
Computing Kemeny Rankings,

Parameterized by the Average KT-Distance

Nadja Betzler, Michael R. Fellows, Jiong Guo, Rolf Niedermeier, and
Frances A. Rosamond

Abstract

The computation of Kemeny rankings is central to many applications in the context
of rank aggregation. Unfortunately, the problem is NP-hard. Extending our previous
work [AAIM 2008], we show that the Kemeny score of an election can be computed
efficiently whenever the average pairwise distance between two input votes is not
too large. In other words, Kemeny Score is fixed-parameter tractable with respect
to the parameter “average pairwise Kendall-Tau distance da”. We describe a fixed-
parameter algorithm with running time O(16⌈da⌉ · poly).

1 Introduction

Aggregating inconsistent information has many applications ranging from voting scenarios
to meta search engines and fighting spam [1, 4, 5, 7]. In some sense, one deals with consensus
problems where one wants to find a solution to various “input demands” such that these
demands are met as well as possible. Naturally, contradicting demands cannot be fulfilled
at the same time. Hence, the consensus solution has to provide a balance between opposing
requirements. The concept of Kemeny consensus (or Kemeny ranking) is among the most
important research topics in this context. In this paper, extending our previous work [3],
we study new algorithmic approaches based on parameterized complexity analysis [6, 9, 13]
for efficiently computing optimal Kemeny consensus solutions in practically relevant special
cases.

Kemeny’s voting scheme can be described as follows. An election (V, C) consists of a
set V of n votes and a set C of m candidates. A vote is a preference list of the candidates.
For instance, in the case of three candidates a, b, c, the order c > b > a would mean that
candidate c is the best-liked and candidate a is the least-liked for this voter. A “Kemeny
consensus” is a preference list that is “closest” to the preference lists of the voters. For each
pair of votes v, w, the so-called Kendall-Tau distance (KT-distance for short) between v
and w, also known as the number of inversions between two permutations, is defined as

KT-dist(v, w) =
∑

{c,d}⊆C

dv,w(c, d),

where the sum is taken over all unordered pairs {c, d} of candidates, and dv,w(c, d) is 0 if v
and w rank c and d in the same order, and 1 otherwise. Using divide-and-conquer, the
KT-distance can be computed in O(m · log m) time [12]. The score of a preference list l with
respect to an election (V, C) is defined as

∑
v∈V KT-dist(l, v). A preference list l with the

minimum score is called a Kemeny consensus of (V, C) and its score
∑

v∈V KT-dist(l, v) is
the Kemeny score of (V, C), denoted as K-score(V, C). The underlying decision problem is
as follows:

Kemeny Score
Input: An election (V, C) and a positive integer k.
Question: Is K-score(V, C) ≤ k?

85

Known results. We summarize the state of the art concerning the computational com-
plexity of Kemeny Score. Bartholdi et al. [2] showed that Kemeny Score is NP-
complete, and it remains so even when restricted to instances with only four votes [7, 8].
Given the computational hardness of Kemeny Score on the one side and its practical rele-
vance on the other side, polynomial-time approximation algorithms have been studied. The
Kemeny score can be approximated to a factor of 8/5 by a deterministic algorithm [15] and to
a factor of 11/7 by a randomized algorithm [1]. Recently, a polynomial-time approximation
scheme (PTAS) has been developed [11]. However, the running time is completely impracti-
cal and the result is only of theoretical interest. Conitzer, Davenport, and Kalagnanam [5, 4]
performed computational studies for the efficient exact computation of a Kemeny consensus,
using heuristic approaches such as greedy and branch-and-bound. Hemaspaandra et al. [10]
provided further, exact classifications of the classical computational complexity of Kemeny
elections. Very recently, we initiated a parameterized complexity study based on various
problem parameterizations [3]. We obtained fixed-parameter tractability results for the
parameters “score”, “number of candidates”, “maximum KT-distance between two input
votes”, and “maximum position range of a candidate”.1 For more details, see Section 2

New results. Our main result is that Kemeny Score can be solved in O(16⌈da⌉ ·
poly(n, m)) time, where da denotes the average KT-distance between the pairs of input votes.
This represents a significant improvement of the previous algorithm for the maximum KT-
distance between pairs of input votes, which has running time O((3dmax + 1)! · poly(n, m)).
Clearly, da ≤ dmax.

1.1 Preliminaries

Let the position of a candidate c in a vote v, denoted by v(c), be the number of candidates
that are better than c in v. That is, the leftmost (and best) candidate in v has position 0
and the rightmost has position m − 1. For an election (V, C) and a candidate c ∈ C, the
average position pa(c) of c is defined as

pa(c) :=
1
n
·
∑
v∈V

v(c).

For an election (V, C) the average KT-distance da is defined as

da :=
1

n(n− 1)
·

∑
{u,v}∈V,u6=v

KT-dist(u, v).

Note that an equivalent definition is given by

da :=
1

n(n− 1)
·

∑
a,b∈C

#v(a > b) ·#v(b > a),

where for two candidates a and b the number of input votes in which a is ranked better than
b is denoted by #v(a > b). This definition is useful if the input is provided by the outcomes
of the pairwise elections of the candidates including the margins of victory.

We briefly introduce the relevant notions of parameterized complexity theory [6, 9, 13].
Parameterized algorithmics aims at a multivariate complexity analysis of problems. This
is done by studying relevant problem parameters and their influence on the computational
complexity of problems. The hope lies in accepting the seemingly inevitable combinatorial

1The parameterization by position range has only been discussed in the long version of [3].

86

explosion for NP-hard problems, but confining it to the parameter. Hence, the decisive
question is whether a given parameterized problem is fixed-parameter tractable (FPT) with
respect to the parameter, often denoted k. In other words, for an input instance I together
with the parameter k, we ask for the existence of a solving algorithm with running time f(k)·
poly(|I|) for some computable function f .

2 Parameterizations of the Kemeny Score Problem

In recent work [3], we initiated a parameterized complexity study of Kemeny Score. In
this section, we review the considered parameterizations and results.

An election can be interpreted as having (at least) two “dimensions”, the set of votes and
the set of candidates. Thus, the “number n of votes” and the “number m of candidates” lead
to natural parameterizations. Fixed-parameter tractability with respect to the parameter
“number of votes” would imply P=NP since Kemeny Score is already NP-complete for
instances with four votes [7]. In contrast, concerning m as a parameter, there is a trivial
algorithm that tests all m! orderings of the candidates for a Kemeny consensus. Using a
dynamic programming approach, we were able to lower the combinatorial explosion in m;
more specifically, we provided an exact algorithm running in O(2m ·m2n) time [3].2

A common parameterization in parameterized algorithmics is the size of the solution of
a problem, motivating the consideration of “Kemeny score k” as a parameter. Using the
Kemeny score as a parameter, a preprocessing procedure (that is, a “problem kerneliza-
tion”) together with a search tree approach led to a fixed-parameter algorithm that runs
in O(1.53k + m2n) time. The drawback of this parameterization is that the Kemeny score
can become large for many instances.

Finally, we turned our attention to two structural parameterizations: the “maximum
range of candidate positions” and the “maximum KT-distance”.3 For an election (V, C),
the maximum range r of candidate positions is defined as

r := max
v,w∈V,c∈C

{|v(c)− w(c)|}.

For this parameterization, we developed a dynamic programming algorithm that is based
on the observation that we can “decompose” the input votes into two parts. The resulting
running time is O((3r+1)! ·r log r ·mn). Further, the maximum KT-distance dmax is defined
as

dmax := max
v,w∈V

KT-dist(v, w).

We showed that for every election we have r ≤ dmax. Thus, our results for the maximum
range of candidate positions also hold for the maximum distance. The parameterization
by dmax was the main reason to study the parameterization by the maximum range of
candidate positions and, further, motivated us to consider the average distance as parameter
in this work.

In our previous work [3], we also extended some of our findings to two generalizations
of Kemeny Score; in one case allowing ties and in the other case dealing with incomplete
information. For more details, we refer to there [3].

2In a different context, this result has been independently achieved by Raman et al. [14].
3In the conference version of [3] we only dealt with the maximum KT-distance as parameter whereas

in the full version (invited for submission to a special issue of Theoretical Computer Science) we discussed
both structural parameterizations as we do here.

87

3 Parameter “Average KT-Distance”

In this section, we further extend the range of parameterizations studied so far by giving
a fixed-parameter algorithm with respect to the parameter “average KT-distance”. We
start with showing how the average KT-distance can be used to upper-bound the range of
positions that a candidate can take in any optimal Kemeny consensus. Based on this crucial
observation, we then state the algorithm.

3.1 A Crucial Observation

Our fixed-parameter tractability result with respect to the average KT-distance of the input
is based on the following lemma.

Lemma 1. Let da be the average KT-distance of an election (V, C) and d := ⌈da⌉. Then,
in every optimal Kemeny consensus l, for every candidate c ∈ C with respect to its average
position pa(c) we have pa(c)− d < l(c) < pa(c) + d.

Proof. The proof is by contradiction and consists of two claims: First, we show that we can
find a vote with Kemeny score less than d · n, that is, the Kemeny score of the instance is
upper-bounded by d·n. Second, we show that in every Kemeny consensus every candidate is
in the claimed range. More specifically, we prove that every consensus in which the position
of a candidate is not in a “range d of its average position” has a Kemeny score greater than
d · n, a contradiction to the first claim.

Claim 1: K-score(V, C) < d · n.

Proof of Claim 1: To prove Claim 1, we show that there is a vote v ∈ V with∑
w∈V KT-dist(v, w) < d · n, implying this upper bound for an optimal Kemeny consen-

sus as well. By definition,

da =
1

n(n− 1)
·

∑
{v,w}∈V,v 6=w

KT-dist(v, w) (1)

⇒∃v ∈ V with da ≥ 1
n(n− 1)

· n ·
∑
w∈V

KT-dist(v, w) =
1

n− 1
·

∑
w∈V

KT-dist(v, w) (2)

⇒∃v ∈ V with da · n >
∑
w∈V

KT-dist(v, w). (3)

Since we have d = ⌈da⌉, Claim 1 follows directly from Inequality (3).
The next claim shows the given bound on the range of possible candidates positions.

Claim 2: In every optimal Kemeny consensus l, every candidate c ∈ C fulfills
pa(c)− d < l(c) < pa(c) + d.

Proof of Claim 2: We start by showing that, for every candidate c ∈ C we have

K-score(V, C) ≥
∑
v∈V

|l(c)− v(c)|. (4)

Note that, for every candidate c ∈ C, for two votes v, w we must have KT-dist(v, w) ≥
|v(c) − w(c)|. Without loss of generality, assume that v(c) > w(c). Then, there must be at
least v(c)−w(c) candidates that have a smaller position than c in v and that have a greater
position than c in w. Further, each of these candidates increases the value of KT-dist(v, w)

88

by one. Based on this, Inequality (4) directly follows as, by definition, K-score(V, C) =∑
v∈V KT-dist(v, l).
To simplify the proof of Claim 2, in the following, we shift the positions in l such

that l(c) = 0. Accordingly, we shift the positions in all votes in V , that is, for every v ∈ V
and every a ∈ C, we decrease v(a) by the original value of l(c). Clearly, shifting all positions
does not affect the relative differences of positions between two candidates. Then, let the
set of votes in which c has a nonnegative position be V + and let V − denote the remaining
set of votes, that is, V − := V \V +.

Now, we show that if candidate c is placed outside of the given range in an optimal Ke-
meny consensus l, then K-score(V, C) > d ·n. The proof is by contradiction. We distinguish
two cases:
Case 1: l(c) ≥ pa(c) + d.
As l(c) = 0, in this case pa(c) becomes negative. Then,

0 ≥ pa(c) + d ⇔ −pa(c) ≥ d.

It follows that |pa(c)| ≥ d. The following shows that Claim 2 holds for this case.

∑
v∈V

|l(c)− v(c)| =
∑
v∈V

|v(c)| =
∑

v∈V +

|v(c)|+
∑

v∈V −
|v(c)|. (5)

Next, replace the term
∑

v∈V − |v(c)| in (5) by an equivalent term that depends on |pa(c)|
and

∑
v∈V + |v(c)|. For this, use the following, derived from the definition of pa(c):

n · pa(c) =
∑

v∈V +

|v(c)| −
∑

v∈V −
|v(c)|

⇔
∑

v∈V −
|v(c)| = n · (−pa(c)) +

∑
v∈V +

|v(c)| = n · |pa(c)|+
∑

v∈V +

|v(c)|.

The replacement results in

∑
v∈V

|l(c)− v(c)| = 2 ·
∑

v∈V +

|v(c)| + n · |pa(c)| ≥ n · |pa(c)| ≥ n · d.

This says that K-score(V, C) ≥ n · d, a contradiction to Claim 1.
Case 2: l(c) ≤ pa(c)− d.
Since l(c) = 0, the condition is equivalent to 0 ≤ pa(c) − d ⇔ d ≤ pa(c), and we have that
pa(c) is nonnegative. Now, we show that Claim 2 also holds for this case.

∑
v∈V

|l(c)− v(c)| =
∑
v∈V

|v(c)| =
∑

v∈V +

|v(c)|+
∑

v∈V −
|v(c)|

≥
∑

v∈V +

v(c) +
∑

v∈V −
v(c) = pa(c) · n ≥ d · n.

Thus, also in this case K-score(V, C) ≥ n · d, a contradiction to Claim 1.

Based on Lemma 1, for every position we can define the set of candidates that can take
this position in an optimal Kemeny consensus. The subsequent definition will be useful for
the formulation of the algorithm.

89

Definition 1. Let (V, C) be an election. For i ∈ {0, . . . , m − 1}, let Pi denote the set
of candidates that can assume the position i in an optimal Kemeny consensus, that is,
Pi := {c ∈ C | pa(c)− d < i < pa(c) + d}.

Based on Lemma 1, we can easily show the following.

Lemma 2. For every position i, the size of Pi is at most 4d.

Proof. The proof is by contradiction. Assume that there is a position i with |Pi| > 4d. Due
to Lemma 1, for every candidate c ∈ Pi the positions which c may assume in an optimal
Kemeny consensus can differ by at most 2d−1. This is true because, otherwise, candidate c
could not be in the given range around its average position. Then, in a Kemeny consensus,
each of the at least 4d + 1 candidates must hold a position that differs at most by 2d − 1
from position i. As there are only 4d − 1 such positions (2d − 1 on the left and 2d − 1 on
the right of i), one obtains a contradiction.

3.2 Basic Idea of the Algorithm

In Subsection 3.4, we will present a dynamic programming algorithm for Kemeny Score.
It exploits the fact that every candidate can only appear in a fixed range of positions in
an optimal Kemeny consensus.4 The algorithm “generates” a Kemeny consensus from the
left to the right. It tries out all possibilities for ordering the candidates locally and then
combines these local solutions to yield a Kemeny consensus.

More specifically, according to Lemma 2 the number of candidates that can take a
position i in an optimal Kemeny consensus for any 0 ≤ i ≤ m − 1 is at most 4d. Thus,
for position i, we can test all possible candidates. Having chosen a candidate for position i,
the remaining candidates that could also assume i must either be left or right of i in a
Kemeny consensus. Thus, we test all possible two-partitionings of this subset of candidates
and compute a “partial” Kemeny score for every possibility. For the computation of the
partial Kemeny scores at position i we make use of the partial solutions computed for the
previous position i− 1.

3.3 Definitions for the Algorithm

To state the algorithm, we need some further definitions. For i ∈ {0, . . . , m − 1}, let I(i)
denote the set of candidates that could be “inserted” at position i for the first time, that is,

I(i) := {c ∈ C | c ∈ Pi and c /∈ Pi−1}.
Let F (i) denote the set of candidates that must be “forgotten” at latest at position i, that
is,

F (i) := {c ∈ C | c /∈ Pi and c ∈ Pi−1}.
For our algorithm, it is essential to subdivide the overall Kemeny score into partial

Kemeny scores (pK). More precisely, for a candidate c and a subset of candidates R with
c /∈ R, we set

pK(c, R) :=
∑
c′∈R

∑
v∈V

dR
v (c, c′),

where for c /∈ R and c′ ∈ R we have dR
v (c, c′) := 0 if in v we have c′ > c, and dR

v (c, c′) := 1,
otherwise. Intuitively, the partial Kemeny score denotes the score that is “induced” by

4In contrast, the previous dynamic programming algorithms from [3] for the parameters “maximum
range of candidate positions” and “maximum KT-distance” rely on decomposing the input. Further, here
we obtain a much better running time by using a more involved dynamic programming approach.

90

candidate c and the candidate subset R if the candidates of R have greater positions than c
in an optimal Kemeny consensus.5 Then, for a Kemeny consensus l := c0 > c1 > · · · > cm−1,
the overall Kemeny score can be expressed by partial Kemeny scores as follows.

K-score(V, C) =
m−2∑
i=0

m−1∑
j=i+1

∑
v∈V

dv,l(ci, cj) (6)

=
m−2∑
i=0

∑
c′∈R

∑
v∈V

dR
v (ci, c

′) for R := {cj | i < j < m} (7)

=
m−2∑
i=0

pK(ci, {cj | i < j < m}). (8)

Next, consider the three-dimensional dynamic programming table. Roughly speaking,
define an entry for every position i, every candidate c that can assume i, and every candidate
subset C′ of Pi\{c}. The entry stores the “minimum partial Kemeny score” over all possible
orders of the candidates of C′ under the condition that c takes position i and all candidates
of C′ take positions smaller than i. To define the dynamic programming table formally, we
need some further notation.

Let Π(C′) denote the set of all possible orders of the candidates in C′, where C′ ⊆ C.
Further, consider a Kemeny consensus in which every candidate of C′ has a position smaller
than every candidate in C\C′. Then, the minimum partial Kemeny score restricted to C′ is
defined as

min
(c1>c2>···>cx)∈Π(C′)

{
x∑

s=1

pK(cs, {cj | s < j < m} ∪ (C\C′))

}
with x := |C′|.

That is, it denotes the minimum partial Kemeny score over all orders of C′. We define
an entry of the dynamic programming table T for a position i, a candidate c ∈ Pi, and a
candidate subset P ′

i ⊆ Pi with c /∈ P ′
i . For this, we define L :=

⋃
j≤i F (j) ∪ P ′

i . Then, an
entry T (i, c, P ′

i) denotes the minimum partial Kemeny score restricted to the candidates in
L∪ {c} under the assumptions that c is at position i in a Kemeny consensus, all candidates
of L have positions smaller than i, and all other candidates have positions greater than i.
That is, for |L| = i− 1, define

T (i, c, P ′
i) := min

(c0>···>ci−1)∈Π(L)

i−1∑
s=0

pK(cs, C\{cj | j ≤ s}) + pK(c, C\(L ∪ {c})).

3.4 Dynamic Programming Algorithm

The algorithm is displayed in Fig. 1. It is easy to modify the algorithm such that it outputs
an optimal Kemeny consensus: for every entry T (i, c, P ′

i), one additionally has to store a
candidate c′ that minimizes T (i − 1, c′, (P ′

i ∪ F (i))\{c′}) in line 11. Then, starting with
a minimum entry for position m − 1, we reconstruct a Kemeny consensus by iteratively
adding the “predecessor” candidate. The asymptotic running time remains unchanged.
Moreover, in several applications, it is helpful not having one optimal Kemeny consensus
but to enumerate all of them. At the expense of an increased running time, our algorithm can
be extended to provide such an enumeration by storing all possible predecessor candidates.

Lemma 3. The algorithm in Fig. 1 correctly computes Kemeny Score.
5By convention and somewhat counterintuitive, we say that candidate c has a greater position than

candidate c′ if c′ > c in a vote.

91

Input: An election (V, C) and, for every 0 ≤ i < m, the set Pi of candidates that can
assume position i in an optimal Kemeny consensus.
Output: The Kemeny score of (V, C).

Initialization:
01 for i = 0, . . . , m− 1
02 for all c ∈ Pi

03 for all P ′
i ⊆ Pi\{c}

04 T (i, c, P ′
i) := +∞

05 for all c ∈ P0

06 T (0, c, ∅) := pK(c, C\{c})

Update:
07 for i = 1, . . . , m− 1
08 for all c ∈ Pi

09 for all P ′
i ⊆ Pi\{c}

10 if |P ′
i ∪

⋃
j≤i F (j)| = i− 1 and T (i− 1, c′, (P ′

i ∪ F (i))\{c′}) is defined then

11 T (i, c, P ′
i) = min

c′∈P ′
i∪F (i)

T (i− 1, c′, (P ′
i ∪ F (i))\{c′})

+ pK(c, (Pi ∪
⋃

i<j<m

I(j))\(P ′
i ∪ {c}))

Output :
12 K-score = minc∈Pm−1 T (m− 1, c, Pm−1\{c})

Figure 1: Dynamic programming algorithm for Kemeny Score

92

Proof. For the correctness, we have to show two points:
First, all table entries are well-defined, that is, for an entry T (i, c, P ′

i) concerning po-
sition i there must be exactly i − 1 candidates that have positions smaller than i. This
condition is assured by line 10 of the algorithm.6

Second, we must ensure to find an optimal solution. Due to Equality (8), we know
that the Kemeny score can be decomposed into partial Kemeny scores. Thus, it remains
to show that the algorithm considers a decomposition that leads to an optimal solution.
For every position the algorithm tries all candidates in Pi. According to Lemma 1, one
of these candidates must be the “correct” candidate c for this position. Further, for c we
can show that the algorithm tries a sufficient set of possibilities to partition all remaining
candidates C\{c} such that they have either smaller or greater positions than i. More
precisely, every candidate of C\{c} must be in exactly one of the following three subsets:

1. The set F of candidates that have already been forgotten, that is, F :=
⋃

0≤j≤i F (j),

2. the set of candidates that can assume position i, that is, Pi\{c}, or

3. the set I of candidates that are not inserted yet, that is, I :=
⋃

i<j<m I(j).

Due to Lemma 1 and the definition of F (j), we know that a candidate of F cannot take
a position greater than i− 1 in an optimal Kemeny consensus. Thus, it is sufficient to try
only partitions in which the candidates of F have positions smaller than i. Analogously, one
can argue that for all candidates in I it is sufficient to consider partitions in which they have
positions greater than i. Thus, it remains to try all possibilities to partition the candidates
of Pi. This is done in line 09 of the algorithm. Thus, the algorithm returns an optimal
Kemeny score.

Theorem 1. Kemeny Score can be solved in O(n2 ·m log m+16d ·(16d2 ·m+4d·m2 log m ·
n)) time with average KT-distance da and d := ⌈da⌉. The size of the dynamic programming
table is O(16d · 4dm).

Proof. The dynamic programming procedure requires the set of candidates Pi for 0 ≤ i < m
as input. To determine Pi for all 0 ≤ i < m, we need the average positions of all candidates
and the average KT-distance da of (V, C). To determine da, we compute the pairwise
distances of all pairs of votes. As we have O(n2) pairs and the pairwise KT-distance can be
computed in O(m log m) time [12], this takes O(n2 ·m log m) time. The average positions
of all candidates can be computed in O(n ·m) time by iterating once over every vote and
adding the position of every candidate to a counter variable for this candidate. Thus, the
input for the dynamic programming algorithm can be provided in O(n2 ·m log m) time.

Concerning the dynamic programming algorithm itself, due to Lemma 2, for 0 ≤ i < m,
the size of Pi is upper-bounded by 4d. Then, for the initialization as well as for the update,
the algorithm iterates over m positions, 4d candidates, and 24d candidates subsets. Whereas
the initialization in the innermost step (line 04) can be done in constant time, in every
innermost step of the update phase (line 11) we have to look for a minimum entry and
we have to compute a pK-score. To find the minimum, we have to consider all candidates
of P ′

i ∪ F (i). As P ′
i ∪ F (i) is a subset of Pi−1, it can contain at most 4d candidates.

Further, the required pK-score can be computed in O(n · m log m) time. Thus, for the
dynamic programming we arrive at the running time of O(m · 4d · 24d · (4d + n ·m log m)) =
O(16d · (16d2 ·m + 4d ·m2 log m · n)).

6It can still happen that a candidate takes a position outside of the required range around its average
position. Since such an entry cannot lead to an optimal solution according to Lemma 1, this does not affect
the correctness of the algorithm. To improve the running time it would be convenient to “cut away” such
possibilities. We defer considerations in this direction to an extended version of this paper.

93

Concerning the size of the dynamic programming table, there are m positions and at most
4d candidates that can assume a position. The number of considered subsets is bounded
from above by 24d. Hence, the size of T is O(16d · 4d ·m).

Finally, let us discuss the differences between the dynamic programming algorithm we
used for the “maximum range of candidate positions” in [3] and the algorithm presented
in this work. In our previous work [3], the dynamic programming table stored all possible
orders of the candidates of a given subset of candidates. In this work, we eliminate the need
to store all orders by using the decomposition of the Kemeny score into partial Kemeny
scores. This allows us to restrict the considerations for a position to a candidate and its
order relative to all other candidates. We believe that our new approach can also be used
to improve the running time of the algorithm of [3].

4 Conclusion

We significantly improved the running time for a natural parameterization (maximum KT-
distance between two input votes) for the Kemeny Score problem. There have been some
experimental studies [5, 4] that hinted that the Kemeny problem is easier when the votes
are close to a consensus (and thus tend to have a small average distance). Our results for
the average distance parameterization can be regarded as a theoretical explanation for this
behavior.

As further challenges for future work, we envisage the following:

• Extend our findings to the Kemeny Score problem with input votes that may have
ties or that may be incomplete (also see [3]).

• Extend our results to improve the running time for the parameterization by position
range—we conjecture that this is not hard to do.

• Improve the running time as well as the memory consumption (which is exponential
in the parameter)—we believe that significant improvements are still possible.

• Implement the algorithms for the parameters “number of candidates”, “range of po-
sition of candidates” [3], and “average KT-distance” (including some maybe heuristic
improvements of the running times).

• Investigate typical values of the average KT-distance, either under some distributional
assumption or for real-world data.

Acknowledgements. We are grateful to an anonymous referee of COMSOC 2008 for
constructive feedback. This work was supported by the DFG, research project DARE,
GU 1023/1, Emmy Noether research group PIAF, NI 369/4, and project PALG, NI 369/8
(Nadja Betzler and Jiong Guo). Michael R. Fellows and Frances A. Rosamond were sup-
ported by the Australian Research Council. This work was done while Michael Fellows
stayed in Jena as a recipient of the Humboldt Research Award of the Alexander von Hum-
boldt foundation, Bonn, Germany.

Nadja Betzler, Jiong Guo, and Rolf Niedermeier,
Institut für Informatik,
Friedrich-Schiller-Universität Jena,
Ernst-Abbe-Platz 2,
D-07743 Jena, Germany.
Email: (betzler,guo,niedermr)@minet.uni-jena.de

94

Michael R. Fellows and Frances A. Rosamond,
PC Research Unit, Office of DVC (Research),
University of Newcastle,
Callaghan, NSW 2308, Australia.
Email: (michael.fellows,frances.rosamond)@newcastle.edu.au

References

[1] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: Ranking
and clustering. In Proc. 37th STOC, pages 684–693. ACM, 2005.

[2] J. Bartholdi III, C. A. Tovey, and M. A. Trick. Voting schemes for which it can be
difficult to tell who won the election. Social Choice and Welfare, 6:157–165, 1989.

[3] N. Betzler, M. R. Fellows, J. Guo, R. Niedermeier, and F. A. Rosamond. Fixed-
parameter algorithms for Kemeny scores. In Proc. of 4th AAIM, volume 5034 of LNCS,
pages 60–71. Springer, 2008. Long version submitted to Theoretical Computer Science.

[4] V. Conitzer, A. Davenport, and J. Kalagnanam. Improved bounds for computing
Kemeny rankings. In Proc. 21st AAAI, pages 620–626, 2006.

[5] A. Davenport and J. Kalagnanam. A computational study of the Kemeny rule for
preference aggregation. In Proc. 19th AAAI, pages 697–702, 2004.

[6] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

[7] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the
Web. In Proc. of 10th WWW, pages 613–622, 2001.

[8] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation revisited, 2001.
Manuscript.

[9] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[10] E. Hemaspaandra, H. Spakowski, and J. Vogel. The complexity of Kemeny elections.
Theoretical Computer Science, 349:382–391, 2005.

[11] C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In Proc. 39th STOC,
pages 95–103. ACM, 2007.

[12] J. Kleinberg and E. Tardos. Algorithm Design. Addison Wesley, 2006.

[13] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press,
2006.

[14] V. Raman and S. Saurabh. Improved fixed parameter tractable algorithms for
two “edge” problems: MAXCUT and MAXDAG. Information Processing Letters,
104(2):65–72, 2007.

[15] A. van Zuylen and D. P. Williamson. Deterministic algorithms for rank aggregation
and other ranking and clustering problems. In Proc. 5th WAOA, volume 4927 of LNCS,
pages 260–273. Springer, 2007.

95

