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Abstract

Knuth [14] asked whether the stable matching problem can be generalised to three
dimensions i. e., for families containing a man, a woman and a dog. Subsequently,
several authors considered the three-sided stable matching problem with cyclic pref-
erences, where men care only about women, women only about dogs, and dogs only
about men. In this paper we prove that if the preference lists may be incomplete,
then the problem of deciding whether a stable matching exists, given an instance of
three-sided stable matching problem with cyclic preferences is NP-complete. Con-
sidering an alternative stability criterion, strong stability, we show that the problem
is NP-complete even for complete lists. These problems can be regarded as special
types of stable exchange problems, therefore these results have relevance in some
real applications, such as kidney exchange programs.

1 Introduction

An instance of the Stable Marriage problem (SM) comprises a set of n men a1, . . . , an and
a set of n women b1, . . . , bn. Each person has a complete preference list consisting of the
members of the opposite sex. If bj precedes bk on ai’s list then ai is said to prefer bj to bk.
The problem is to find a matching that is stable in the sense that no man and woman both
prefer each other to their current partner in the matching. The Stable Marriage problem
was introduced by Gale and Shapley [9]. They constructed a linear time algorithm that
always finds a stable matching for an SM instance.

Considering the Stable Marriage problem with Incomplete Lists (SMI), the only differ-
ence is that the numbers of men and women are not necessarily equal and each preference
list consist of a subset of the members of the opposite sex, i.e., each person lists his or
her acceptable partners. Here, a matching M is a set of acceptable pairs, and M is stable
if for every pair (ai, bj) /∈ M, either ai prefers his matching partner M(ai) to bj or bj

prefers her matching partner M(bj) to ai. We can model this problem by a bipartite graph
G = (A ∪ B, E), where the sets of vertices, A and B, correspond to the sets of men and
women, respectively, and the set of edges, E represents the acceptable pairs. An extended
version of the Gale–Shapley algorithm always produces a stable matching for this setting
too.

In an instance of the Stable Marriage problem with Ties and Incomplete Lists (SMTI) it
is possible that an agent is indifferent between some acceptable agents from the opposite set;
in such a case, these agents appear together in a tie in the preference list. Here, a matching
M is stable if there is no blocking pair (ai, bj) /∈ M such that ai is either unmatched or
prefers bj to M(ai), and simultaneously bj is either unmatched or prefers ai to M(bj).
Manlove et al. [15] proved that the problem of finding a stable matching of maximum
cardinality for an instance of SMTI, the so-called MAX SMTI problem, is NP-hard.

The Three-Dimensional Stable Matching problem (3DSM), also referred to as the Three
Gender Stable Marriage problem, was introduced by Knuth [14]. Here, we have three sets
of agents: men, women and dogs, say, and each agent has preference over all pairs from
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the two other sets. A matching is a set of disjoint families i.e., triples of the form (man,
woman, dog). A matching is stable if there exists no blocking family that is preferred by all
its members to their current families in the matching.

Alkan [2] gave the first example of an instance of 3DSM where no stable matching exists.
Ng and Hirschberg [17] proved that the problem of deciding whether a stable matching exists,
given an instance of 3DSM, is NP-complete; later Subramanian [26] gave an alternative proof
for this. Recently, Huang [10] proved that the problem remains NP-complete even if the
preference lists are “consistent”. (A preference list is inconsistent if, for example, man m
ranks (w1, d1) higher than (w2, d1), but he also ranks (w2, d2) higher than (w1, d2), so he
does not consistently prefer woman w1 to woman w2.)

As an open problem, Ng and Hirschberg [17] mentioned the cyclic 3DSM, defined formally
in Section 2, where men only care about women, women only care about dogs and dogs only
care about men. Boros et al. [5] showed that if the number of agents n, is at most 3 in every
set, then a stable matching always exists. Eriksson et al. [8] proved that this also holds for
n = 4 and conjectured that a stable matching exists for every instance of cyclic 3DSM.

In Section 2, we study the cyclic 3DSM problem with Incomplete Lists (cyclic 3DSMI).
Here, each preference list may consist of a subset of the members of the next gender, i.e. his,
her or its acceptable partners, and the cardinalities of the sets are not necessarily the same,
a matching is a set of acceptable families. Thus cyclic 3DSMI is obtained via a natural
generalisation of cyclic 3DSM in a way analogous to the extension SMI of SM. First we give
an instance of cyclic 3DSMI for n = 6 where no stable matching exists. Then, by using
this instance as a gadget, we show that the problem of deciding whether a stable matching
exists in an instance of cyclic 3DSMI is NP-complete. We reduce from max smti.

In Section 3, we study the cyclic 3DSM problem under strong stability. A matching is
strongly stable if there exists no weakly blocking family. This is a family not in the matching
that is weakly preferred by all its members (i.e. no member prefers his original family to
the new blocking family). We show that the problem of deciding whether a strongly stable
matching exists in an instance of cyclic 3DSM is NP-complete.

In Section 4, we describe the correspondence between the cyclic 3DSMI problem and the
so-called stable exchange problem with restrictions, defined in Section 4. More precisely, we
show that the 3-way stable 3-way exchange problem for tripartite cyclic graphs is equivalent
to cyclic 3DSMI. Therefore, the complexity result for cyclic 3DSMI applies also to the 3-
way stable 3-way exchange problem, which is an important model for the kidney exchange
problem (this application is described in further detail in Section 4).

We remark that all of these problems (namely, SM, SMI, 3DSM, 3DSMI, cyclic 3DSM
and cyclic 3DSMI) can be considered as special coalition formation games, where the notion
of a stable matching is equivalent to the notion of a core element in the corresponding NTU-
game. Those games, where the set of basic coalitions contain all singletons (i.e. where every
player has the right not to cooperate with the others) correspond to the stable matching
problems with incomplete lists. See more about this correspondence in [3].

2 Cyclic 3DSMI is NP-complete

Problem definition

We consider three sets of agents: M , W , D (men, women and dogs). Every man has a strict
preference list over the women that are acceptable to him. Analogously, every woman has a
strict preference list over her acceptable dogs, and every dog has a strict preference list over
its acceptable men. The list of an agent x is denoted by P (x). A matching F is a set of
disjoint families, i.e., triples from M ×W ×D, such that for each family (m, w, d) ∈ F , w is
acceptable to m, d is acceptable to w and m is acceptable to d. Formally, if (m, w, d) ∈ F ,
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then we say that F(m) = w, F(w) = d and F(d) = m, thus in a matching, F(x) ∈ P (x)∪{x}
holds for every agent x, where F(x) = x means that agent x is unmatched in F . Note that
agent x prefers y to being unmatched if y ∈ P (x).

A matching F is said to be stable if there exists no blocking family, that is a triple
(m, w, d) /∈ F such that m prefers w to F(m), w prefers d to F(w) and d prefers m to F(d).

We define the underlying directed graph DI = (V, A) of an instance I of cyclic 3DSMI
as follows. The vertices of DI correspond to the agents, so V (DI) = M ∪ W ∪ D, and
we have an arc (x, y) in DI if y ∈ P (x). This type of directed graph where A(DI) ⊆
(M ×W ) ∪ (W ×D) ∪ (D ×M) is called a tripartite cyclic digraph. Therefore, a matching
of I corresponds to a disjoint packing of directed 3-cycles in DI .

An unsolvable instance of cyclic 3DSMI

We give an instance of cyclic 3DSMI with n = 6, denoted by R6, where no stable matching
exists.

Example 1. The preference lists and underlying graph of R6 are as shown below. Here,
the thickness of arrows correspond to preferences.

m1 : w1, w
′
1 w1 : d1, d

′
1 d1 : m2, m

′
2

m2 : w2, w
′
2 w2 : d2, d

′
2 d2 : m3, m

′
3

m3 : w3, w
′
3 w3 : d3, d

′
3 d3 : m1, m

′
1

m′
1 : w3 w′

1 : d3 d′1 : m1

m′
2 : w1 w′

2 : d1 d′2 : m2

m′
3 : w2 w′

3 : d2 d′3 : m3

w3

m′
2

d′
2

m′
3

w′
3

d′
3

m′
1 m1

w1

d1

m2

w2

m3

d3

w′
1

d′
1

w′
2

d2

We refer to the agents {mi, wi, di : 1 ≤ i ≤ 3} = I as the inner agents of R6 and the
agents {m′

i, w
′
i, d

′
i : 1 ≤ i ≤ 3} = O as the outer agents of R6.

Lemma 1. The instance R6 of cyclic 3DSMI admits no stable matching.

Proof. By inspection of the underlying graph of R6, we can observe that the only accept-
able families are of the form (mi, w

′
i, di−1), (mi, wi, d

′
i) and (m′

i, wi−1, di−1), so that any
acceptable family contains exactly two inner agents. It is clear that for any matching F , it
must be the case that at least one inner agent is unmatched in F . By the symmetry of the
instance we may suppose without loss of generality that the inner agent m1 is unmatched
in F . Then, the family (m1, w

′
1, d3) is a blocking family for F .

We note that the 9 acceptable families of R6 have a natural cyclic order, the same order
that the directed 9-cycle has which is formed by the 9 inner agents in the underlying graph,
such that if an acceptable family is not in a stable matching F then the successor family
must be in F . For example, if (m1, w1, d

′
1) /∈ F then (m′

2, w1, d1) ∈ F , since (m1, w1, d
′
1)

would be blocking otherwise. This argument gives an alternative proof for the above Lemma.
The instance created by removing the inner agent m1 from R6, denoted by R6 \m1, be-

comes solvable, since F∗ = {(m′
2, w1, d1), (m2, w2, d

′
2), (m3, w

′
3, d2), (m′

1, w3, d3)} is a stable
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matching for R6 \m1. In fact, F∗ is the unique stable matching for R6 \m1, so we denote
it by FR6\m1 . This is because in R6 \m1 we have 7 acceptable families in a row with the
property discussed above: if an acceptable family is not in a stable matching F then the
subsequent family must be in F . We state this claim formally below; its proof follows from
the symmetry of the instance.

Lemma 2. Let ai be an inner agent of R6. Then, R6 \ ai admits a unique stable matching,
denoted by FR6\ai

.

The instance R6 will also be of use to us as a gadget in the NP-completeness proofs of
the subsequent sections.

The NP-completeness proof

In [15], Manlove et al. proved that determining if an instance of SMTI admits a complete
stable matching is NP-complete, even if the ties appear only on the women’s side, and each
woman’s preference list is either strictly ordered or consists entirely of a tie of size two (these
conditions holding simultaneously).

We refer to the MAX SMTI problem under the above restrictions as Restricted SMTI.
The underlying graph G = (A∪B, E) of a Restricted SMTI instance is such that the set A =
{a1, a2, . . . , an} consists of men ai, all of whom have strictly ordered preference lists, while
the set B of women can be partitioned into two sets B1 ∪B2 = {b1, . . . , bn1}∪ {bT

1 , . . . , bT
n2
}

where n1 + n2 = n, each woman bj ∈ B1 has a strictly ordered preference list, and each
woman bT

j ∈ B2 has a preference list consisting solely of a tie of length 2. We denote a

woman who can either be a member of B1 or B2 by b
(T )
i .

In the remainder of this section we describe a polynomial-time reduction from Restricted
SMTI to cyclic 3DSMI. Let I be an instance of Restricted SMTI with the underlying graph
G = (A ∪ B, E). We construct an instance I ′ of cyclic 3DSMI with sets M , W , and D of
men, women, and dogs as follows.

The sets of men and women of I ′ are created in direct correspondence to the men and
women in I, so let M = {m1, . . . , mn} and W = W1 ∪W2 = {w1, . . . , wn1}∪{wT

1 , . . . , wT
n2
}.

The set of dogs of I ′ consists of two parts D1 ∪D2 = D, defined by creating a dog dj,i in
D1 if ai ∈ P (bj), and creating a dog dT

j in D2 if bT
j ∈ B2.

Let us now describe the construction of the strictly ordered preference lists of I ′. We let
P (x)[l] denote the lth entry in agent x’s preference list, and a tie in the preference list of
an agent is indicated by parentheses. The preference lists of I ′ are defined by the following
cases:

1. If P (ai)[l] = b
(T )
j then let P (mi)[l] = w

(T )
j (1 ≤ l ≤ r, where r is the length of ai’s

list).

2. If P (bj)[l] = ai then let P (wj)[l] = dj,i and P (dj,i) = mi (1 ≤ l ≤ r, where r is the
length of bj’s list).

3. If P (bT
j ) = (ap, aq) then let P (wT

j ) = dT
j and P (dT

j ) = mpmq (in arbitrary order).

This is the proper part of the instance. Next we construct the additional part of the
instance by creating n = |M | copies of R6, such that the t-th copy of R6 consists of inner
agents {mti , wti , dti : 1 ≤ i ≤ 3} and outer agents {m′

ti
, w′

ti
, d′ti

: 1 ≤ i ≤ 3} with preference
lists as described in Example 1. We add these n copies of R6 to the instance in the following
way. In the t-th added copy of R6, denoted by R6t, replace the inner agent mt1 in R6t with
man mt ∈ M by replacing each occurrence of mt1 in the preference lists of each agent in
R6t with mt. Also, let mt1 ’s acceptable partners in R6t, namely wt1 and w′

t1 be appended
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in this order to the end of mt’s list. The final preference list of man mt along with R6t is
shown below. The portion of mt’s preference list consisting of women from the proper part
of the instance is denoted by Pt.

mt : Pt wt1 w′
t1

mt2 : wt2 w′
t2

mt3 : wt3 w′
t3

m′
t1 : wt3

m′
t2 : wt1

m′
t3 : wt2

wt1 : dt1 d′t1
wt2 : dt2 d′t2
wt3 : dt3 d′t3
w′

t1 : dt3

w′
t2 : dt1

w′
t3 : dt2

dt1 : mt2 m′
t2

dt2 : mt3 m′
t3

dt3 : mt m′
t1

d′t1 : mt

d′t2 : mt2

d′t3 : mt3

This ends the reduction, which plainly can be computed in polynomial time. Now, we
prove that there is a one-to-one correspondence between the complete stable matchings in
I and the stable matchings in I ′.

First we show that there is a one-to-one correspondence between the matchings of I and
the matchings in the proper part of I ′. This comes from the natural one-to-one correspon-
dence between the edges of I and the families in the proper part of I ′. More precisely, if M
is a matching in I, then the corresponding matching Fp in the proper part of I is created as
follows: (ai, bj) ∈ M ⇐⇒ (mi, wj , dj,i) ∈ Fp and (ai, b

T
j ) ∈ M ⇐⇒ (mi, w

T
j , dT

j ) ∈ Fp.
To prove this, it is enough to observe that two edges in I are disjoint if and only if the two
corresponding families in I ′ are also disjoint. Next, we show that stability is preserved by
this correspondence.

Lemma 3. A matching M of I is stable if and only if the corresponding matching Fp in
the proper part of I ′ is stable.

Proof. It is enough to show that an edge (ai, bj) is blocking in I if and only if the corre-
sponding family (mi, wj , dj,i) is also blocking in I ′; and similarly, an edge (ai, b

T
j ) is blocking

in I if and only if the corresponding family (mi, w
T
j , dT

j ) is also blocking in I ′.
Suppose first that (ai, bj) is blocking in I, which means that ai is either unmatched

or prefers bj to M(ai) and bj is either unmatched or prefers ai to M(bj). This implies
that mi prefers wj to Fp(mi), wj prefers dj,i to M(wj), and dj,i is unmatched in Fp, i.e.
(mi, wj , dj,i) is blocking in I ′. Similarly, if (ai, b

T
j ) is blocking then ai is either unmatched

or prefers bT
j to M(ai) and bT

j is unmatched in M. This implies that mi prefers wT
j to

Fp(mi), wT
j and dT

j are both unmatched in Fp, and hence (mi, w
T
j , dT

j ) is blocking in I ′.
In the other direction, if (mi, wj , dj,i) is blocking in I ′, then mi prefers wj to Fp(mi),

wj prefers dj,i to Fp(wj), and dj,i is unmatched in Fp. This implies that ai is either
unmatched or prefers bj to M(ai) and bj is either unmatched or prefers ai to M(bj), so
(ai, bj) is blocking in I. Similarly, if (mi, w

T
j , dT

j ) is blocking in I ′, then wT
j and dT

j are both
unmatched in Fp and mi prefers wT

j to Fp(mi). This implies that ai is either unmatched
or prefers bT

j to M(ai) and bT
j is unmatched in M, so (ai, b

T
j ) is blocking in I.

Furthermore, if the matching M is complete, then we can enlarge the corresponding
matching to the additional part of I ′ by matching every R6t \mt in the unique stable way,
so by adding FR6t\mt

to Fp for every t. This leads to the following one-to-one correspondence
between the complete stable matchings of I and the stable matching of I ′.

Lemma 4. The instance I admits a complete stable matching M if and only if the reduced
instance I ′ admits a stable matching F , where F is the corresponding matching of M.
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Proof. The stability of M implies that F is stable in the proper part of I ′ by Lemma 3.
The completeness of M and Lemma 2 implies that F is also stable in the additional part
of I ′.

In the other direction, if F is stable then every man in M must be matched in a proper
family, since otherwise, if a proper man mt does not have a proper partner in F then
R6t would contain a blocking family, by Lemma 1. This implies that the corresponding
matching M, defined in Lemma 3, is complete. The stability of M is a consequence of
Lemma 3. Finally, we note that the additional part has a unique stable matching, since
every R6t \ at must be matched in the unique stable way indicated by Lemma 2, which
implies the one-to-one correspondence.

The following Theorem is a direct consequence of Lemma 4.

Theorem 1. Determining the existence of a stable matching in a given instance of cyclic
3DSMI is NP-complete.

3 Cyclic 3DSM under strong stability is NP-complete

Problem definition

For an instance of cyclic 3DSM, a matching F is strongly stable if there exists no weakly
blocking family, that is a family (m, w, d) /∈ F such that m prefers w to F(m) or w = F(m),
w prefers d to F(w) or d = F(w), and d prefers m to F(d) or m = F(d). We note that in a
weakly blocking family at least two members obtain a better partner, since the preference
lists are strictly ordered.

An unsolvable instance

We firstly show that, by completing the preference lists of R6 in an arbitrary way (i.e. by
appending agents not on the lists in an arbitrary order to the tail of the original lists),
the resulting instance of cyclic 3DSM, denoted by R6, does not admit any strongly stable
matching. The subinstance R6 of R6 is called the suitable part of R6, the original entries
of an agent x in R6 are the suitable partners of x and the families of R6 are called suitable
families.

Lemma 5. The instance R6 of cyclic 3DSM admits no strongly stable matching.

Proof. Suppose for contradiction that F is a strongly stable matching. As the 9 inner agents
form a 9-cycle in the underlying directed graph, the 9 suitable families have a natural
cyclic order. We show that if a suitable family, say (m1, w1, d

′
1) is not in F , then the

successor suitable family (m′
2, w1, d1) must be in F , which would imply a contradiction given

that the number of these suitable families is odd. If (m1, w1, d
′
1) /∈ F then F(w1) = d1,

since otherwise (m1, w1, d
′
1) would be weakly blocking. Similarly, (m′

2, w1, d1) /∈ F implies
F(d1) = m2. But this means that (m2, w1, d1) ∈ F , so (m2, w

′
2, d1) is weakly blocking.

Recall that FR6\at
is the unique stable matching for R6 \ at. Let R6 \ at denote the

instance created by removing an inner agent at from R6. We denote by CR6\at
the subset

of agents of R6 \ at that are covered by FR6\at
, and by UR6\at

those who are uncovered by
FR6\at

, respectively.

Lemma 6. Let at be an inner agent of R6. For every matching F∗ ⊇ FR6\at
of R6 \at, no

suitable family can be weakly blocking, and therefore no agent from CR6\at
can be involved

in a weakly blocking family. For any other matching, at least one suitable family is weakly
blocking.
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Proof. It is straightforward to verify that FR6\at
is a strongly stable matching for R6 \ at,

so no suitable family in R6 \ at can weakly block F∗ ⊇ FR6\at
. Moreover, no agent x of

CR6\at
can be involved in a non-suitable weakly blocking family either, since x has a suitable

partner in F∗.
Suppose that F ′ is a matching of R6 \ at which is not a superset of FR6\at

. As in the
proof of Lemma 5, we use the fact that if a suitable family is not in F ′, then the successor
suitable family is either in F ′ or weakly blocking. Therefore, if we do not include four
from the seven suitable families of R6 \ at in a matching then one of them would be weakly
blocking.

The NP-completeness proof

The reduction we describe in this section again begins with an instance of Restricted SMTI,
only we assume without loss of generality the role of the men and women of the instance
to be “reversed”. To be precise, we assume a given instance of Restricted SMTI I that
its vertex set ((A1 ∪ A2) ∪ B) consists of a set A1 = {a1, a2, . . . , an1} of men with strictly
ordered preference lists, and A2 = {aT

1 , aT
2 , . . . , aT

n2
} of men with preference lists consisting

of a single tie of length 2, and n1 + n2 = n. The set B = {b1, b2, . . . , bn} consists entirely of
women with strictly ordered preference lists.

Given an instance I of Restricted SMTI as defined above, we create an instance I ′ of
cyclic 3DSM. First we create a proper instance I ′p of cyclic 3DSMI as a subinstance of I ′

with agents Mp ∪Wp ∪Dp in the following way.
First we create a set Wp of n women {w1, w2, . . . , wn} such that the preference list of

woman wj is a single entry, dog dj ∈ Dp. The preference list of dj is such that if P (bj)[l] = ai,
then P (dj)[l] = mi, otherwise if P (bj)[l] = aT

i , then P (dj)[l] = m′
i,j for 1 ≤ l ≤ r, where r

is the length of bj ’s list. So the preference list of dog dj is essentially the “same” as that of
woman bj, only with men in Mp rather than A.

For each man ai ∈ A1, create a man mi ∈ Mp, such that if P (ai)[l] = bj , then let
P (mi)[l] = wj for 1 ≤ l ≤ r, where r is the length of ai’s list. So the preference list
of man mi is essentially the “same” as that of man ai. For each man aT

i ∈ A2, with
a preference list consisting of a single tie of length two, say (br, bs), we create five men
mT

i , m′
i,r, m

′′
i,r, m

′
i,s, m

′′
i,s, four women w′

i,r, w
′′
i,r , w

′
i,s, w

′′
i,s and four dogs d′i,r, d

′′
i,r, d

′
i,s, d

′′
i,s

where the preference list of mT
i contains w′

i,r and w′
i,s in an arbitrary order, and the other

preference lists are as shown below.

m′
i,r : w′

i,r wr

m′′
i,r : w′′

i,r

m′
i,s : w′

i,s ws

m′′
i,s : w′′

i,s

w′
i,r : d′i,r d′′i,r

w′′
i,r : d′′i,r d′i,r

w′
i,s : d′i,s d′′i,s

w′′
i,s : d′′i,s d′i,s

d′i,r : m′′
i,r mT

i

d′′i,r : m′
i,r m′′

i,r

d′i,s : m′′
i,s mT

i

d′′i,s : m′
i,s m′′

i,s

We also add these agents to Mp, Wp and Dp, respectively. Note that in I ′p every set of
agents has the same cardinality: np = |Mp| = |Wp| = |Dp| = n+4n2. The notions of proper
agent, proper partner and proper family are defined in the obvious way.

The additional part of instance I ′ contains three subinstances. The suitable part of
I ′ is the disjoint union of 3np copies of R6, such that the ith copy of R6, denoted R6i,
incorporates the ith agent of I ′p, as described in the previous reduction in the proof of
Theorem 1 (we omit the full description of this process again). The new agents are referred
to as additional agents.
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Let Fs = ∪i∈{1,...3np}FR6i\ai
be the so-called suitable matching of the additional part,

where ai is the proper agent of R6i. We call the set C = ∪i∈{1,...3np}CR6i\ai
covered

additional agents, as these additional agents are covered by Fs, and we call the set U =
∪i∈{1,...3np}UR6i\ai

uncovered additional agents, as these additional agents are not covered
by Fs.

The fitting part of I ′ is constructed on U as follows. Note that U has equal numbers
of men, women and dogs. The fitting part consists of disjoint families that covers U , so
that every agent has exactly one agent in his/her/its list, i.e. the fitting part is a complete
matching of U , denoted by Ff .

Finally, the dummy part is obtained by an arbitrary extension of the preference lists, so
that by putting together the four subinstances, the proper and the three additional parts,
we get the complete instance I ′. The preferences of the agents over the partners in different
parts respect the order in which we defined these parts: the list of a proper agent contains
the proper partners first, then the suitable partners, and finally the dummy partners; the list
of a covered additional agent contains the suitable partners first, then the dummy partners;
the list of an uncovered additional agent contains the suitable partners first, then the fitting
partner, and finally the dummy partners.

First we show that there is a one-to-one correspondence between the complete stable
matchings of I and the complete strongly stable matchings of I ′p. The stability is pre-
served via the following one-to-one correspondence between the complete matchings of I
and complete matchings of I ′:

(ai, bj) ∈M ⇐⇒ (mi, wj , dj) ∈ Fp

(aT
i , bs) ∈ M ⇐⇒ (mT

i , w′
i,s, d

′
i,s), (m

′′
i,s, w

′′
i,s, d

′′
i,s), (m

′
i,s, ws, ds) ∈ Fp

(aT
i , bs) /∈ M ⇐⇒ (m′

i,s, w
′
i,s, d

′′
i,s), (m

′′
i,s, w

′′
i,s, d

′
i,s) ∈ Fp

Lemma 7. A complete matching M of I is stable if and only if the corresponding complete
matching Fp of I ′p is strongly stable.

Proof. As a man aT
i cannot belong to a blocking pair in I, it may be verified that his

corresponding copy mT
i cannot belong to a weakly blocking family in Ip either. Therefore,

it is enough to show that a pair (ai, bj) is blocking for M if and only if the corresponding
family (mi, wj , dj) is blocking for Fp. But this is obvious, because the preference lists of ai

and mi are essentially the same, and the preference lists of bj and dj are also essentially the
same.

Now, given a matching M of I let us create the corresponding matching F of I ′ by
adding Fs and Ff to Fp, so F = Fp ∪ Fs ∪ Ff .

Lemma 8. The instance I admits a complete stable matching M if and only if the reduced
instance I ′ admits a strongly stable matching F , where F is the corresponding matching of
M.

Proof. Suppose that we have a complete stable matchingM of I, and F is the corresponding
matching in I ′. Lemma 7 implies that every proper agent has a proper partner in F and
no proper family is weakly blocking. Therefore, no proper agent can be involved in any
weakly blocking family either. By construction of Fs, every covered additional agent has a
suitable partner in F and by Lemma 6, no suitable family is weakly blocking. Therefore, no
such agent can be part of any weakly blocking family. Finally, every uncovered additional
agent has a fitting partner in F , so these agent cannot form a weakly blocking family either,
since an uncovered additional agent prefers only suitable partners to fitting partners, which
cannot be involved in a weakly blocking family. Hence F is strongly stable.
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In the other direction, suppose that F is a strongly stable matching of I ′. Every proper
agent must have a proper partner, since otherwise if at had no proper partner in F , then
R6t would contain a suitable weakly blocking family by Lemma 5. So the corresponding
matching M in I is complete. The stability of M is a consequence of Lemma 7. Finally,
we note that the additional agents must be matched in the unique strongly stable way in
F , namely, the covered additional agents must be covered by matching Fs by Lemma 6,
and the uncovered additional agents must be covered by Ff , since otherwise a fitting family
would weakly block F . Therefore, we have a one-to-one correspondence as was claimed.

Theorem 2. Determining the existence of a strongly stable matching in a given instance
of cyclic 3DSM is NP-complete.

4 Stable exchanges with restrictions

Problem definition

Given a simple digraph D = (V, A), where V is the set of agents, suppose that each agent
has exactly one indivisible good, and (i, j) ∈ A if the good of agent j is suitable for agent i.
An exchange is a permutation π of V such that, for each i ∈ V , i 6= π(i) implies (i, π(i)) ∈ A.
Alternatively, an exchange can be considered as a disjoint packing of directed cycles in D.

Let each agent have strict preferences over the goods, that are suitable for him. These
orderings can be represented by preference lists. In an exchange π, the agent i receives the
good of his successor, π(i); therefore the agent i prefers an exchange π to another exchange
σ if he prefers π(i) to σ(i). An exchange π is stable if there is no blocking coalition B, i.e.
a set B of agents and a permutation σ of B where every agent i ∈ B prefers σ to π. An
exchange is strongly stable is there exists no weakly blocking coalition B with a permutation
σ of B where for every agent i ∈ B, either σ(i) = π(i) or i prefers σ to π, and σ(i) 6= π(i)
for at least one agent i ∈ B.

Complexity results about stable exchanges

Shapley and Scarf [25] showed that the stable exchange problem is always solvable and a
stable exchange can be found in polynomial time by the Top Trading Cycle (TTC) algorithm,
proposed by Gale. Moreover, Roth and Postlewaite [18] proved that the exchange obtained
by the TTC algorithm is strongly stable and this is the only such solution. We note that
they considered this problem as a so-called houseswapping game, where a core element
corresponds to a stable solution. (For further details about these connections with Game
Theory, see [3].)

In some applications the length of the possible cycles is bounded by some constant l.
In this case we consider an l-way exchange problem. Furthermore, the size of the possible
blocking coalitions can also be restricted. We say that an exchange is b-way stable if there
exists no blocking coalition of size at most b. Because of some applications, the most relevant
problems are for constants 2 and 3. Henceforth we also refer to “2-way” as “pairwise” in the
context of cycle lengths and blocking coalitions sizes. We remark that if b = l then a stable
exchange corresponds to a core-solution of some related NTU-game, because the possible
coalitions, those that can form and those that can block, are the same (see [3] for details).

For l = b = 2, the pairwise stable pairwise exchange problem is in fact, equivalent to
the stable roommates problem. Therefore, a stable solution may not exist [9], but there is a
polynomial-time algorithm that finds a stable solution if one does exist [11] or reports that
none exists. For l = b = 3, the 3-way stable 3-way exchange problem is NP-hard, even for
three-sided directed graphs, as is stated by the following theorem.
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Theorem 3. The 3-way stable 3-way exchange problem for tripartite directed graphs is
equivalent to the cyclic 3DSMI problem, and is therefore NP-complete.

Finally, we note that Irving [12] proved recently that the stable pairwise exchange and the
3-way stable pairwise exchange problems are NP-hard. The pairwise stable 3-way exchange
problem is open. This particular problem can be a relevant regarding the application of
kidney exchanges, next described.

Kidney exchange problem

Living donation is the most effective treatment that is currently known for kidney failure.
However a patient who requires a transplant may have a willing donor who cannot donate
to them for immunological reasons. So these incompatible patient-donor pairs may want to
exchange kidneys with other pairs. Kidney exchange programs have already been established
in several countries such as the Netherlands [13] and the USA [20].

In most of the current programs the goal is to maximise the number of patients that
receive a suitable kidney in the exchange [21, 22, 23, 1] by regarding only the eligibility of
the grafts. Some more sophisticated variants consider also the difference between suitable
kidneys. Sometimes the “total benefit” is maximised [24], whilst other models [19, 6, 7, 4]
require first the stability of the solution under various criteria.

The length of the cycles in the exchanges is bounded in the current programs, because
all operations along a cycle have to be carried out simultaneously. Most programs allow
only pairwise exchanges. But sometimes 3-way exchanges are also possible, like in the New
England Program [16] and in the National Matching Scheme of the UK [27]2. In these kind
of applications, if one considers stability as the first priority of the solution, then we obtain
a 3-way stable 3-way exchange problem, where the incompatible patient-donor pairs are
the agents and their preferences are determined according to the special parameters of the
suitable kidneys.

Finally, we remark that although the induced digraph of a real kidney exchange instance
may have special properties (see e.g. [22] about the effect of the blood-types on the digraph)
the problem remains hard, even for realistic situations. For example, if we have three sets
of patient-donor pairs with blood types O-A, A-B and B-O, then the digraph may appear
to be tripartite. But this particular case of the 3-way stable 3-way exchange problem is also
hard by Theorem 3.

5 Further questions

For cyclic 3DSMI, the smallest instance that admits no stable matching given here satisfies
n = 6. Is there an even smaller counterexample? In the case of strong stability, we are
aware of instances of cyclic 3DSM for n = 4 that admit no strongly stable matching.

The main questions that remain unsolved are (i) whether there exists an instance of
cyclic 3DSM that admits no stable matching, and (ii) whether there is a polynomial-time
algorithm to find such a matching or report that none exists, given an instance of cyclic
3DSM.

23-way exchanges may be also allowed in the national program of the USA (as it is declared to be a goal
of the system in the future in the Proposal for National Paired Donation Program [28]).
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the opportunity of live kidney donation by matching for two and three way exchanges.
Transplantation, 81(5):773–782, 2006.

[24] S. L. Segev, S. E. Gentry, D. S. Warren, B. Reeb, and R. A. Montgomery. Kidney
paired donation and optimizing the use of live donor organs. J. Am. Med. Assoc.,
293:1883–1890, 2005.

[25] L. S. Shapley and H. E. Scarf. On cores and indivisibility. J. Math. Econom., 1(1):23–37,
1974.

[26] A. Subramanian. A new approach to stable matching problems. SIAM Journal on
Computing, 23(4):671–700, 1994.

[27] UK Transplant. http://www.uktransplant.org.uk.

[28] United Network for Organ Sharing. http://www.unos.org.
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