propositions (issues), i.e. |J | = 3. For simple majority voting on the issues, every
profile p of individual judgments on J is mapped into a point x(p) in the hypercube. Its
Euclidean distance to the respective vertices determines the majority outcome. This means
that the hypercube can be partitioned into 8 equally sized subcubes each determining the
majority outcome for profiles mapped into those subcubes. E.g. in figure 2 the shaded
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subcube, determined by the diagonal
[
( 1
2 , 1

2 , 1
2 ), (1, 0, 1)

]
consists of all points that are of

closest Euclidean distance to the vertex (1, 0, 1) and hence any x(p) in that subcube leads
to a majority outcome of (1, 0, 1). For dE(x, y) denoting the Euclidean distance between
x, y ∈ {0, 1}|J|, we can also think of the majority valuation xM as the

argminx∈{0,1}|J|
|X|∑
k=1

pkdE(xk, x)

.

Figure 2: Majority subcube

Consider the agenda {p, q, p ∧ q} of the discursive dilemma with associated domain of
admissible valuations X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}. The four admissible vertices
in the hypercube determine the representation polytope as seen in figure 3.

Figure 3: representation polytope

Given X, consider the profile p = (0, 1
3 , 1

3 , 1
3 ), i.e. no voter has valuation (0, 0, 0), one

third of the voters has valuation (1, 0, 0), and so on. As this maps into the point x = (2
3 , 2

3 , 1
3 )

- a point whose closest vertex is (1, 1, 0) - the representation polytope obviously passes
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through one subcube representing a majority outcome not in the domain. That such an
inconsistency can easily occur in general is seen from the following lemma:

Lemma 1 Given any vertex x ∈ {0, 1}|J|, there exist 3 vertices a, b, c such that for some
linear combinations of those vertices there is a point in the x-subcube.

For |J | = 3, these 3 vertices necessarily need to be the neigbors of that vertex, i.e. they
are only allowed to differ from it in one issue. Given that, we can now provide a simple
result for the occurrence of majority consistency, i.e. what X needs to look like to guarantee
that the majority outcomes are themselves in X.

Proposition 1 For |J | = 3, the set of valuations X is majority consistent iff for any triple
of vertices in the domain with a common neighbor, this common neighbor is also contained
in the domain.

To analyse those paradoxical outcomes and suggest restrictions to overcome those, we
will use a profile decomposition technique developed by Saari [9]. Consider two indviduals
with the respective valations (1, 0, 0) and (0, 1, 1). They are exact opposites, so from a
majority rule point of view those two valuations cancel out. Hence this implies that for any
two opposite admissible valuations in X, we can cancel the valuation held by the smaller
number of individuals. This leads to a reduced profile, the majority outcome of which is
identical to the majority outcome of the original profile.

E.g. given X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}}, with (p1, p2, p3, p4) being the shares
of individuals holding each of the respective valuations where

∑
i pi = 1. As (0, 0, 0) and

(1, 1, 1) are exact opposites, the reduced profile will have a share of 0 for the valuation held
by the smaller number of individuals. In the case of p1 > p4 such a reduced profile will be
p′ = ( p1−p4

p1+p2+p3−p4
, p2

p1+p2+p3−p4
, p3

p1+p2+p3−p4
, 0), in the case of p1 ≤ p4 we can create the

reduced profile accordingly. Hence the reduced profile maps into one of the following two
planes represented in figure 4, namely either into the one determined by the vertices (0, 0, 0),
(1, 0, 0) and (0, 1, 0) or the one determined by the vertices (1, 0, 0), (0, 1, 0) and (1, 1, 1).

Figure 4: planes

Now we want to determine whether there are consistency conditions, i.e. what sort of
profiles do guarantee majority consistency in the sense of a majority outcome being one of
the valuations in X. Let ai = pi∑4

i=2 pi
, for i = 2, 3, 4. Then α = (a2 + a4, a3 + a4, a4) ∈ T .

By definition, p = (1 − p1)(0, a2, a3, a4) + p1(1, 0, 0, 0). By linearity, x(p) = (1 − p1)α +
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p1(0, 0, 0) = (1− p1)α, where x(p) ∈ [0, 1]3 is a vector summarizing the average support for
each issue.

So, geometrically any profile can be plotted via a point in the plane T , its connection to
the (0, 0, 0) vertex and a weight p1. The following figure 5 shows plane T , the shaded area
of which indicates the cut with the (1, 1, 0)-subcube and hence those points where a profile
leads to an inadmissible majority outcome.

Figure 5: plane T

Now, we can state the following proposition:

Proposition 2 Given X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}} and p = (p1, p2, p3, p4)
with

∑4
i=1 = 1, satisfying one of the following restrictions on the distribution of p is neces-

sary and sufficient for admissible majority outcomes:

(a) p1 ≥ p4

(b) p2∑4
i=2 pi

> 1
2

(c) p3∑4
i=2 pi

> 1
2

(d) p4∑4
i=2 pi

> 1
2

Proof. If p1 ≥ p4, the reduced profile is mapped into the plane indicated on the left
of figure 4 which is closed under majority rule. Otherwise p1 < p4 and the reduced profile
is mapped into plane T. As we see on the right side of figure 4, majority consistency is
guaranteed in the white triangles, and a profile maps into one of them whenever one of
restrictions (b) − (d) is satisfied. On the other hand, given that for |X| = 4 and |J | =
3, elementary algebra shows that every profile maps into one and only one point in the
representation polytope. Hence, majority consistency is satisfied only if one of the above
restrictions is fulfilled.

One interesting feature of those restrictions is that they are based on the space of profiles
which is more general than restrictions on the space of valuations which is usually used in
classical domain restrictions. E.g. List [5] introduces the unidimensional alignment domain
which has a certain resemblence to Black’s single peakedness condition in social choice
theory. It requires individuals to be ordered from left to right such that on each issue there
occurs only one switch from acceptance to non-acceptance (or vice versa). For |J | = 3 a
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unidimensional alignment domain does satisfy one of the above conditions for admissible
majority outcomes.1

Moreover, this framework also opens the analysis of various paradoxical situations, e.g.
strong support for one particular issue but still inadmissible majority outcomes. This is
stated in the following proposition:

Proposition 3 There exist profiles such that there is almost unanimous agreement on one
issue and still an inadmissible majority outcome is obtained.

Proof. Looking at figure 5 one observes, that points close to the edge connecting the
vertices (1, 0, 0) and (1, 1, 1) have almost unanimous agreement on issue 1. However, at the
midpoint of this edge, the shaded triangle comes arbitrarily close to the edge. Hence, there
exist profiles which lie in the shaded triangle but imply almost unanimous agreement on
one issue. The same argument applies to points close to the edge conncecting the vertices
(0, 1, 0) and (1, 1, 1).

4 Likelihood of Inconsistency

The geometric framework can also be used to analyze the likelihood of inadmissible out-
comes. The approach is based on the fact that only 4 vertices are admissible individual
valuations, and hence any majority outcome in the representation cube is determined by a
unique profile. Consider again the situation X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}}. Then
for any vector of shares of individual valuations p = (p1, p2, p3, p4) we get the following for
the average support on each issue: x1 = p2 +p4, x2 = p3 +p4, x3 = p4, 1 = p1 +p2 +p3 +p4.
As those are 4 equations with 4 unknowns there exists a unique solution. Thus, assuming
every profile being equally likely - i.e. taking an impartial anonymous culture2 - the volume
of certain subspaces now indiciates the likelihood of occurrence of certain outcomes. Con-
sider first the volume of the representation cube: V = 1

2 · 1 · 1
3 = 1

6 . On the other hand,
points leading to inadmissible majority outcomes are located in the tetraeder determined
by the points

[
( 1
2 , 1

2 , 0), (1, 1
2 , 1

2 ), ( 1
2 , 1, 1

2 ), ( 1
2 , 1

2 , 1
2 )

]
. The volume of this tetraeder is 1

48 (see
figure 6).

So its volume relative to the volume of the whole representation polytope is 1
8 and hence

we can say that the probability of an outcome being inadmissible is 12,5 percent. This
provides a different approach to derive the expected probability of paradoxical situations
under the impartial anonymous culture compared to the non-geometric approach by List
[5], leading to the same results.

Of course, different domains allow for different probabilities. E.g. consider the agenda
{p, q, p ↔ q} with X = {(0, 0, 1), (1, 0, 0), (0, 1, 0), (1, 1, 1)}}. Then, for any point x =
(x1, x2, x3) in the representation polytope we get x1 = p2 + p4, x2 = p3 + p4, x3 = p1 + p4

and p1+p2+p3+p4 = 1. Again, every profile maps into a unique point in the representation
polytope. Making the same volume calculations as before, we get - under the impartial
anonymous culture - a probability of inadmissible outcomes of 25 percent.

5 Codomain Restrictions and Distance-Based Aggrega-
tion

Besides restrictions on the space of profiles, there is an alternative way to guarantee logical
consistency at the collective level, namely via restricting the set of collective outcomes

1For a more elaborated discussion on majority voting on restricted domains see also Dietrich and List
[1].

2See Gehrlein [3] for a general discussion of the impartial anonymous culture.
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Figure 6: Distances

to admissible valuations. One way to work with such codomain restrictions is by using
distance-based aggregation rules. In analogy to a well-known procedure in social choice
theory (Kemeny [4]), Pigozzi [8] introduced such an approach to judgment aggregation.
In principle a distance-based aggregation rule determines the collective valuation as the
valuation that minimizes the sum of distances to the individual valuations. Formally, given
the profile of individual valuations (x1, x2, ..., xn), the collective valuation is the admissible
valuation x ∈ X that minimizes the sum of distances to the individual valuations, i.e.

f(p) = argminx∈X

n∑
i=1

d(x, xi)

The most commonly used distance function is the Hamming distance, which counts the
number of issues on which two valuations disagree, i.e. for x = (1, 0, 0) and x′ = (1, 1, 1),
d(x, x′) = 2.

It is easily seen that on a majority consistent domain this distance-based aggregation
rule coincides with majority voting on issues, thus providing a metric rationalization of
majority voting.

Now given our geometric approach, there is a simple geometric explanation of this
distance-based aggregation rule. As could be seen in figure 5, all problematic profiles lead
to a point in the shaded triangle. However, one option is to divide the triangle into three
sub-triangles as in figure 7.

The point in the middle is exactly the barycenter point of the triangle (1
3 , 1

3 , 1
3 ). Using

these additional lines, we now have divided the triangle into three areas, points in which are
characterized by being of smallest Euclidean distance to the vertex of the proper triangle
w.r.t. the points within the shaded triangle. So points in the south-western part of the
shaded triangle will be closest to the (1, 0, 0) vertex. This, however, is identical to saying
that for any point in the shaded triangle, switch the majority valuation on the issue which
is closest to the 50-50 threshold (see Merlin and Saari [7]).

Example 1 Let X = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)} and p = (0.1, 0.35, 0.3, 0.25). This
leads to x(p) = (0.6, 0.55, 0.25) and hence an inadmissible majority outcome (1, 1, 0). Look-
ing at figure 5 we see that α ∈ T lies in the south-western shaded triangle. Thus, according
to our distance-based aggregation rule, the outcome will be the admissible valuation (1, 0, 0)
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Figure 7: Distances

as α is closest to the (1, 0, 0) vertex. However, this can also be seen as switching the valua-
tion on the issue which is closest to the 50-50 threshold, which - in x(p) - is obviously issue
2.

6 Conclusion

In this paper we have shown how geometry can be used to analyse results in judgment
aggregation, such as majority inconsistencies and distance based aggregation rules, and to
determine new results such as guaranteeing majority consistency via restrictions on distri-
butions of individual valuations and determining the likelihood of inconsistencies.

Most of the stated results do not easily extend to more than three issues because of
problems of dimensionality. E.g. an agenda with three propositions and their conjunction,
like {p, q, r, p ∧ q ∧ r}, leads to eight admissible valuations, i.e. eight vertices out of the 16
vertices in the four-dimensional hypercube. The extensions of our (domain) restrictions and
calculations of the likelihood of the occurrence of paradoxes to those higher dimensions are
not obvious and need further work.
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