
Alternatives to Truthfulness are Hard to

Recognize

Vincenzo Auletta, Paolo Penna, Giuseppe Persiano and Carmine Ventre

Abstract

The central question in mechanism design is how to implement a given social choice
function. One of the most studied concepts is that of truthful implementations in
which truth-telling is always the best response of the players. The Revelation Princi-
ple says that one can focus on truthful implementations without loss of generality (if
there is no truthful implementation then there is no implementation at all). Green
and Laffont [1] showed that, in the scenario in which players’ responses can be par-
tially verified, the revelation principle holds only in some particular cases.
When the Revelation Principle does not hold, non-truthful implementations become
interesting since they might be the only way to implement a social choice function
of interest. In this work we show that, although non-truthful implementations may
exist, they are hard to find. Namely, it is NP-hard to decide if a given social choice
function can be implemented in a non-truthful manner, or even if it can be imple-
mented at all. This is in contrast to the fact that truthful implementability can be
recognized efficiently, even when partial verification of the agents is allowed. Our
results also show that there is no “simple” characterization of those social choice
functions for which it is worth looking for non-truthful implementations.

49



1 Introduction

Social choice theory deals with the fact that individuals (agents) have different preferences
over the set of possible alternatives or outcomes. A social choice function maps these
preferences into a particular outcome, which is not necessarily the one preferred by the
agents. The main difficulty in implementing a social choice function stems from the fact
that agents can misreport their preferences. Intuitively speaking, a social choice function
can be implemented if there is a method for selecting the desired outcome which cannot
be manipulated by rational agents. By ‘desired outcome’ we mean the one specified by the
social choice function applied to the true agents’ preferences.

More precisely, each agent has a type which specifies the utility he derives if some outcome
is selected. When agents are also endowed with payments, we consider agents with quasi
linear utility: the type specifies the gross utility and the agent’s utility is the sum of gross
utility and payment received. In either case, a rational agent reports a type so to maximize
his own utility and the reported type must belong to a domain consisting of all possible
types. In the case of partially verifiable information, the true type of an agent further
restricts the set of types that he can possibly report [1].

One of the most studied solution concepts is that of truthful implementations in which
agents always maximize their utilities by truthfully reporting their types. The Revelation
Principle says that one can focus on truthful implementations without loss of generality: A
social choice function is implementable if and only if it has a truthful implementation. Green
and Laffont [1] showed that, in the case of partially verifiable information, the Revelation
Principle holds only in some particular cases. When the Revelation Principle does not
hold, non-truthful implementations become interesting since they might be the only way
to implement a social choice function of interest. Although a non-truthful implementation
may induce some agent to misreport his type, given that he reports the type maximizing his
utility, it is still possible to compute the desired outcome “indirectly”. Singh and Wittman
[3] observed that the Revelation Principle fails in several interesting cases and show sufficient
conditions for the existence of non-truthful implementations.

1.1 Our contribution

In this work, we study the case in which the declaration of an agent can be partially verified.
We adopt the model of Green and Laffont [1] in which the ability to partially verify the
declaration of an agent is encoded by a correspondence function M : M(t) is the set of
the possible declarations of an agent of type t. Green and Laffont [1] characterized the
correspondences for which the Revelation Principle holds; that is, correspondences M for
which a social choice function is either truthfully implementable or not implementable at
all.

We show that although non-truthful implementations may exist, they are hard to find.
Namely, it is NP-hard to decide if a given social choice function can be implemented for
a given correspondence in a non-truthful manner. This is in contrast to the fact that it is
possible to efficiently decide whether a social choice function can be truthfully implemented
for a given correspondence. Our results show that there is no “simple” characterization
of those social choice functions that violate the Revelation Principle. These are the social
choice functions for which it is worth looking for non-truthful implementations since this
might be the only way to implement them.

We prove these negative results for a very restricted scenario in which we have only one
agent and at most two possible outcomes, and the given function does not have truthful
implementations. We give hardness proofs both for the case in which payments are not
allowed and the case in which payments are allowed and the agent has quasi linear utility.

50



In general payments are intended as a tool for enlarging the class of social choice functions
that can be implemented. We find that there is a rich class of correspondences for which it
is NP-hard to decide if a social choice function can be implemented without payments, while
for the same correspondences it is trivial to test truthful implementability with payments
via the approach in [3]. Finally, we complement our negative results by showing a class of
correspondences for which there is an efficient algorithm for deciding whether a social choice
function can be implemented.

We note that the characterization of Green and Laffont [1] has no direct implication
in our results. Indeed, the property characterizing the Revelation Principle can be tested
efficiently. Moreover, when the Revelation Principle does not hold, we only know that there
exists some social choice function which is only implemented in a non-truthful manner.
Hence, we do not know if the social choice function of interest can be implemented or not.
Note that this question can be answered efficiently when the Revelation Principle holds
since testing the existence of truthful implementations is computationally easy.

Road map. We introduce the model with partial verification by Green and Laffont [1] in
Section 2. The case with no payments is studied in Section 3. Section 4 presents our results
for the case in which payments are allowed and the agent has quasi linear utility. We draw
some conclusions in Section 5.

2 The Model

The model considered in this work is the one studied by Green and Laffont [1] who considered
the so called principal-agent scenario. Here there are two players: the agent, who has a type
t belonging to a domain D, and the principal who wants to compute a social choice function
f : D → O, where O is the set of possible outcomes. The quantity t(X) denotes the utility
that an agent of type t assigns to outcome X ∈ O.

The agent observes his type t ∈ D and then transmits some message t′ ∈ D to the
principal. The principal applies the outcome function g : D → O to t′ and obtains outcome
X = g(t′). We stress that the principal fixes the outcome function g in advance and then
the agent rationally reports t′ so to maximize his utility t(g(t′)). Even though the principal
does not exactly know the type of the agent, it is reasonable to assume that some partial
information on the type of the agent is available. Thus the agent is restricted to report a
type t′ in a set M(t) ⊆ D, which is specified by a correspondence function M : D → 2D. We
will only consider correspondences M(·) for which truth-telling is always an option; that is,
for all t ∈ D, t ∈ M(t). Notice that the case in which the principal has no information (no
verification is possible) corresponds to setting M(t) = D for all t.

Definition 1 ([1]) A mechanism (M, g) consists of a correspondence M : D → 2D and
an outcome function g : D → O. The outcome function g induces a best response rule
φg : D → D defined by φg(t) ∈ arg maxt′∈M(t){t(g(t′))}. If t ∈ arg maxt′∈M(t){t(g(t′))} then
we set φg(t) = t.

The correspondence M can be represented by a directed graph GM (which we call the
correspondence graph) defined as follows. Nodes of GM are types in the domain D and an
edge (t, t′), for t 6= t′, exists if and only if t′ ∈ M(t). We stress that the correspondence
graph of M does not contain self-loops, even though we only consider correspondences M
such that t ∈ M(t) for all t ∈ D. We will often identify the correspondence M with its
correspondence graph GM and say, for example, that a correspondence is acyclic meaning
that its correspondence graph is acyclic. Sometimes it is useful to consider a weighted
version of graph GM . Specifically, for a function g : D → O, we define GM,g to be the
weighted version of graph GM where edge (t, t′) has weight t(g(t))− t(g(t′)).

51



We study the class of M -implementable social choice functions f : D → O.

Definition 2 ([1]) An outcome function g : D → O M -implements social choice function
f : D → O if for all t ∈ D g(φg(t)) = f(t) where φg(·) is the best response rule induced by
g. A social choice function f : D → O is M -implementable if and only if there exists an
outcome function g : D → O that M -implements f .

The social choice functions that can be truthfully M -implemented are of particular
interest.

Definition 3 ([1]) An outcome function g : D → O truthfully M -implements social choice
function f : D → O if g M -implements f and φg(t) = t for all t ∈ D. A social choice
function f : D → O is truthfully M -implementable if and only if there exists an outcome
function g : D → O that truthfully M -implements f .

The classical notions of implementation and of truthful implementation are obtained by
setting M(t) = D for all t ∈ D. Actually in this case the two notions of implementable
social choice function and of truthfully implementable social choice function coincide due to
the well-known revelation principle.

Theorem 4 (The Revelation Principle) If no verification is possible (that is, M(t) =
D for all t ∈ D), a social choice function is implementable if and only if it is truthfully
implementable.

The Revelation Principle does not necessarily hold for the notion of M -implementation and
of truthful M -implementation. Green and Laffont [1] indeed give a necessary and sufficient
condition on M for the revelation principle to hold. More precisely, a correspondence M
satisfies the Nested Range Condition if the following holds: for any t1, t2, t3 ∈ D if t2 ∈ M(t1)
and t3 ∈ M(t2) then t3 ∈ M(t1).

Theorem 5 (Green-Laffont [1]) If M satisfies the NRC condition then a social choice
function f is M -implementable if and only if f is M -truthfully implementable. If M does
not satisfy the NRC condition then there exists an M -implementable social choice function
f that is not truthfully M -implementable.

Besides its conceptual beauty, the Revelation Principle can also be used in some cases
to decide whether a given social choice function f is M -implementable for a given corre-
spondence M . Indeed, if the Revelation Principle holds for correspondence M , the prob-
lem of deciding M -implementability is equivalent to the problem of deciding truthful M -
implementability which, in turn, can be efficiently decided.

Theorem 6 There exists an algorithm running in time polynomial in the size of the domain
that, given a social choice function f and a correspondence M , decides whether f is truthfully
M -implementable.

Proof. To test truthful M -implementability of f we consider graph GM,f where edge
(t, t′) has weight t(f(t)) − t(f(t′)). Then it is obvious that f is M -truthful implementable
if and only if no edge of GM,f has negative weight. 2

3 Hardness of the Implementability problem

In this section we prove that the following problem is NP-hard.

52



Problem 1 The Implementability problem is defined as follows.
Input: domain D, outcome set O, social choice function f : D → O and correspondence

M .
Task: decide whether there exists an outcome function g that M -implements f .

The following lemma, whose proof is immediate, gives sufficient conditions for an outcome
function g to M -implement social choice function f .

Lemma 7 For outcomes O = {T, F}, if the following conditions are satisfied for all a ∈ D
then outcome function g M -implements social choice function f .

1. If f(a) = T and a(T ) < a(F ) then, for all v ∈ M(a), we have g(v) = T .

2. If f(a) = F and a(T ) < a(F ) then, there exists v ∈ M(a) such that g(v) = F .

3. If f(a) = T and a(T ) > a(F ) then, there exists v ∈ M(a) such that g(v) = T .

4. If f(a) = F and a(T ) > a(F ) then, for all v ∈ M(a), we have g(v) = F .

The reduction. We reduce from 3SAT. Let Φ a Boolean formula in 3-CNF over the
variables x1, · · · , xn and let C1, · · · , Cm be the clauses of Φ. We construct D, O, M and
f : D → O such that f is M -implementable if and only if Φ is satisfiable. We setO = {T, F}.
We next construct a correspondence graph GM representing M . We will use variable gadgets
(one per variable) and clause gadgets (one per clause).

z2
i

...

...

T

TT

TT F

from clause-gadgets

from clause-gadgets

ti ui

wi

vi z1
i

(a) The variable gadget

to variable-gadgets

dj cj

FT

(b) The clause gadget

Figure 1: Gadgets used in the reduction.

The variable gadget for the variable xi is depicted in Figure 1(a). Each variable xi of
the formula Φ adds six new types to the domain D of the agent, namely, ti, ui, vi, wi, z1

i

and z2
i satisfying the following relations:

ti(F ) > ti(T ), (1)
ui(F ) > ui(T ), (2)
vi(T ) > vi(F ), (3)
wi(T ) > wi(F ). (4)

The labeling of the vertices defines the social choice function f ; that is, f(ti) = T, f(vi) =
T, f(wi) = T, f(z1

i ) = T, f(z2
i ) = T, and f(ui) = F. Directed edges of the gadget describe

the correspondence M (rather the correspondence graph). Thus, for example, M(ti) =

53



{ti, ui} and M(ui) = {ui, vi, wi}. Nodes vi and wi have incoming edges from the clause
gadgets. The role of these edges will be clear in the following.

We observe that (1) implies that the social choice function f is not truthfully M -
implementable. Indeed ti prefers outcome F = f(ui) to T = f(ti) and ui ∈ M(ti).
Moreover, by Lemma 7, for any outcome function g implementing f we must have
g(ti) = g(ui) = T . On the other hand, since f(ui) = F it must be the case that any g
that M -implements f assigns outcome F to at least one node in M(ui) \ {ui}. Intuitively,
the fact that every outcome function g that M -implements f must assign F to at least one
between vi and wi corresponds to assigning “false” to respectively literal xi and x̄i.

The clause gadget for clause Cj of Φ is depicted in Figure 1(b). Each clause Cj adds
types cj and dj to the domain D of the agent such that

cj(T ) > cj(F ), (5)
dj(T ) > dj(F ). (6)

As before the labeling defines the social choice function f and we have f(dj) = T and
f(cj) = F . Moreover, directed edges encode correspondence M . Besides the directed edge
(cj , dj), the correspondence graph contains three edges directed from dj towards the three
variable gadgets corresponding to the variables appearing in the clause Cj . Specifically, if
Cj contains the literal xi then dj has an outgoing edge to node vi. If Cj contains the literal
x̄i then dj has an outgoing edge to node wi. Similarly to the variable gadget, we observe
that (5) implies that for any g M -implementing f it must be g(dj) = F . Therefore, for g
to M -implement f it must be the case that, for at least one of the neighbors a of dj from a
variable gadget, we have g(a) = T . We will see that this happens if and only if the formula
Φ is satisfiable. This concludes the description of the reduction.

We next prove that the reduction is correct. Suppose that Φ is satisfiable, let τ be a
satisfying truth assignment and let g be the outcome function defined as follows. For the
i-th variable gadget we set g(ti) = g(ui) = g(z1

i ) = g(z2
i ) = T . Moreover, if xi is true in τ ,

then we set g(vi) = T and g(wi) = F ; otherwise se set g(vi) = F and g(wi) = T . For the
j-th clause gadget, we set g(dj) = g(cj) = F .

Thus, to prove that the outcome function produced by our reduction M -implements f ,
it is sufficient to show for each type a the corresponding condition of Lemma 7 holds. We
prove that conditions hold only for a = ui and a = dj , the other cases being immediate. For
ui we have to verify that Condition 2 of Lemma 7 holds. Since τ is a truth assignment, for
each i vertex ui has a neighbor vertex for which the outcome function g gives F . For dj we
have to verify that Condition 3 of Lemma 7 holds. Since τ is a satisfying truth assignment,
for each j there exists at least one literal of Cj that is true in τ ; therefore, vertex dj has a
neighbor vertex for which the outcome function g gives T .

Conversely, consider an outcome function g which M -implements the social choice func-
tion f . This means that, for each clause Cj , dj is connected to at least one node, call it aj ,
from a variable gadget such that g(aj) = T . Then the truth assignment that sets to true
the literals corresponding to nodes a1, · · · , am (and gives arbitrary truth value to the other
variables) satisfies the formula.

The following theorem follows from the above discussion and from the observation that
the reduction can be carried out in polynomial time and the graph we constructed is acyclic
with maximum outdegree 3.

Theorem 8 The Implementability Problem is NP-hard even for outcome sets of size 2
and acyclic correspondences of maximum outdegree 3.

54



3.1 Corrrespondences with outdegree 1

In this section, we study correspondences of outdegree 1.
We start by reducing the problem of finding g that M -implements f , for the case in

which GM is a line, to the problem of finding a satisfying assignment for a formula in 2CNF
(that is every clause has at most 2 literals). We assume D = {t1, · · · , tn}, O = {o1, · · · , om}
and that, for i = 2, · · · , n, M(ti) = {ti, ti−1} and M(t1) = {t1}. We construct a formula
Φ in 2CNF in the following way. The formula Φ has the variables xij for 1 ≤ i ≤ n and
1 ≤ j ≤ m. The intended meaning of variable xij being set to true is that g(ti) = oj . We will
construct Φ so that every truth assignment that satisfies Φ describes g that M -implements
f . We do so by considering the following clauses:

1. Φ contains clauses (xif(ti) ∨ xi−1f(ti)), for i = 2, · · · , n, and clause x1f(t1).

These clauses encode the fact that for g to M -implement f it must be the case that
there exists at least one neighbor a of ti in GM such that g(a) = f(ti).

2. Φ contains clauses (xij → xik), for i = 1, · · · , n and for 1 ≤ k 6= j ≤ m.

These clauses encode the fact that g assigns at most one outcome to ti.

3. Φ contains clauses (xif(ti) → xi−1k) for all i = 2, · · · , n and for all k such that ti(ok) >
ti(f(ti)).

These clauses encode the fact that if g M -implements f and g(ti) = f(ti) then agent
of type ti does not prefer g(ti−1) to g(ti). Therefore, in this case ti’s best response is
ti itself.

4. Φ contains clauses (xi−1f(ti) → xik) for all i = 2, · · · , n and for all k such that ti(ok) ≥
ti(f(ti)).

These clauses encode the fact that if g M -implements f and g(ti−1) = f(ti) then agent
of type ti does not prefer g(ti) to g(ti−1). Therefore, in this case ti’s best response is
ti−1.

It is easy to see that Φ is satisfiable if and only if f is M -implementable. The above reasoning
can be immediately extended to the case in which each node of GM has outdegree at most
1 (that is GM is a collection of cycles and paths). We thus have the following theorem.

Theorem 9 The Implementability Problem can be solved in time polynomial in the sizes
of the domain and of the outcome sets for correspondences of maximum outdegree 1.

4 Implementability with quasi linear utility

In this section we consider mechanisms with payments; that is, the mechanism picks an
outcome and a payment to be transferred to the agent, based on the reported type of the
agent. Therefore a mechanism is now a pair (g, p) where g is the outcome function and
p : D → R is the payment function. We assume that the agent has quasi linear utility.

Definition 10 A mechanism (M, g, p) for an agent with quasi-linear utility is a triplet where
M : D → 2D is a correspondence, g : D → D is an outcome function, and p : D → R is a
payment function.

The mechanism defines a best-response function φ(g,p) : D → D where φ(g,p)(t) ∈
arg maxt′∈M(t){t(g(t′))+p(t′)}. If t ∈ arg maxt′∈M(t){t(g(t′))+p(t′)} then we set φg(t) = t.

55



Definition 11 The pair (g, p) M -implements social choice function f : D → O for an
agent with quasi-linear utility if for all t ∈ D, g(φ(g,p)(t)) = f(t).

The pair (g, p) truthfully M -implements social choice function f for an agent with quasi-
linear utility if (g, p) M -implements f and, for all t ∈ D, φ(g,p)(t) = t.

In the rest of this section we will just say that (g, p) M -implements (or truthfully M -
implements) f and mean that M -implementation is for agent with quasi-linear utility.

Testing truthful M -implementability of a social choice function f can be done in time
polynomial in the size of the domain by using the following theorem that gives necessary
and sufficient conditions. The proof is straightforward from the proof of [2] (see also [4]).

Theorem 12 Social choice function f is truthfully M -implementable if and only if GM,f

has no negative weight cycle.

As in the previous case when payments were not allowed, if M has the NRC property then
the Revelation Principle holds and the class of M -implementable social choice functions
coincides with the class of truthfully M -implementable social choice functions. We next
ask what happens for correspondences M for which the NRC property does not hold. Our
answer is negative as we show that the following problem is NP-hard.

Problem 2 The Quasi-Linear Implementability problem is defined as follows.
Input: domain D, outcome set O, social choice function f : D → O and correspondence

M .
Task: decide whether there exists (g, p) that M -implements f .

We start with the following technical lemma.

Lemma 13 Let M be a correspondence and let f be a social choice function for which
correspondence graph has a negative-weight cycle t → t′ → t of length 2. If (g, p) M -
implements f then

{φ(g,p)(t), φ(g,p)(t′)} 6⊆ {t, t′}.
Proof. Let us assume for sake of contradiction that (g, p) M -implements f and that

{φ(g,p)(t), φ(g,p)(t′)} ⊆ {t, t′}. (7)

Since cycle C := t → t′ → t has weight

t(f(t))− t(f(t′)) + t′(f(t′))− t′(f(t)) < 0 (8)

then f(t) 6= f(t′). Therefore, since (g, p) M -implements f , it holds φ(g,p)(t) 6= φ(g,p)(t′) and
thus (7) implies that {φ(g,p)(t), φ(g,p)(t′)} = {t, t′}.

Suppose that φ(g,p)(t) = t′ and thus φ(g,p)(t′) = t. Then for (g, p) to M -implement f it
must be the case that g(t) = f(t′), g(t′) = f(t). But then the payment function p must
satisfy both the following:

p(t′) + t(f(t)) ≥ p(t) + t(f(t′)),
p(t) + t′(f(t′)) ≥ p(t′) + t′(f(t)),

which contradicts (8). The same argument can be used for the case φ(g,p)(t) = t and
φ(g,p)(t′) = t′. 2

56



The reduction. We are now ready to show our reduction from 3SAT to the Quasi-
Linear Implementability problem. The reduction is similar in spirit to the one of the
previous section. We start from a Boolean formula Φ in conjunctive normal form whose
clauses contain exactly 3 literals and we construct a domain D, a set of outcomes O, a social
choice function f , and a correspondence M such that there exists (g, p) that M -implements
f if and only if Φ is satisfiable.

We set O = {T, F} and fix constants 0 < β < δ. Let x1, . . . , xn be the variables and
C1, . . . , Cm be the clauses of Φ. The reduction uses two different gadgets: variable gadgets
and clause gadgets.

z2
i

...

...

T

TT

TT F

from clause-gadgets

from clause-gadgets

ti ui

wi

vi z1
i

(a) The variable gadget

to variable-gadgets

dj cj

FT

(b) The clause gadget

Figure 2: Gadgets used in the reduction.

We have one variable gadget for each variable; the gadget for xi is depicted in Figure 2(a)
where the depicted edges are edges of GM . Each variable xi of the formula Φ adds six new
types to the domain D: ti, ui, vi, wi, z

1
i , and z2

i satisfying the following two non-contradicting
inequalities:

ti(T )− ti(F ) < ui(T )− ui(F ), (9)
ui(T )− ui(F ) = β. (10)

Nodes vi and wi have incoming edges from the clause gadgets. The role of these edges will
be clear in the following. The labeling of the nodes describes the social choice function f to
be implemented. More precisely, we have that f(ti) = f(vi) = f(wi) = f(z1

i ) = f(z2
i ) = T

and f(ui) = F .
We observe that, by (9), cycle C := ti → ui → ti has negative weight. Moreover, since

φ(g,p)(ti) ∈ M(ti) = {ti, ui}, by Lemma 13, it must be the case that φ(g,p)(ui) 6∈ {ti, ui}.
Therefore, if (g, p) M -implements f then g(φ(g,p)(ui)) = f(ui) = F , and thus g assigns
outcome F to at least one of the neighbors of ui. Intuitively, the fact that the outcome
function g assigns F to at least one between vi and wi corresponds to assigning “false” to
literal xi and x̄i.

We have one clause gadget for each clause; the gadget for clause Cj is depicted in
Figure 2(b). Each clause Cj of Φ adds two new types to the domain D: cj and dj satisfying
the following two non-contradicting inequalities:

cj(F )− cj(T ) < dj(F )− dj(T ), (11)
dj(T )− dj(F ) = δ. (12)

Node dj has three edges directed towards the three variable gadgets corresponding to the
variables appearing in the clause Cj . Specifically, if the clause Cj contains the literal xi

57



then dj is linked to the node vi. Conversely, if Cj contains the literal x̄i then dj is connected
to the node wi. The social choice function f is defined by the labeling of the nodes; that is,
f(dj) = T and f(cj) = F .

Similarly to the variable gadget, we observe that (11) implies that cj and dj constitute a
cycle of negative weight of length 2. Since φ(g,p)(cj) ∈ {cj , dj}, then, by Lemma 13, it must
be the case that φ(g,p)(dj) 6∈ {cj , dj}. Since for any (g, p) that M -implements f it must be
the case that g assigns T to dj ’s best response, then g assigns outcome T to at least one of
the neighbors of dj from a variable gadget. We will see that this happens for all clauses if
and only if the formula Φ is satisfiable. This concludes the description of the reduction.

We next prove that the reduction described above is correct. Suppose Φ is satisfiable, let
τ be a satisfying assignment for Φ, let γ be a constant such that β < γ < δ and consider the
following pair (g, p). For i = 1, · · · , n, we set g(a) = T and p(a) = 0 for all nodes a of the
variable gadget for xi except for vi and wi. Then, if τ(xi) = 1, we set g(vi) = T , p(vi) = 0,
g(wi) = F and p(wi) = γ. If instead τ(xi) = 0, we set g(vi) = F , p(vi) = γ, g(wi) = T and
p(wi) = 0. For j = 1, · · · , m, we set g(cj) = g(dj) = F and p(cj) = p(dj) = 0.

We now show that (g, p) M -implements f . We show this only for types ui from variable
gadgets and types dj from clause gadgets, as for the other types the reasoning is immediate.
Notice that by definition, g assigns F to exactly one of vi and wi and T to the other. Thus,
denote by a the vertex a ∈ {vi, wi} such that g(a) = F and by b the vertex b ∈ {vi, wi}
such that g(b) = T . We show that a is ui’s best response under (g, p). Observe that
ui(g(a))+p(a) = ui(F )+γ > ui(F ) = ui(g(ti))+p(ti). Therefore ti is not ui’s best response.
On the other hand, we have ui(g(b))+p(b) = ui(T ). But then, since γ > β = ui(T )−ui(F ),
we have that a is ui’s best response under (g, p).

For dj , we observe that, since τ satisfies clause Cj , there must exists at least one literal
of Cj that is true under τ . By the definition of g, there exists at least one neighbor, call
it aj , of dj from a variable gadget such that g(aj) = T . We next show that aj is dj ’s best
response. Notice that p(aj) = 0. For all vertices b adjacent to dj for which g(b) = F , we
have p(b) ≤ γ. But then, since γ < δ = dj(T )− dj(F ) we have that aj is dj ’s best response
under (g, p).

Conversely, consider an outcome function (g, p) that implements f and construct truth
assignment τ as follows. Observe that, for any clause Cj , dj and cj constitute a cycle of
negative weight and length 2. Moreover, cj ’s best response is either cj or dj and thus, by
Lemma 13, it must be the case that dj ’s best response is a vertex, call it aj , from a variable
gadget such that g(aj) = T . Then if aj = vi for some i then we set τ(xi) = 1; if instead
aj = wi for some i we set τ(xi) = 0. Assignment τ (arbitrarily extended to unspecified
variables) is easily seen to satisfy Φ.

The above discussion and the observation that the reduction can be carried out in poly-
nomial time proves the following theorem.

Theorem 14 The Quasi-Linear Implementability problem is NP-hard even for out-
come sets of size 2.

5 Conclusions

We have seen that is it NP-hard to decide if a given social choice function can be implemented
even under the premise that the function does not admit a truthful implementation. Indeed,
for these function it is NP-hard to decide if there is a non-truthful implementation, which
in turn is the only way to implement them. An important factor here is the structure of
the domain and the partial information, which we encode in the correspondence graph. In
particular, we have the following results:

58



Correspondence Graph No Payments Payments and Quasi-linear Agent
Path Polynomial [Th. 9] Always implementable [3, Th. 4]

Directed acyclic NP-hard [Th. 8] Always implementable [3, Th. 4]
Arbitrary NP-hard [Th. 8] NP-hard [Th. 14]

Note that for directed acyclic graphs, the Quasi Linear Implementability Problem
(where we ask implementability with payments) is trivially polynomial since all social choice
functions are implementable wheras it is NP-hard to decide if an implementation without
payments exists. So, it is also difficult to decide if payments are necessary or not for
implementing a given function. Once again, this task becomes easy when restricting to
truthful implementations [4].

Another interesting fact is that the problem without payments is difficult not because
there are many possible outcomes, but because an agent may have several ways of misre-
porting his type. Indeed, the problem is easy if the agent has at most one way of lying
(Theorem 9), but becomes NP-hard already for three (Theorem 8). The case of two remains
open.

Finally, the fact that we consider the principal-agent model (the same as in [1]) only
makes our negative results stronger since they obviously extend to the case of several agents
(simply add extra agents whose corresponding function is M(t) = {t}).

On the other hand it remains open whether the positive result for graphs of outdegree at
most 1 can be extended to many agents. Here the difficulty is the inter-dependence between
the best response rules of the agents.

Acknowledgments. Work supported by EU through IP AEOLUS. The fourth author
is also supported by DFG grant Kr 2332/1-2 within Emmy Noether Program. This paper
is also published in the Proceedings of the First International Symposium on Algorithmic
Game Theory (Burkhard Monien, Ulf-Peter Schroeder (Eds.), Lecture Notes in Computer
Science 4997 Springer 2008, pp. 194-205).

References

[1] Jerry R. Green and Jean-Jacques Laffont. Partially Verifiable Information and Mecha-
nism Design. The Review of Economic Studies, 53:447–456, 1986.

[2] Jean-Charles Rochet. A Condition for Rationalizability in a Quasi-Linear Context. Jour-
nal of Mathematical Economics, 16:191–200, 1987.

[3] Nirvikar Singh and Donald Wittman. Implementation with partial verification. Review
of Economic Design, 6(1):63–84, 2001.

[4] Rakesh V. Vohra. Paths, cycles and mechanism design. Technical report, Kellogg School
of Management, 2007.

Vincenzo Auletta
Dipartimento di Informatica ed Applicazioni,
Università di Salerno, Italy.
Email: auletta@dia.unisa.it

Paolo Penna
Dipartimento di Informatica ed Applicazioni,
Università di Salerno, Italy.
Email: penna@dia.unisa.it

59



Giuseppe Persiano
Dipartimento di Informatica ed Applicazioni,
Università di Salerno, Italy.
Email: giuper@dia.unisa.it

Carmine Ventre
Computer Science Department,
University of Liverpool, UK.
Email: Carmine.Ventre@liverpool.ac.uk

60


