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Abstract

Coalitional voting games appear in different forms in multi-agent systems, social
choice and threshold logic. In this paper, the complexity of comparison of influ-
ence between players in coalitional voting games is characterized. The possible rep-
resentations of simple games considered are simple games represented by winning
coalitions, minimal winning coalitions, weighted voting game or a multiple weighted
voting game. The influence of players is gauged from the viewpoint of basic player
types, desirability relations and classical power indices such as Shapley-Shubik index,
Banzhaf index, Holler index, Deegan-Packel index and Chow parameters. Among
other results, it is shown that for a simple game represented by minimal winning
coalitions, although it is easy to verify whether a player has zero or one voting
power, computing the Banzhaf value of the player is #P-complete. Moreover, it is
proved that multiple weighted voting games are the only representations for which
it is NP-hard to verify whether the game is linear or not. For a simple game with
a set W m of minimal winning coalitions and n players, a O(n.|W m| + n2log(n))
algorithm is presented which returns ‘no’ if the game is non-linear and returns the
strict desirability ordering otherwise. The complexity of transforming simple games
into compact representations is also examined.

1 Introduction

1.1 Overview

Simple games are yes/no coalitional voting games which arise in various mathematical
contexts. Simple games were first analysed by John von Neumann and Oskar Morgenstern
in their monumental book Theory of Games and Economic Behaviour [25]. They also
examined weighted voting games in which voters have corresponding voting weights and a
coalition of voters wins if their total weights equal or exceed a specified quota. Neumann
and Morgenstern [25] observe that minimal winning coalitions are a useful way to represent
simple games. A similar approach has been taken in [11]. We examine the complexity
of computing the influence of players in simple games represented by winning coalitions,
minimal winning coalitions, weighted voting games and multiple weighted voting games.

1.2 Outline

In Section 2, we outline different representations and properties of simple games. In Section
3, compact representations of simple games are considered. After that, the complexity of
computing the influence of players in simple games is considered from the point of view of
player types (Section 4), desirability ordering (Section 5), power indices and Chow parame-
ters (Section 6). The final Section includes a summary of results and some open problems.

1The author would like to thank Prof. Mike Paterson and anonymous referees for valuable suggestions.
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2 Background

2.1 Definitions

Definitions 2.1. A simple voting game is a pair (N, v) with v : 2N → {0, 1} where v(∅) = 0,
v(N) = 1 and v(S) ≤ v(T ) whenever S ⊆ T . A coalition S ⊆ N is winning if v(S) = 1 and
losing if v(S) = 0. A simple voting game can alternatively be defined as (N,W ) where W is
the set of winning coalitions. This is called the extensive winning form. A minimal winning
coalition (MWC) of a simple game v is a winning coalition in which defection of any player
makes the coalition losing. A set of minimal winning coalitions of a simple game v can be
denoted by Wm(v). A simple voting game can be defined as (N,Wm). This is called the
extensive minimal winning form.

For the sake of brevity, we will abuse the notation to sometimes refer to game (N, v) as
v.

Lemma 2.2. For a simple game (N,W ), Wm can be computed in polynomial time.

Proof. For any S ∈W , remove elements from S until any further removals would make the
coalition losing. The resultant coalition S′ is a member of Wm.

Definition 2.3. A coalition S is blocking if its complement (N \S) is losing. For a simple
game G = (N,W ), there is a dual game Gd = (N,W d) where W d contains all the blocking
coalitions in G.

Definitions 2.4. The simple voting game (N, v) where
W = {X ⊆ N,

∑
x∈X wx ≥ q} is called a weighted voting game(WVG). A weighted voting

game is denoted by [q;w1, w2, ..., wn] where wi is the voting weight of player i. Usually,
wi ≥ wj if i < j.

Definitions 2.5. An m-multiple weighted voting game (MWVG) is the simple game (N, v1∧
· · · ∧ vm) where the games (N, vt) are the WVGs [qt;wt

1, . . . , w
t
n] for 1 ≤ t ≤ m. Then

v = v1 ∧ · · · ∧ vm is defined as:

v(S) =
{

1, if vt(S) = 1, ∀t, 1 ≤ t ≤ m.
0, otherwise.

The dimension of (N, v) is the least k such that there exist WMGs (N, v1), . . . , (N, vk) such
that (N, v) = (N, v1) ∧ . . . ∧ (N, vk).

Definitions 2.6. A WVG [q;w1, . . . , wn] is homogeneous if w(S) = q for all S ∈ Wm.
A simple game (N, v) is homogeneous if it can be represented by a homogeneous WVG. A
simple game (N, v) is symmetric if v(S) = 1, T ⊂ N and |S| = |T | implies v(T ) = 1.

It is easy to see that symmetric games are homogeneous with a WVG representation of
[k; 1, . . . , 1︸ ︷︷ ︸

n

]. That is the reason they are also called k-out-of-n simple games.

Banzhaf index [2] and Shapley-Shubik index [23] are two classic and popular indices to
gauge the voting power of players in a simple game. They are used in the context of weighted
voting games, but their general definition makes them applicable to any simple game.

Definition 2.7. A player i is critical in a coalition S when S ∈W and S \ i /∈W . For each
i ∈ N , we denote the number of coalitions in which i is critical in game v by the Banzhaf
value ηi(v). The Banzhaf Index of player i in weighted voting game v is βi = ηi(v)∑

i∈N ηi(v) .
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Definitions 2.8. The Shapley-Shubik value is the function κ that assigns to any simple
game (N, v) and any voter i a value κi(v) where κi =

∑
X⊆N (|X| − 1)!(n − |X|)!(v(X) −

v(X − {i})). The Shapley-Shubik index of i is the function φ defined by φi = κi

n!

Definition 2.9. ([8]) For a simple game v, Chow parameters, CHOW(v) are
(|W1|, . . . |Wn|; |W |) where Wi = {S : S ⊆ N, i ∈ S}.

2.2 Desirability relation and linear games

The individual desirability relations between players in a simple game date back at least to
Maschler and Peleg [18].

Definitions 2.10. In a simple game (N, v),

• A player i is more desirable/influential than player j (i �D j) if v(S ∪ {j}) = 1 ⇒
v(S ∪ {i}) = 1 for all S ⊆ N \ {i, j}.

• Players i and j are equally desirable/influential or symmetric (i ∼D j) if v(S∪{j}) =
1⇔ v(S ∪ {i}) = 1 for all S ⊆ N \ {i, j}.

• A player i is strictly more desirable/influential than player j (i �D j) if i is more
desirable than j, but if i and j are not equally desirable.

• A player i and j are incomparable if there exist S, T ⊆ N \{i, j} such that v(S∪{i}) =
1, v(S ∪ {j}) = 0, v(T ∪ {i}) = 0 and v(T ∪ {j}) = 1.

Linear simple games are a natural class of simple games:

Definitions 2.11. A simple game is linear whenever the desirability relation �D is complete
that is any two players i and j are comparable (i � j, j � i or i ∼ j).

For linear games, the relation R∼ divides the set of voters N into equivalence classes
N/R∼ = {N1, . . . , Nt} such that for any i ∈ Np and j ∈ Nq, i � j if and only if p < q.

Definitions 2.12. A simple game v is swap robust if an exchange of two players from two
winning coalitions cannot render both losing. A simple game is trade robust if any arbi-
trary redistributions of players in a set of winning coalitions does not result in all coalitions
becoming losing.

It is easy to see that trade robustness implies swap robustness. Taylor and Zwicker [24]
proved that a simple game can be represented by a WVG if and only if it is trade robust.
Moreover they proved that a simple game being linear is equivalent to it being swap robust.

Taylor and Zwicker [24] show in Proposition 3.2.6 that v is linear if and only if �D

is acyclic which is equivalent to �D being transitive. This is not guaranteed in other
desirability relations defined over coalitions [9].

Proposition 2.13. A simple game with three or fewer players is linear.

Proof. For a game to be non-linear, we want to player 1 and 2 to be incomparable, i.e., there
exist coalitions S1, S2 ⊆ N \{1, 2} such that v({1}∪S1) = 1, v({2}∪S1) = 0, v({1}∪S2) = 0
and v({2} ∪ S2) = 1. This is clearly not possible for n = 1 or 2. For n = 3, without loss
of generality, v is non-linear only if v({1} ∪ ∅) = 1, v({2} ∪ ∅) = 0, v({1} ∪ {3}) = 0 and
v({2} ∪ {3}) = 1. However the fact that v({1} ∪ ∅) = 1 and v({1} ∪ {3}) = 0 leads to a
contradiction.
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3 Compact representations

Since WVGs and MWVG are compact representations of coalitional voting games, it is
natural to ask which voting games can be represented by a WVG or MWVG and what is
the complexity of answering the question. Deineko and Woeginger [6] show that it is NP-
hard to verify the dimension of MWVGs. We know that every WVG is linear but not every
linear game has a corresponding WVG. Carreras and Freixas,[3] show that there exists a six-
player simple linear game which cannot be represented by a WVG. We now define problem
X-Realizable as the problem to decide whether game v can be represented by form X.

Proposition 3.1. WVG-Realizable is NP-hard for a MWVG.

Proof. This follows directly from the proof by Deineko and Woeginger [6] that it is NP-hard
to find the dimension of a MWVG.

Proposition 3.2. WVG-Realizable is in P for a simple game represented by its minimal
winning, or winning, coalitions.

This follows directly from Theorem 6 in [11]. The basic idea is that any simple game can
be represented by linear inequalities. The idea dates back at least to [16] and the complexity
of this problem was examined in the context of set covering problems. However it is one thing
to know whether a simple game is WVG-Realizable and another thing to actually represent
it by a WVG. It is not easy to represent a WVG-Realizable simple game by a WVG where
all the weights are integers as the problem transforms from linear programming to integer
programming.

Proposition 3.3. (Follows from Theorem 1.7.4 of Taylor and Zwicker[11]) Any simple
game is MWVG-Realizable.

Taylor and Zwicker [24] showed that for every n ≥ 1, there is simple game of dimension
n. In fact it has been pointed out by Freixas and Puente [12] that that for every n ≥ 1, there
is linear simple game of dimension n. This shows that there is no clear relation between
linearity and dimension of simple games. However it appears exceptionally hard to actually
transform a simple game (N,W ) or (N,Wm) to a corresponding MWVG. The dimension
of a simple game may be exponential (2(n/2)−1) in the number of players [24]. A simpler
question is to examine the complexity of computing, or getting a bound for, the dimension
of simple games.

4 Complexity of player types

A player in a simple game may be of various types depending on its level of influence.

Definitions 4.1. For a simple game v on a set of players N , player i is a

• dummy if and only if ∀S ⊆ N , if v(S) = 1, then v(S \ {i}) = 1;

• passer if and only if ∀S ⊆ N , if i ∈ S, then v(S) = 1;

• vetoer if and only if ∀S ⊆ N , if i /∈ S, then v(S) = 0;

• dictator if and only if ∀S ⊆ N , v(S) = 1 if and only if i ∈ S.

It is easy to see that if a dictator exists, it is unique and all other players are dummies.
This means that a dictator has voting power one, whereas all other players have zero voting
power. We examine the complexity of identifying the dummy players in voting games. We
already know that for the case of WVGs, Matsui and Matsui [19] proved that it is NP-hard
to identify dummy players.
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Lemma 4.2. A player i in a simple game v is a dummy if and only if it is not present in
any minimal winning coalition.

Proof. Let us assume that player i is a dummy but is present in a minimal winning coalition.
That means that it is critical in the minimal winning coalition which leads to a contradiction.
Now let us assume that i is critical in at least one coalition S such that v(S ∪ {i}) = 1 and
v(S) = 0. In that case there is a S′ ⊂ S such that S′ ∪ {i} is a MWC.

Proposition 4.3. For a simple game v,

1. Dummy players can be identified in linear time if v is of the form (N,Wm).

2. Dummy players can be identified in polynomial time if v is of the form (N,W ).

Proof. We examine each case separately:

1. By Lemma 4.2, a player is a dummy if and only if it is not in member of Wm

2. By Lemma 2.2, Wm can be computed in polynomial time.

From the definition, we know that a player has veto power if and only if the player is
present in every winning coalition.

Proposition 4.4. Vetoers can be identified in linear time for a simple game in the following
representations: (N,W ), (N,Wm), WVG and MWVG.

Proof. We examine each of the cases separately:

1. (N,W ): Initialize all players as vetoers. For each winning coalition, if a player is not
present in the coalition, remove him from the list of vetoers.

2. (N,Wm): If there exists a winning coalition which does not contain player i, there
will also exist a minimal winning coalition which does not contain i.

3. WVG: For each player i, i has veto power if and only if w(N \ {i}) < q.

4. MWVG: For each player i, i has veto power if and only if N \ {i} is losing.

Proposition 4.5. For a simple game represented by (N,W ), (N,Wm), WVG or MWVG,
it is easy to identify the passers and the dictator.

Proof. We check both cases separately:

1. Passers: This follows from the definition of a passer. A player i is a passer if and only
if v({i}) = 1.

2. Dictator: It is easy to see that if a dictator exists in a simple game, it is unique. It
follows from the definition of a dictator that a player i is a dictator in a simple game
if v({i}) = 1 and v(N \ {i}) = 0.
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5 Complexity of desirability ordering

A desirability ordering on linear games is any ordering of players such that
1 �D 2 �D . . . �D n. A strict desirability ordering is the following ordering on play-
ers: 1 ◦ 2 ◦ . . . ◦ n where ◦ is either ∼D or �D.

Proposition 5.1. For a WVG:

1. A desirability ordering of players can be computed in polynomial time.

2. It is NP-hard to compute the strict desirability ordering of players.

Proof. WVGs are linear games with a complete desirability ordering. For (1), it is easy to
see that one desirability ordering of players in a WVG is the ordering of the weights. When
wi = wj , then we know that i ∼ j. Moreover, if wi > wj , then we know that i is at least
as desirable as j, that is i � j. For (2), the result immediately follows from the result by
Matsui and Matsui [19] where they prove that it is NP-hard to check whether two players
are symmetric.

Let v be a MWVG of m WVGs on n players. It is easy to see that if there is an ordering
of players such that such that wt

1 ≥ wt
2 ≥ . . . ≥ wt

n for all t, then v is linear. However, if
an ordering like this does not exist, this does not imply that the game is not linear. The
following is an example of a small non-linear MWVG:

Example 5.2. In game v = [10; 10, 9, 1, 0]∧[10; 9, 10, 0, 1], players 1 and 2 are incomparable.
So, whereas simple games with 3 players are linear, it is easy to construct a 4 player non-
linear MWVG.

Proposition 5.3. It is NP-hard to verify whether a MWVG is linear or not.

Proof. We prove this by a reduction from an instance of the classical NP-hard PARTITION
problem.

Name: PARTITION
Instance: A set of k integer weights A = {a1, . . . , ak}.
Question: Is it possible to partition A, into two subsets P1 ⊆ A, P2 ⊆ A so that P1∩P2 = ∅
and P1 ∪ P2 = A and

∑
ai∈P1

ai =
∑

ai∈P2
ai?

Given an instance of PARTITION {a1, . . . , ak}, we may as well assume that
∑k

i=1 ai is
an even integer, 2t say. We can transform the instance into the multiple weighted voting
v = v1 ∧ v2 where v1 = [q; 20a1, . . . , 20ak, 10, 9, 1, 0] and v2 = [q; 20a1, . . . , 20ak, 9, 10, 0, 1]
for q = 10 + 20t and k + 4 is the number of players.

If A is a ‘no’ instance of PARTITION, then we see that a subset of weights
{20a1, . . . , 20ak} cannot sum to 20t. This implies that players k + 1, k + 2, k + 3, and
k + 4 are not critical for any coalition. Since players 1, . . . , k have the same desirability
ordering in both v1 and v2, v is linear.

Now let us assume that A is a ‘yes’ instance of PARTITION with a partition (P1, P2). In
that case players k +1, k +2, k +3, and k +4 are critical for certain coalitions. We see that
v({k+1}∪({k+4}∪P1)) = 1, v({k+2}∪({k+4}∪P1)) = 0, v({k+1}∪({k+3}∪P1)) = 0
and v({k + 2} ∪ ({k + 3} ∪P1)) = 1. Therefore, players k + 1 and k + 2 are not comparable
and v is not linear.

Proposition 5.4. For a simple game v = (N,Wm), it can be verified in O(n|Wm|) time if
v is linear or not.
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Proof. Makino [17] proved that for a positive boolean function on n variables represented
by the set of all minimal true vectors minT (f), it can be checked in O(n|minT (f)|) whether
the function is regular (linear) or not. Makino’s algorithm CHECK-FCB takes minT (f) as
input and outputs ‘yes’ if f is regular and ‘no’ otherwise. The proof involves encoding the
minimal true vectors by a fully condensed binary tree. Then it follows that it can be verified
in O(n(|Wm|)) whether a simple game v = (N,Wm) is linear or not.

Corollary 5.5. For a simple game v = (N,W ), it can be verified in polynomial time if v
is linear or not.

Proof. We showed earlier that (N,W ) can be transformed into (N,Wm) in polynomial time.
After that we can use Makino’s method [17] to verify whether the game is linear or not.

Muroga [20] cites Winder [26] for a result concerning comparison between boolean vari-
ables and their incidence in prime implicants of a boolean function. Hilliard [14] points
out that this result can be used to check the desirability relation between players in WVG-
Realizable simple games. We generalize Winder’s result by proving both sides of the impli-
cations and extend Hilliard’s observation to that of linear simple games.

Proposition 5.6. Let v = (N,Wm) be a linear simple game and let dk,i = |{S : i ∈ S,
S ∈Wm, |S| = k}|. Then for two players i and j,

1. i ∼D j if and only if dk,i = dk,j for k = 1, . . . n.

2. i �D j if and only if for the smallest k where dk,i 6= dk,j, dk,i > dk,j.

Proof. 1. (⇒) Let us assume i ∼D j. Then by definition, v(S∪{j}) = 1⇔ v(S∪{i}) = 1
for all S ⊆ N \ {i, j}. So S ∪ {i} ∈ Wm if and only if S ∪ {j} ∈ Wm. Therefore,
dk,i = dk,j for k = 1, . . . n.

(⇐) Let us assume that i �D j. Since v is linear, i and j are comparable. Without
loss of generality, we assume that i �D j. Then there exists a coalition S \ {i, j} such
that v(S ∪ {i}) = 1 and v(S ∪ {j}) = 0 and suppose |S| = k − 1. If S ∪ {i} ∈ Wm,
then dk,i > dk,j . If S ∪ {i} /∈ Wm then there exists S′ ⊂ S such that S′ ∪ {i} ∈ Wm.
Thus there exists k′ < k such that dk′,i > dk′,j .

2. (⇒) Let us assume that i �D j and let k′ be the smallest integer where dk′,i 6= dk′,j .
If dk′,i < dk′,j , then there exists a coalition S such that S ∪ {j} ∈Wm, S ∪ {i} /∈Wm

and |S| = k′ − 1. S ∪ {i} /∈ Wm in only two cases. The first possibility is that
v(S ∪ {i}) = 0, but this is not true since i �D j. The second possibility is that
there exists a coalition S′ ⊂ S such that S′ ∪ {i} ∈ Wm. But that would mean that
v(S′ ∪ {i}) = 1 and v(S′ ∪ {j}) = 0. This also leads to a contradiction since k′ is the
smallest integer where dk′,i 6= dk′,j .

(⇐) Let us assume that for the smallest k where dk,i 6= dk,j , dk,i > dk,j . This means
there exists a coalition S such that S ∪ {i} ∈ Wm, S ∪ {j} /∈ Wm and |S| = k − 1.
This means that either v(S ∪ {j}) = 0 or there exists a coalition S′ ⊂ S such that
S′ ∪ {i} ∈ Wm. If v(S ∪ {j}) = 0, that means i �D j. If there exists a coalition
S′ ⊂ S such that S′ ∪ {j} ∈ Wm, then dk′,j > dk′,i for some k′ < k. This leads to a
contradiction.

We can use this theorem and Makino’s ‘CHECK-FCB’ algorithm [17] to make an algo-
rithm which takes as input a simple game (N,Wm) and returns NO if the game is not linear
and returns the strict desirability ordering otherwise.
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Algorithm 1 Strict-desirability-ordering-of-simple-game
Input: Simple game v = (N,Wm) where N = {1, . . . , n} and Wm(v) = {S1, . . . , S|W m|} .
Output: NO if v is not linear. Otherwise output desirability equivalence classes starting
from most desirable, if, v is linear.
1: X = CHECK-FCB(Wm)
2: if X = NO then
3: return NO
4: else
5: Initialize an n × n matrix D where entries di,j = 0 for all i and j in N
6: for i = 1 to |Wm| do
7: for each player x in Si do
8: d|Si|,x ← d|Si|,x + 1
9: end for

10: end for
11: return classify(N,D, 1)
12: end if

Algorithm 2 classify
Input: set of integers classindex, n × n matrix D, integer k.
Output: subclasses.
1: if k = n + 1 or |classindex| = 1 then
2: return classindex

3: end if
4: s← |classindex|
5: mergeSort(classindex) in descending order such that i > j if dk,i > dk,j .
6: for i = 2 to s do
7: subindex← 1; classindex.subindex ← classindex[1]
8: if dk,classindex[i] = dk,classindex[i−1] then
9: classindex.subindex ← classindex.subindex ∪ classindex[i]

10: else if dk,classindex[i] < dk,classindex[i−1] then
11: subindex← subindex + 1
12: classindex.subindex ← {classindex[i]}
13: end if
14: end for
15: Returnset← ∅
16: A← ∅
17: for j = 1 to subindex do
18: A← classify(classindex.j, D, k + 1)
19: Returnset← A ∪ Returnset
20: end for
21: return Returnset

Proposition 5.7. The time complexity of Algorithm 1 is O(n.|Wm|+ n2log(n))

Proof. The time complexity of CHECK − FCB is O(n.|Wm|). The time complexity of
computing matrix D is O(Max(|Wm|, n2). For each iteration, sorting of sublists requires at
most O(nlog(n)) time. There are at most n loops. Therefore the total time complexity is
O(n.|Wm|) + O(Max(|Wm|, n2) + O(n2log(n)) = O(n.|Wm|+ n2log(n)).
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Corollary 5.8. The strict desirability ordering of players in a linear simple game v =
(N,W ) can be computed in polynomial time.

Proof. The proof follows directly from the Algorithm. Moreover, we know that the set of all
winning coalitions can be transformed into a set of minimal winning coalitions in polynomial
time.

6 Power indices and Chow parameters

Apart from the Banzhaf and Shapley-Shubik indices, there are other indices which are also
used. Both the Deegan-Packel index [5] and the Holler index [15] are based on the notion
of minimal winning coalitions. Minimal winning coalitions are significant with respect to
coalition formation [4]. The Holler index, Hi of a player i in a simple game corresponds to
the Banzhaf index with one difference: only swings in minimal winning coalitions contribute
towards the Holler index.

Definitions 6.1. We define the Holler value Mi as {S ∈ Wm : i ∈ S}. The Holler index
which is called the public good index is defined by Hi(v) = |Mi|∑

j∈N |Mj | . The Deegan Packel

index for player i in voting game v is defined by Di(v) = 1
|W m|

∑
S∈Mi

1
|S| .

Compared to the Banzhaf index and the Shapley-Shubik index, both the Holler index and
the Deegan-Packel index do not always satisfy the monotonicity condition. In [19], Matsui
and Matsui prove that it is NP-hard to compute the Banzhaf index, Shapley-Shubik index
and Deegan-Packel index of a player. We can use a similar technique to also prove that it is
NP-hard to compute the Holler index of players in a WVG. This follows directly from the
fact that it is NP-hard to decide whether a player is dummy or not. Prasad and Kelly [21]
and Deng and Papadimitriou [7] proved that for WVGs, computing the Banzhaf values and
Shapley-Shubik values is #P-parsimonious-complete and #P-metric-complete respectively.
(For details on #P-completeness and associated reductions, see [10]). Unless specified,
reductions considered with #P-completeness will be Cook reductions (or polynomial-time
Turing reductions).

What we see is that although it is NP-hard to compute the Holler index and Deegan-
Packel of players in a WVG, the Holler index and Deegan-Packel of players in a simple game
represented by its MWCs can be computed in linear time:

Proposition 6.2. For a simple game (N,Wm), the Holler index and Deegan-Packel index
for all players can be computed in linear time.

Proof. We examine each of the cases separately:

• Initialize Mi to zero. Then for each S ∈Wm, if i ∈ S, increment Mi by one.

• Initialize di to zero. Then for each S ∈ Wm, if i ∈ S, increment di, by 1
|S| . Then

Di = di

|W m| .

Proposition 6.3. For a simple game v = (N,W ), the Banzhaf index, Shapley Shubik index,
Holler index and Deegan-Packel index can be computed in polynomial time.

Proof. The proof follows from the definitions. We examine each of the cases separately:

• Holler index: Transform W into Wm and then compute the Holler indices.
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• Deegan-Packel: Transform W into Wm and then compute the Deegan-Packel indices.

• Banzhaf index: Initialize Banzhaf values of all players to zero. For each S ∈W , check
if the removal of a player results in S becoming losing (not a member of W ). In that
case increment the Banzhaf value of that player by one.

• Shapley-Shubik index: Initialize Shapley values of all players to zero. For each S ∈W ,
check if the removal of a player results in S becoming losing (not a member of W ). In
that case increment the Shapley value of the player by (|S| − 1)!(n− |S|)!.

The time complexity for all cases is polynomial in the order of the input.

For a simple game (N,Wm), listing W the winning coalitions may take time exponential
in the number of players. For example, let there be only one minimal winning coalition
S which contains players 1, . . . , dn/2e. Then the number of winning coalitions to list is
exponential in the number of players. Moreover, if |Wm| > 1, minimal winning coalitions
can have common supersets. It is shown below that for a simple game (N,Wm), even
counting the total number of winning coalitions is #P-complete. Moreover, whereas it is
polynomial time easy to check if a player has zero voting power (a dummy) or whether it has
voting power 1 (dictator), it is #P-complete to find the actual Banzhaf or Shapley-Shubik
index of the player.

Proposition 6.4. For a simple game v = (N,Wm), the problem of computing the Banzhaf
values of players is #P-complete.

Proof. The problem is clearly in #P. We prove the #P-hardness of the problem by providing
a reduction from the problem of computing |W |. Ball and Provan [1] proved that computing
|W | is #P-complete. Their proof is in context of reliability functions so we first give the
proof in terms of simple games. It is known that known [22] that counting the number of
vertex covers is #P-complete (a vertex cover in a graph G = (V,E) is a subset C of V such
that every edge in E has at least one endpoint in C). Now take a simple game v = (N,Wm)
where for any S ∈ Wm, |S| = 2. Game v has a one-to-one correspondence with a graph
G = (V,E) such that N = V and {i, j} ∈Wm if and only if {i, j} ∈ E(G). In that case the
total number of losing coalitions in v is equal to the number of vertex covers of G. Therefore
the total number of winning coalitions is equal to 2n−(number of vertex covers of G) and
computing |W | is #P-complete.

Now we take a game v = (N,Wm) and convert it into another game v′ = (N ∪ {n +
1},Wm(v′)) where for each S ∈ Wm(v), S ∪ {n + 1} ∈ Wm(v′). In that case computing
|W (v)| is equivalent to computing the Banzhaf value of player n + 1 in game v′. Therefore,
computing Banzhaf values of players in games represented by MWCs is #P-hard.

It follows from the proof that computing power of collectivity to act( |W |
2n ) and Chow

parameters for a simple game (N,Wm) is #P-complete. Goldberg remarks in the conclusion
of [13] that computing the Chow parameters of a WVG is #P-complete. It is easy to
prove this. The problem of computing |W | and |Wi| for any player i is in #P since a
winning coalition can be verified in polynomial time. It is easy to reduce in polynomial
time the counting version of the SUBSET-SUM problem to counting the number of winning
coalitions. Moreover, for any WVG v = [q;w1, . . . , wn], |W (v)| is equal to |Wn+1(v′)| where
v′ is [q;w1, . . . , wn, 0]. Therefore computing |Wi| and |W | for a WVG is #P-complete.

7 Conclusion

A summary of results has been listed in Table 1. A question mark indicates that the specified
problem is still open. It is conjectured that computing Shapley values is #P-complete and
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Table 1: Summary of results
(N, W ) (N, W m) WVG MWVG

IDENTIFY-DUMMIES P linear NP-hard NP-hard

IDENTIFY-VETOERS linear linear linear linear

IDENTIFY-PASSERS linear linear linear linear

IDENTIFY-DICTATOR linear linear linear linear

CHOW PARAMETERS linear #P-complete #P-complete #P-complete

IS-LINEAR P P (Always linear) NP-hard

DESIRABILITY-ORDERING P P P NP-hard

STRICT-DESIRABILITY P P NP-hard NP-hard

BANZHAF-VALUES P #P-complete #P-complete #P-complete

BANZHAF-INDICES P ? NP-hard NP-hard

SHAPLEY-SHUBIK-VALUES P ? #P-complete #P-complete

SHAPLEY-SHUBIK-INDICES P ? NP-hard NP-hard

HOLLER-INDICES P linear NP-hard NP-hard

DEEGAN-PACKEL-INDICES P linear NP-hard NP-hard

it is NP-hard to compute Banzhaf indices for a simple game represented by (N,Wm). It is
found that although WVG, MWVG and even (N,Wm) is a relatively compact representation
of simple games, some of the important information encoded in these representations can
apparently only be accessed by unraveling these representations. There is a need for a
greater examination of transformations of simple games into compact representations.
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