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Abstract

This paper combines social choice theory with discrete optimization. We assume
that individuals have preferences over edges of a graph that need to be aggregated.
The goal is to �nd a socially �best� spanning tree in the graph. As ranking all
spanning trees is becoming infeasible even for small numbers of vertices and/or edges
of a graph, our interest lies in �nding algorithms that determine a socially "best"
spanning tree in a simple manner. This problem is closely related to the minimum (or
maximum) spanning tree problem in combinatorial optimization. Our main result
shows that for the various underlying ranking rules on the set of spanning trees
discussed in this paper the sets of �best� spanning trees coincide. Moreover, a greedy
algorithm based on a transitive group ranking on the set of edges will always provide
such a "best" spanning tree.

1 Introduction

In this paper we want to apply tools from social choice theory to topics from discrete opti-
mization. Although these topics are historically separated, in recent years there have started
attempts to combine these approaches. This is especially of interest whenever mathematical
concepts (such as graphs) are used in problems where group decisions need to be made.

As an actual example one could think of a small village that has to install a water network
or countries that need to agree on oil pipelines. Every homeowner in the village needs to
be connected, however, there are many di�erent ways to hook them up. A mathematical
representation of such a situation could be done by a spanning tree on a graph that connects
each pair of homeowners (i.e. vertices) in the village. However, di�erent homeowners might
have di�erent preferences over the possible connections between the homeowners (i.e. edges
of the graph). E.g. one homeowner might rather want to have it pass through his own
garden than through a nice park, whereas another one might think the other way round.

Such aggregations of individual preferences are the major focus in social choice theory
and many di�erent aggregation rules do exist and have been studied and compared in the
literature (see e.g. [8] or [10]). Our approach, however, will not analyse the aggregation of
such individual preferences, but start o� with a group ranking of the possible edges. This
ranking of the edges does not necessarily allocate numerical values to the edges. As each
spanning tree is a subset of the set of edges having a certain structure, we will - given the
group ranking - try to rank the di�erent spanning trees. This lies in the spirit of previous
results on ranking sets of objects (for an overview see [2]). Such rankings could be based on
Borda counts, on simple majority rule, be of lexicographic nature, etc; as for the edges, the
ranking of the spanning trees does not have to be based on numerical values of the edges
and does not need to assign a number to each tree. The goal for this type of problems is to
�nd the spanning tree which is "best" w.r.t. such a relation on spanning trees. Ranking all
spanning trees is, however, a di�cult problem even for small number of vertices and/or edges
given the quickly increasing number of feasible spanning trees. Our interest therefore lies in
�nding algorithms that determine a "best" spanning tree in a simple manner. This problem
is closely related to the minimum (or maximum) spanning tree problem, a classical problem
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in discrete optimization. The minimum spanning tree problem has numerous applications
in various �elds and can be solved e�ciently by greedy algorithms [1].

The main result in this paper shows that irrespective of the underlying ranking rules
discussed in this paper the set of �best� spanning trees coincide. What's more, using a
greedy algorithm to determine a maximal spanning tree based on a transitive group ranking
on the set of edges will always provide a "best" spanning tree.

2 Formal framework

2.1 Preliminaries

Let G = (V,E) be an undirected graph where V denotes the set of nodes and E denotes
the set of edges. Let n := |V | and m := |E|. A subset T ⊆ E is called spanning tree of G,
if the subgraph (V, T ) of G is acyclic and connected. Let τ denote the set of spanning trees
of G. Let I = {1, ..., k} denote a �nite set of individuals. For every individual i, 1 ≤ i ≤ k,
the preference order Pi on E is assumed to be a linear order on E (i.e. Pi is assumed to be
complete, transitive and asymmetric). A k-tuple π = (P1, P2, ..., Pk) is called a preference
pro�le and ℘ denotes the set of admissible preference pro�les. A complete order % consists
of an asymmetric part � and a symmetric part ∼ respectively. Given a complete order %κ
on τ , we call a tree T best tree with respect to %κ if there is no B ∈ τ with B �κ T .

Remark. Let T1, T2 ∈ τ . Having assigned a real number w(e) to each e ∈ E, the
minimum spanning tree problem is the problem of �nding a best tree with respect to the
relation T1 % T2 :⇐⇒ ∑

e∈T1
w(e) ≤ ∑

e∈T2
w(e). Analogously, a maximum spanning tree

is a best tree with respect to the relation T1 % T2 :⇐⇒∑
e∈T1

w(e) ≥∑
e∈T2

w(e).

We �rst present basic complete orders on the set E of edges from which orders on the
set τ of spanning trees of G are derived.

2.2 Basic orders on E

De�nition 2.1 Given Pi, individual i's Borda count of an edge e ∈ E is given by Bi(e) :=
|{f ∈ E : ePif}|. The total Borda count of edge e is de�ned by B(e) :=

∑
i∈I Bi(e). For

e, f ∈ E we de�ne e %b f :⇐⇒ B(e) ≥ B(f).

De�nition 2.2 Let e, f ∈ E. Then we de�ne the Simple Majority-order on E by e %sm
f :⇐⇒ |{i ∈ I : ePif}| ≥ |{i ∈ I : fPie}|.

For all i ∈ I we de�ne the singleton set Sti representing individual i's top choice by
Sti := {e ∈ E|ePif ∀f ∈ E \ {e}}. Furthermore let, for all i ∈ I, the set E be partitioned
into a set Si ⊂ E of edges individual i approves of and a set E \ Si individual i disapproves
of.

De�nition 2.3 Let e, f ∈ E. The Approval count of e is de�ned by A(e) := |{i ∈ I : e ∈
Si}|. The Approval-order %a is then de�ned by e %a f :⇐⇒ A(e) ≥ A(f).

De�nition 2.4 Let e, f ∈ E. The Plurality count of e is Pl(e) := |{i ∈ I : e ∈ Sti}|. The

Plurality-order %pl is de�ned by e %pl f :⇐⇒ Pl(e) ≥ Pl(f).

The relations %b, %a and %pl are weak orders on E, i.e. these relations are complete and
transitive. The relation %sm is a complete order as well, but in general %sm is not transitive
and hence not a weak order. Thus, in %sm preference cycles may occur. To overcome this
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inconvenience, one might be interested in procedures that transform a complete but not
transitive order into a weak order. We introduce Copeland's procedure [7], other possibilities
are e.g. Slater's procedure [11] or Black's procedure [5].

De�nition 2.5 Let %n be a complete order on E and let e, f ∈ E. Let

s(e, f) :=

 1 if e �n f
0 if e ∼n f
−1 if e ≺n f

be the score of e versus f . Let z(e) :=
∑
g∈E s(e, g). Then we de�ne e %cl f :⇐⇒ z(e) ≥

z(f) and call %cl Copeland's order on E.

Remark. Note that s(e, f) = −s(f, e) holds for all e, f ∈ E.

Obviously Copeland's order is a weak order on E. Thus setting %n:=%sm and deter-
mining the corresponding Copeland's order for example yields a weak order on E based on
the Simple Majority-order.

3 Some complete orders on τ

We �rst present three weak orders on τ that are based on weak orders on E presented in
Section 2.2. The Borda-order introduced in the following de�nition ranks T1 ∈ τ not lower
than T2 ∈ τ , if the sum of Borda counts of the edges contained in T1 is at least as high as
the sum of Borda counts of the edges of T2.

De�nition 3.1 For T ∈ τ we de�ne the Borda count of T by B(T ) :=
∑
e∈T B(e). Then

the Borda-order �B on τ is de�ned by letting, for all T1, T2 ∈ τ ,
T1 �B T2 :⇐⇒ B(T1) ≥ B(T2) .

Analogously, a best tree with respect to the Approval-order (Plurality-order) on τ is a
tree maximizing the edge-sum of Approval counts (Plurality counts).

De�nition 3.2 For T ∈ τ the Approval count of T is de�ned by A(T ) :=
∑
e∈T A(e). The

Approval-order �A on τ is de�ned by letting, for all T1, T2 ∈ τ ,
T1 �A T2 :⇐⇒ A(T1) ≥ A(T2) .

De�nition 3.3 For T ∈ τ the Plurality count of T is de�ned by Pl(T ) :=
∑
e∈T Pl(e).

Then we de�ne the Plurality-order �P on τ by letting, for all T1, T2 ∈ τ ,
T1 �P T2 :⇐⇒ Pl(T1) ≥ Pl(T2) .

Having assigned Borda counts (Approval counts, Plurality counts) to the edges e ∈ E,
a best tree with respect to the Borda-order (Approval-order, Plurality-order) is a tree with
maximum Borda count (Approval count, Plurality count). This approach can be generalized
as follows.

De�nition 3.4 Let τ be the set of spanning trees of G and let % be a weak order on E. A
tree M ∈ τ is called max-spanning tree if and only if for every edge f = {i, j}, f /∈M ,

f - e

holds for all e ∈M that are part of the unique simple path between i and j in M .
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Figure 1: An undirected graph G = (V,E) and a preference profile for three

voters.

Remark. The above de�nition of a max-spanning tree is a generalization of the path
optimality condition for the maximum spanning tree problem stated in [1]. Note that for
De�nition 3.4 % does not need to be based on numerical values; that is, there does not have
to be a number assigned to each edge.

A tree with maximum Borda count (Approval count, Plurality count) and, a max-
spanning tree in general, can be determined e�ciently by applying greedy algorithms �
such as Prim's or Kruskal's algorithm (for details see [1]) � for the maximum spanning tree
problem. For example, a �generalized� version of Kruskal's algorithm to compute a max-
spanning tree works as follows:
Arrange the edges e ∈ E in non-increasing order according to % and iteratively add an
edge to the solution set X (which is empty at the beginning) such that socially preferred
edges are taken �rst. I.e. �rst add to X an edge that no other edge is socially preferred to,
continue with the �next best� edge, etc. If adding an edge creates a cycle, the edge simply
is ignored and we go on with the next edge.

As mentioned above, the Simple Majority-order %sm on E however is not a weak order
because in general it is not transitive, and thus preference cycles may occur. Hence the
Simple Majority-order does not seem to immediately indicate an order on τ analogous to
the Borda, Approval or Plurality case. Nevertheless the complete order %sm on E can be
used to compare two trees. The idea of the following concept for comparing two trees based
on a given (not necessarily transitive) complete order % on E is to remove the edges the
trees have in common and to pairwise compare the remaining edges according to %.

De�nition 3.5 Let % be a complete order on E and let T1, T2 ∈ τ . Furthermore, let

T̃1 := T1 \ T2 and T̃2 := T2 \ T1. Then we de�ne

T1 %S T2 :⇐⇒
∑
a∈T̃1

∑
b∈T̃2

s(a, b) ≥ 0 ,

where, for a, b ∈ E, s(a, b) denotes the score of a versus b.

Remark. %S is a complete order on τ . Furthermore it is worth mentioning that in
De�nition 3.5, as well as in De�nition 3.4, % does not need to be of numerical nature, i.e.
% does not have to allocate numbers to the edges.

Example 1 Let %=%sm. For the graph displayed in Figure 1 there exist three spanning

trees: T1 := {a, b, d}, T2 := {b, c, d} and T3 := {a, c, d}. Given the preference pro�le in

Figure 1 we get a �sm b because we have aP1b and aP3b, whereas only voter 2 prefers b to
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Figure 2: On the left side an undirected graph G = (V,E) and on the right

side a corresponding preference profile for three voters are displayed.

a. Analogously we get b �sm c and c �sm a.
Because of T1 \ T2 = {a} and T2 \ T1 = {c} we get T2 �S T1 due to c �sm a. T1 \ T3 = {b}
and T3 \ T1 = {c} yield T1 �S T3 because of b �sm c. Finally, we get T3 �S T2 because

T2 \ T3 = {b} and T3 \ T2 = {a} hold and a �sm b is satis�ed. Thus we have T3 �S T2,

T2 �S T1 and T1 �S T3. Hence a best tree with respect to %S does not exist in this example.

As the previous example shows, if % is not transitive (e.g. if %=%sm) a best tree with
respect to %S in general does not exist because preference cycles may occur. Furthermore, as
the following example shows, a tree Tg output by a greedy algorithm (a �generalized� version
of Kruskal's algorithm) that is based on arranging edges e according to |{f ∈ E : e � f}|
in non-increasing order might be the worst tree according to %S , i.e. every other spanning
tree T satis�es T �S Tg.
Example 2 Given the graph and the preference pro�le shown in Figure 2, the Simple

Majority-order on E = {a, b, c, d, e, f} is of the following form:

a �sm b b �sm d c �sm a d �sm e f �sm c
a �sm d b �sm e c �sm b e �sm c f �sm d
a �sm e b �sm f d �sm c f �sm a f �sm e

Thus, the edge f is superior to four edges according to the Simple Majority-order, the edges

a and b are superior to three edges, c and d to two edges and e to one edge only. It is easy

to see that a generalized version of Kruskal's algorithm that arranges the edges according to

the Simple Majority-wins outputs the tree Tg = {f, a, b, d, e}. Altogether the graph contains

three spanning trees, the two others being T1 = {b, c, d, e, f} and T2 = {a, c, d, e, f}. We get

T1 \ Tg = {c} and Tg \ T1 = {a}, implying T1 �S Tg. Furthermore we have T2 \ Tg = {c}
and Tg \ T2 = {b} and hence T2 �S Tg. I.e. according to %S every other spanning tree of

the graph is strictly preferred to Tg.

In the next section however we show that a best tree with respect to %S always exists
and can be computed e�ciently if % is assumed to be a weak order on E. Thus it seems to
be a reasonable approach to use Copeland's order (Slater's order, Black's order) to establish
from %sm a weak order on the set E; Copeland's order (Slater's order, Black's order) then
might be used in order to determine %S .

4 Comparing trees

In the previous section we presented three weak orders on E that yield weak orders on τ in
an intuitive way. Further we presented a complete order %S on τ that consists of pairwise
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comparisons of edges based on a complete order % on E. If % is not transitive (e.g. relation
%sm), preference cycles may occur and a best tree with regard to %S might not exist. To
overcome this di�culty, we presented methods to transform a complete order on E that is
not transitive into a transitive order on E.

In this Section we will show that assuming % to be a weak order implies the existence
of a best tree with respect to %S . Moreover, we will show the equivalence of four orders on
τ that are based on a weak order % in the sense that a best tree with respect to one order
is always a best tree with respect to each of the other orders. This implies that, for all four
orders, a best tree with respect to the regarded order always exists and can be computed
e�ciently.

In what follows, % is assumed to be a given weak order on E. Note that % is not
necessarily based on numerical values assigned to the edges.

4.1 Three more complete orders on τ

Given T1, T2 ∈ τ , we use the notation T̃1 := T1 \ T2, T̃2 := T2 \ T1 and r := |T̃1| within
Section 4.1 for convenience.

Based on the weak order % on E the three complete orders %lex, %mxn, and %ps on the
set τ of spanning trees of G are de�ned. The following maxmin-order on τ is derived from
the maxmin-order on sets presented in [2]. According to the maxmin-order, a spanning tree
T1 is preferred to a spanning tree T2 if either a �best� edge in T1 \T2 is preferred to a socially
most attractive edge in T2 \ T1 or, in case of indi�erence between these two edges, if the
least accepted edge in T1 \ T2 is preferred to the socially worst edge in T2 \ T1.

De�nition 4.1 Let T1, T2 ∈ τ . Then we de�ne the maxmin-order %mxn on τ by

T1 %mxn T2 :⇐⇒ [T̃1 = ∅ or
max T̃1 � max T̃2 or

(max T̃1 ∼ max T̃2 and min T̃1 % min T̃2)]

Analogously we de�ne the leximax order on trees based on the leximax order on sets
presented in [2].

De�nition 4.2 Let T1, T2 ∈ τ . Further let T̃1 := {e1, e2, ..., er}, T̃2 := {f1, f2, ..., fr} such
that ei % ei+1 and fi % fi+1 holds for 1 ≤ i ≤ r − 1. Then the leximax order %lex on τ is

de�ned by

T1 %lex T2 :⇐⇒ [T̃1 = ∅ or
ei ∼ fi for all 1 ≤ i ≤ r or
(∃j ∈ {1, ..., r} such that

ei ∼ fi for all i < j and ej � fj)]

A third approach is to rank the edges of the disjoint union of the two trees according to %.
For the resulting ranking a positional scoring concept is used to compare the two regarded
trees. This approach adapts the concept of the positional scoring procedures presented
in [6].

De�nition 4.3 Let T1, T2 ∈ τ . Further let T̃1 ∪ T̃2 := {d1, d2, ...d2r} such that di % di+1

holds for 1 ≤ i ≤ 2r − 1. Let b : E → R be strictly increasing according to %, that is, for
1 ≤ i ≤ 2r − 1, b(di) = b(di+1) if di ∼ di+1 and b(di) > b(di+1) if di � di+1.

Let b(T̃1) :=
∑
e∈T̃1

b(e) and b(T̃2) :=
∑
f∈T̃2

b(f).
Then we de�ne

T1 %ps T2 :⇐⇒ b(T̃1) ≥ b(T̃2) .
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Remark. The edges being ranked as in the above de�nition, and having assigned b(dj)
scoring points to the edge in the j-th position as in De�nition 4.3, a best tree with respect
to %ps is a spanning tree that maximizes the sum of scoring points.

4.2 Results

This Section is organized as follows.
Theorem 4.1 states that a max-spanning tree can be computed in polynomial time1.

We afterwards show that a max-spanning tree (as de�ned in De�nition 3.4) corresponds
to a best tree with respect to %S and to a best tree with respect to each of the orderings
on τ de�ned in Section 4.1. Vice versa, a best tree with respect to one of these orderings
always corresponds to a max-spanning tree. We summarize these results in Theorem 4.4.
Together with Theorem 4.1, Theorem 4.4 implies that a best tree with respect to each of
these orderings can be determined in polynomial time.

Theorem 4.1 A max-spanning tree can be computed in O(m+ n log n) time.

Proof. The Theorem immediately follows from the fact that the maximum spanning
tree problem can be solved in O(m+ n log n) time [1]. �

Theorem 4.2 A tree M ∈ τ is a max-spanning tree if and only if there is no tree B ∈ τ
such that

B �lex M
holds.

Proof.

�⇒�: Assume there exists B ∈ τ with B �lex M . Let B \M := {f1, ..., fr} and M \ B :=
{e1, ..., er} for some r ≥ 1 such that

fi % fi+1 and ei % ei+1 for all 1 ≤ i ≤ r − 1 . (1)

Obviously B �lex M implies f1 % e1. We now show that f1 ∼ e1 must hold.

• Assume that f1 � e1 holds. Because M is a tree adding f1 to M yields a cycle K1.
Since B is a tree not all edges of K1 can be contained in B and hence K1 must contain
an edge ẽ ∈ {e1, e2, ..., er}. This means that there is an edge e in K1 that satis�es
f1 � ẽ because both f1 � e1 and e1 % ẽ hold. This is a contradiction to the fact that
M is a max-spanning tree.

Thus we have f1 ∼ e1 and by our assumption there exists an index 1 < j ≤ r such that

ei ∼ fi (2)

for all i < j and
ej ≺ fj (3)

hold. Note that because of (1) and (2)

fi % ei+1 (4)

1Note that, in case P 6=NP, this does not have to hold if the order % on E is not assumed to be given
but needs to be determined from the individual preferences. For example, computing % using Kemeny's or
Dodgson's rule is NP-hard [3]. Thus, the whole process of computing % according to Kemeny's rule and
determining a max-spanning tree thereafter would be NP-hard.
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holds for all i < j − 1.
Adding fj−1 to M creates a cycle K. Because M is a max-spanning tree inequality

e % fj−1 (5)

holds for all e ∈ K. Now add K to B. Removing fj−1 from B ∪K yields a connected graph
A := (B ∪K) \ {fj−1} because fj−1 is part of K. Because B is a tree, for every cycle C
contained in A an edge e ∈ K (recall that e ∈M holds) must be part of C. Hence removing
such edges e from A until we get an acyclic graph yields a tree A1 which must be of the
form A1 = B \ {fj−1} ∪ {e} for some e ∈ M . Note that due to (1) and (3) fj−1 % fj � ej
holds. Hence (5) implies that

e ∈ {e1, e2, ..., ej−1} (6)

must hold. Now we show that A1 �lex M must be satis�ed:

• Case (i): e = e1. Then M \ A1 = {e2, e3, ..., ej−1, ej , ..., er} and A1 \ M =
{f1, f2, ..., fj−2, fj , ..., fr}. (4) states fi % ei+1 for all i < j − 1 and (3) states fj � ej
which implies A1 �lex M .

• Case (ii): e = ej−1. Then we get M \ A1 = {e1, ..., ej−2, ej , ..., er} and A1 \M =
(f1, ..., fj−2, fj , ..., fr). Obviously A1 �lex M holds in this case since (2) and (3) hold.

• Case (iii): e = ek for some 1 < k < j − 1. In this case we have

M \A1 = {e1, ..., ek−1, ek+1, ..., ej−1, ej , ..., er}

and A1 \M = (f1, ..., fk−1, fk, ..., fj−2, fj , ..., fr). Again because of (2), (4) and (3)
we get A1 �lex M .

In all three cases we have A1 �lex M with A1 \M = {f1, f2, ..., fj−2, fj , ..., fr}. I.e. given
B �lex M we can create a tree A1 �lex M such that A1 \M equals B \M without edge
fj−1.
Repeating this procedure j−2 times yields a tree Aj−1 �lex M with Aj−1\M = {fj , ..., fr}.
Note that M \Aj−1 = {ej , ..., er} must hold due to (6). Now recall that fj � ej was stated
in (3). Furthermore recall that at the beginning of this proof we showed that f1 � e1
does not hold. Therewith it is proven that there cannot exist a tree C �lex M with
C \M = {c1, ..., cp}, M \ C = {d1, ..., dp} for some p ≥ 1, where ci % ci+1 and di % di+1

hold for all 1 ≤ i ≤ p − 1, such that c1 � d1 holds. This contradicts to the existence of
Aj−1.
�⇐�: Assume M is not a max-spanning tree. This assumption implies the existence of an
edge e ∈ E \M such that the unique cycle K in M ∪{e} contains an edge f such that f ≺ e
holds. Now consider the tree T := M ∪ {e} \ {f}. We get T \M = {e} and M \ T = {f}.
Thus we get T �lex M which is a contradiction. �

Remark. It should be mentioned that Bern and Eppstein [4] state without proof the
observation that a minimum spanning tree lexicographically minimizes the vector of edge
lengths. Assigning a real number w(e) to each e ∈ E and setting e % f :⇐⇒ w(e) ≤ w(f)
for e, f ∈ E, where ≤ denotes the common less-than-or-equal relation on R, this observation
immediately follows from Theorem 4.2.

Theorem 4.3 A tree M ∈ τ is a max-spanning tree if and only if there is no tree B ∈ τ
such that B �S M holds.
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Proof.

�⇒�: Assume the set β := {B ∈ τ : B �S M} is not empty and let EB := B ∩M for all
B ∈ β. Clearly, there exists a tree B1 ∈ β such that |EB1 | ≥ |EB | holds for all B ∈ β.
Since every spanning tree contains exactly n − 1 edges, |EB1 | = n − 1 means B1 = M in
contradiction to B1 ∈ β. Hence 0 ≤ |EB1 | ≤ n − 2 holds. This implies that, for some
l ∈ {1, 2, ..., n− 1} and some ei, fi ∈ E, 1 ≤ i ≤ l, we have

B̃1 := B1 \M = {f1, f2, ..., fl} with f1 � f2 � ... � fl (7)

and
M1 := M \B1 = {e1, e2, ..., el} with e1 � e2 � ... � el . (8)

Note that f1 � e1 must hold because of Theorem 4.2. Hence we get

fi � e1 for all 1 ≤ i ≤ l . (9)

Adding e1 to B1 yields a cycle K1. Obviously not all edges of K1 can be contained in M
and thus K1 contains at least one edge fj , 1 ≤ j ≤ l. This means that A := B1∪{e1}\{fj}
is a spanning tree of G. Now we show that A �S M :

• We have Ã := A \M = {f1, f2, ..., fj−1, fj+1, ..., fl} and M̃ := M \A = {e2, e3, ..., el}
for some 1 ≤ j ≤ l. Hence we get∑

f∈Ã

∑
e∈M̃

s(f, e) =
∑
f∈B̃1

∑
e∈M1

s(f, e)

−
∑

e∈M1\{e1}
s(fj , e) −

∑
f∈B̃1\{fj}

s(f, e1)− s(fj , e1) .

Note that
∑
f∈B̃1

∑
e∈M1

s(f, e) > 0 holds because of B1 �S M by de�nition of β.
What's more, we have s(fj , e1) ≤ 0 due to (9). It remains to show that∑

f∈B̃1\{fj}
s(e1, f)−

∑
e∈M1\{e1}

s(fj , e) ≥ 0 (10)

holds.
Theorem 4.2 yields B1 -lex M . Obviously B1 ∼lex M yields B1 ∼S M in contra-
diction to the de�nition of β and thus B1 ≺lex M must hold. Hence there exists a
1 ≤ k ≤ l such that ei ∼ fi holds for i < k and ek � fk is satis�ed.
If e1 � f1 then

∑
f∈B̃1\{fj} s(e1, f) = l − 1 and (10) is satis�ed since∑

e∈M1\{e1} s(fj , e) ≤ l−1. Hence we assume k ≥ 2 (note that l = 1 implies k = 1 and

thus w.l.o.g. we assume l ≥ 2 as well). Since k ≥ 2 there exists an index r, 1 ≤ r ≤ k−1,
such that both er ∼ fr and er � fr+1 is satis�ed, because e1 % e2 % ... % el holds
(see (8)). Let q, 1 ≤ q < k, denote the smallest index such that eq ∼ fq and eq � fq+1

holds. Note that eq+1 % fq+1 must hold because of B1 -lex M .
Now we distinguish two cases:

� j ≤ q. Clearly we have
∑
f∈B̃1\{fj} S(e1, f) ≥ l − 1 − (q − 1) = l − q due to

e1 � fq+1 and (9).
Recall that due to the choice of q and k we have ej ∼ fj , ej+1 ∼ fj+1, ...,
eq ∼ fq. Thus ej ∼ ej+1 ∼ ... ∼ eq holds (because et � et+1 for some j ≤
t ≤ q − 1 contradicts to the choice of q since then et � ft+1 holds as well).
But this implies fj ∼ eq and fj - e holds for all e ∈ {e2, e3, ..., eq}. Hence∑
e∈M1\{e1} S(fj , e) ≤ l− 1− (q − 1) = l− q is satis�ed as a consequence of (8).

Herewith (10) holds.
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� j > q. Because of eq+1 % fq+1 and (7) we get fj - eq+1. Thus fj - e holds for
all e ∈ {e2, e3, ..., eq+1} which implies

∑
e∈M1\{e1} S(fj , e) ≤ l−1−q. Recall that

we have eq � fq+1 because of the choice of q and thus e1 � f holds for all fx with
q + 1 ≤ x ≤ l. This observation and (9) imply

∑
f∈B̃1\{fj} S(e1, f) ≥ l − 1 − q

and so (10) is satis�ed.

Thus A �S M holds. But we have |EA| = |EB1 |+ 1, which is a contradiction to the choice
of B1.
�⇐�: Analogous to the proof of the corresponding direction of Theorem 4.2. �

Summarizing our results we state the following Theorem.

Theorem 4.4 Let M ∈ τ . Then the following statements are equivalent:

1. M is a max-spanning tree

2. @B ∈ τ : B �lex M
3. @B ∈ τ : B �S M
4. @B ∈ τ : B �mxn M

5. @B ∈ τ : B �ps M

Proof. �1.⇔2.� and �1.⇔3.� were stated in Theorem 4.2 and Theorem 4.3.
The proofs of �4.⇒1.� and �5.⇒1.� are analogous to the one for �2.⇒1.� (see proof of Theo-
rem 4.2). There the assumption that M is not a max-spanning tree is led to a contradiction
by creating a tree T that satis�es T �lex M . But T �mxn M and T �ps M hold as well
and thus an analogous contradiction can be created in either case.

�2.⇒4.�: This can be shown analogous to direction �⇒� in Theorem 4.2, because due
to that theorem a tree M that satis�es condition 2. is a max-spanning tree. However,
we now create cycle K by adding fr to M instead of fj−1, which �nally yields a tree
A1 = B \ {fr}∪ {e} for some e ∈M \B with e % fr. Recall that M �lex B holds, and thus
M �lex B holds because M ∼lex B contradicts to our assumption B �mxn M . M �lex
implies e1 % f1, and hence e1 ∼ f1 must hold as e1 � f1 contradicts to B �mxn M . B �mxn
M and f1 ∼ e1 imply fr � er. Hence we have e ∈ {e1, e2, ..., er−1} and fr−1 % fr � er.
Thus, if e 6= e1, we have A1 �mxn M because of f1 ∼ e1 and fr−1 � er. If e = e1 we have
f1 % e2 and fr−1 � er and so in either case we have A1 �mxn M . Repeating this procedure
r− 2 times yields a tree Ar−1 �mxn M with Ar−1 \M = {f1} and M \Ar−1 = {er}. Thus
Ar−1 �lex M holds which is a contradiction.

�2.⇒5.�: Analogous to �2.⇒4.�, but now K is created by adding f1 instead of fj−1. Thus
we get a tree A1 = B ∪ {e} \ {f1} with e % f1. Note that this implies b(e) ≥ b(f1). Recall
that b(B̃) > b(M̃) holds, where B̃ := B \M and M̃ := M \ B. Hence with Ã1 := A1 \M
and M1 := M \A1 we have b(Ã1) = b(B̃)− b(f1) > b(M̃)− b(e) ≥ b(M1). By repeating this
procedure r−2 times we get a tree Ar−1 �ps M with Ar−1 \M = {fr} andM \Ar−1 = {ẽ}
for some ẽ ∈M . This implies Ar−1 �lex M which is a contradiction. �

Remark 1. Note that equivalence �1.⇔5.� implies that the size of the numbers
assigned to the edges is not crucial for the determination of a best tree with respect to %ps.
I.e. for every assignment of numbers to edges according to De�nition 4.3 the set of best
trees w.r.t. %ps is the same.
In order to determine the group ranking on E often positional scoring methods [6] are used.
As a consequence of the above observation, every positional scoring method that yields
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the same ranking % on E yields the same set of best trees w.r.t. %ps, irrespective of the
numerical values assigned to the edges.

Remark 2. Due to the fact that a max-spanning tree can be determined e�ciently by
applying a greedy algorithm, for all orders regarded in Theorem 4.4 a socially best tree can
be computed in polynomial time.

5 Conclusion

In this paper we have presented di�erent ways to achieve orderings on the set of spanning
trees from a group ranking on the edge-set of a graph. Assuming that the given group
ranking is a weak order (which does not necessarily allocate a numerical value to each
edge), we have shown that the sets of socially best trees according to the concepts discussed
in this paper coincide.

In the related work of Perny and Spanjaard [9] a quite general framework for ranking
spanning trees on the basis of preference relations is presented. In [9] a main focus is laid on
establishing su�cient conditions for an order on the power set of the edge-set under which a
greedy algorithm is able to determine the set of best trees with respect to the corresponding
order. The orders %lex, %S , %mxn and %ps however2 do not belong to the class of orders
for which these conditions hold, even if the group ranking is assumed to be a partial order
on the set of edges. As a consequence of our paper, a socially best tree which respect to
each of these orders can be computed e�ciently by simply determining a max-spanning tree
using a greedy algorithm.

2if their de�nitions adequately are extended to the power set of the edge-set
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