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Abstract

Knockout tournaments are very common in practice for various settings such as sport events
and sequential pairwise elimination elections. In this paper, we investigate the computational
aspect of tournament agenda control, i.e., finding the agenda that maximizes the chances of a
target player winning the tournament. We consider several modelings of the problem based on
different constraints that can be placed on the structure of the tournament or the model of the
players. In each setting, we analyze the complexity of finding the solution and show how it
varies depending on the modelings of the problem. In general, constraints on the tournament
structure make the problem become harder.

1 Introduction

Tournaments constitute a very common social institution. Their best known use is in sporting events,
which attract millions of viewers and billions of dollars annually. But tournaments also play a key
role in other social and commercial settings, ranging from the employment interview process to
patent races and rent-seeking contests (see [12, 15, 9] for details).

Tournaments constitute a strict subclass of all competition formats, and yet they still allow for
many different variations. All tournaments consist ofstagesduring which severalmatchestake
place, matches whose outcome determines the set of matches in the next stage, and so on, until
some final outcome of the tournament is reached. But tournaments vary in how many stages take
place, which matches are played in each stage, and how the outcome is determined.

In this paper we focus on a narrower class of tournaments:knockouttournaments. In this very
familiar format the players are placed at the leaf nodes of a binary tree. Players at sibling nodes
compete against each other in a pairwise match, and the winner of the match moves up the tree. The
player who reaches the root node is the winner of the tournament. We show an example in Figure 1.

The knockout tournament is not only a very popular tournament type used in practice for sporting
events, but it is also a very common voting procedure. In the voting literature, it is referred to as
sequential elimination voting with pairwise comparison [3, 8]. In this setting, each candidate is a
player in the tournament, and the result of a match is based on the result of the pairwise comparison
between the candidates as manifested in the electorate’s votes. The result of the comparison can be
either deterministic (as in [7]) or probabilistic (as in [11]).
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Figure 1: An example of a tournament agenda for 6 players and one possible outcome
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In this paper we investigate the computational aspect of controlling the tournament agenda by
the tournament designer. Specifically, we study the problem of how to find a tournament agenda
to maximize the chance of a given target player winning the tournament. This seemingly simple
question turns out to be surprisingly subtle and some of the answers are counter-intuitive. To begin
with, note that the number of possible agenda grows extremely quickly with the number of players.
Moreover, there are several variations of the problem modeling which lead to very different charac-
teristics of the solutions. In particular, when there are no constraints on the modeling of the problem,
it is unknown whether there exists an efficient algorithm to find the optimal agenda. However, when
we place certain natural constraints on the structure of the tournament and the match results between
the players, the problem becomes either easy or provably hard.

In Section 2 we summarize the existing results from the literature. After that we first discuss the
general model for tournament design in Section 3. We then describe in Section 4 and 5 different
constraints that can be placed on the model and our results for these settings. We conclude in
Section 6 and suggest possible directions for future work.

2 Related Works

There are two approaches to determining the quality of a tournament design. The first one is ax-
iomatic. For example, in [14], three axioms are proposed to specify what a “good” seeding should
satisfy, called “Delayed Confrontation”, “Sincerity Rewarded”, and “Favoritism Minimized”. Alter-
natively, in [6], a “Monotonicity” property is put forward.

In the second approach, rather than placing axiomatic constraints on the design, the goal is to
optimize a certain quantity. The most common objective function is to find the design that maximizes
the winning probability of the best player. This probability is also called the predictive power of
the tournament. This has been the focus of much work (see, e.g., [5, 1, 13]). They all make
the assumption that there is an ordering of the players based on their intrinsic abilities. In their
models, the probability of one player winning against another is also known and is monotonic with
regard to the abilities of the players, i.e., any player will have a higher chance of winning against
a weaker player than winning against a stronger player. Nevertheless, they focus on only one type
of tournament - balanced knockout tournaments, and only with small cases ofn. In our work, we
generalize the objective function to maximizing the winning probability of any given player, and we
also consider various other modelings of the problem.

Tournament design problems are also addressed under the context of voting. In [7], the candi-
dates are competing in an election based on sequential majority comparisons along a binary voting
tree. In each comparison, the candidate with more votes wins and moves on; the candidate with less
votes is eliminated. Essentially, the candidates are competing in a knockout tournament in which
the result of each match is deterministic. The probability of winning a match is either 0 or 1. In
this setting, without any constraints on the structure of the voting tree, there is a polynomial time
algorithm to decide whether there exists a voting tree that will allow a particular candidate to win the
election. The problem of finding the right voting tree (referred to as the “control” problem) is also
addressed in [11] but with probabilistic comparison results instead. Here, the objective becomes
finding a voting tree that allows a candidate to win the election with probability at least a certain
value. In both [7, 11], the authors show that when the voting tree has to be balanced, some modified
versions of the control problem are NP-complete.

The computational aspects of other methods of controlling an election are also considered in
[2, 4]. Here, the organizer of the election is trying to change the result of the election through
controls (such as adding or deleting) of the voters or candidates. It has been shown that for certain
voting protocols, some methods of control are computationally hard to perform.
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3 The general model and problem

We start out with the most general model of a knockout tournament. In this setting, there is no
constraint on the structure of the tournament, as long as it only allows pairwise matches between
players. We also assume that for any pairwise match, the probability of one player winning against
the other is known. This probability can be obtained from past statistics or from some learning mod-
els. Here we do not place any constraints on the probabilities besides the fundamental properties.
Thus there might be no transitivity between the winning probabilities, e.g., playeri has more than
50% chance of beating playerj, playerj has more than50% chance of beating playerk, but player
k also has more than50% chance of beating playeri.

We define a knockout tournament as the following:

Definition 1 (General Knockout Tournament). Given a setN of players and a matrixP such that
Pi,j denotes the probability that playeri will win against playerj in a pairwise elimination match
and0 ≤ Pi,j = 1− Pj,i ≤ 1 (∀i, j ∈ N ), a knockout tournamentKTN = (T, S) is defined by:

• A tournament structureT which is a binary tree with|N | leaf nodes

• A seedingS which is a one-to-one mapping between the players inN and the leaf nodes ofT

We writeKTN asKT when the context is clear.

To carry out the tournament, each pair of players that are assigned to sibling leaf nodes with the
same parent compete against each other in a pairwise elimination match. The winner of the match
then ”moves up” the tree and then competes against the winner of the other branch. The player who
reaches the root of the tournament tree wins the tournament.

Intuitively the probability of a player winning the tournament depends on the probability that it
will face a certain opponent and win against that opponent. We formally define this quantity below:

Definition 2 (Probability of Winning Tournament). Given a setN of players, a winning probability
matrix P , and a knockout tournamentKTN = (T, S), the probability of playerk winning the
tournamentKTN , denotedq(k,KTN ) is defined by the following recursive formula:

1. If N = {j}, thenq(k,KTN ) =
{

1 if k = j
0 if k 6= j

2. If |N | ≥ 2, let KTN1 = (T1, S1) andKTN2 = (T2, S2) be the two sub-tournaments ofKT such
that T1 andT2 are the two subtrees connected to the root node ofT , andN1 andN2 are the set of
players assigned to the leaf nodes ofT1 andT2 byS1 andS2 respectively. Ifk ∈ N1 then

q(k,KTN ) =
∑
i∈N2

q(k,KTN1) ∗ q(i,KTN2) ∗ Pk,i

and symmetrically fork ∈ N2.

This recursive formula also gives us an efficient way to calculateq(k,KT ):

Proposition 1. Given a setN of players, a winning probability matrixP , and a knockout tourna-
mentKTN = (T, S), the complexity of calculatingq(k, KT ) with k ∈ N is O(|N |2).
Proof. First note that the number of operations is linear in the number of pairs(i, j) with i, j ∈ N
we consider. Moreover, for a giveni, j ∈ N we match upi andj only once. Thus the complexity is
O(|N |2).

Given a set of playersN and the winning probabilitiesP between the players, the goal of the
tournament designer is to come up with the tournament structureT and the seedingS that will
maximize the probability of a given playerk ∈ N winning the tournament. This optimization
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Figure 3: Knockout tournamentKT

problem has a decision version which asks if there existT andS such that the probability ofk
winning the tournament is greater than a given valueθ.

The first intuition for the optimization problem is that the later any player plays in the tourna-
ment, the better chance she has of winning the tournament. We state and prove this intuition in the
following proposition.

Proposition 2. Given a set of playersN and the winning probability matrixP , the tournament
agenda that maximizes the probability of playerk ∈ N has the biased structure as in Figure 2 in
whichk has to play only the final match.

Proof. We will prove this theorem by induction.
Base case:When|N | = 2, there is only one possible binary tree with 2 leaf nodes.
Inductive step:Assume that the theorem holds forN with |N | ≤ n − 1. For any givenk ∈ N ,

we will show that it also holds forN with |N | = n by converting any tournament agenda that
does not have a biased structure to one with the same structure as in Figure 2 such that in this new
tournament,k has at least the same chance of winning.

Let’s consider any given tournament agendaKT that does not have the biased structure. Let
KT1 andKT ′2 be the two disjoint sub-tournaments that make upKT , and letN1, N ′

2 be the set
of players assigned toKT1, KT ′2 respectively. Assume wlog thatk ∈ N ′

2. Since|N ′
2| < |N |, the

chance ofk winning the tournament is maximized whenKT ′2 has the biased structure. Therefore
we just need to compare the chance ofk winning in KT (as shown in Figure 3) with its chance in
KT ′ as shown in Figure 2:

q(k, KT ) =
∑
i∈N ′

2

[pk,i ∗ q(i,KT2)] ∗
∑

j∈N1

[pk,j ∗ q(j, KT1)]

q(k,KT ′) =
∑

j∈N1,i∈N2

pk,i ∗ q(i,KT2) ∗ pi,j ∗ q(j, KT1)

+
∑

j∈N1,i∈N2

pk,j ∗ q(j,KT1) ∗ pj,i ∗ q(i, KT2)

q(k, KT ′)− q(k, KT ) =
∑

j∈N1,i∈N2

q(j, KT1)q(i, KT2) [pk,j ∗ pj,i + pk,i ∗ pi,j − pk,i ∗ pk,j ]

pi,j + pj,i = 1 ⇒ pk,j ∗ pj,i + pk,i ∗ pi,j ≥ min{pk,i, pk,j} ≥ pk,i ∗ pk,j

Therefore we haveq(k, KT ′) ≥ q(k, KT ).

Even though we know something about the shape of the optimal tournament structure, it is still
an open problem whether there exists an efficient algorithm to find the exact optimal structure. How-
ever, when there are certain natural constraints on the structures of the tournament or the winning
probabilities of the players, we manage to get a better analysis of the problem. In the next sections
we will discuss the constraints and the results in the new settings.
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4 A constraint on the structure of the tournament

In the previous section, we have shown that the optimal tournament structure is very unbalanced
with the target player on one side and the rest of the players on the other side of the tree. One might
say that this structure is unfair since the target player will have to compete only in the final match.
One particular way to enforce fairness is to require the tournament structure to be a balanced binary
tree (for simplicity, we assume that the number of players is a power of 2). This way, every player
has to play the same number of matches in order to win the tournament.

Definition 3 (Balanced Knockout Tournament). Given a setN of players such that|N | = 2k, a
knockout tournamentKT = (T, S) is called balanced whenT is a balanced binary tree.

The balanced knockout tournament is in fact the most commonly used knockout tournament
format in practice. In this setting, since the structure of the tournament is fixed, the remaining
control of the tournament designer is in the seeding of the tournament, i.e., the assignment of players
to the leaf nodes of the tree. Thus our previous problem is reduced to finding the seeding that will
maximize the winning probability of a particular player. We have the following hardness result for
the decision version of this problem:

Theorem 3. Given a setN of players such that|N | = 2k, and a winning probability matrixP ,
it is NP-complete to decide whether there exists a balanced knockout tournamentKT such that
q(k, KT ) ≥ δ for a givenδ andk ∈ N .

This theorem follows from Theorem 5. Therefore we will defer the discussion of the proof of
this theorem to the next section. Note that the same result holds when the number of players is not
a power of 2. In this case, when there is an odd number of players at any round, the tournament
designer can let any player advance to the next round without competing. This allows certain bias,
e.g., if the number of players is2k + 1, then the target player can actually advance straight to the
final match. Nevertheless, it is still NP-hard to find the optimal agenda for the target player.

5 Constraints on the player model

Besides placing a constraint on the structure of the tournament, we can also enforce certain con-
straints on the winning probabilities between the players. One such constraint can be on the possible
values that the probabilities can take. Another constraint is a certain overall structure that the prob-
abilities need to satisfy. We will discuss both types of constraints below.

5.1 Win-Lose Match Results

The first constraint we consider is requiring the result of each match to be deterministic, i.e., winning
probabilities can only be either 0 or 1. As mentioned in Section 2, a knockout tournament in this
setting is analogous to a sequential pairwise elimination election. Given a tournament agenda, a
player in the tournament will either win the tournament for certain (winning with probability 1) or
will lose for certain (winning with probability 0). Note that the winning probability matrix can be
any arbitrary binary matrix.

When there is no constraint on the structure of the tournament, as shown in [7], there exists a
polynomial time algorithm to find the tournament agenda that allows a given playerk to win the
tournament or decide that it is impossible fork to win. When the tournament has to be balanced, it
is still an open problem.

We shall now discuss another problem model that we believe will be helpful for the understand-
ing of the proof of Theorem 5. In this model, there is no constraint to the tournament tree, except
that each player has to start from a pre-specified round. In other words, the tournament can take the
shape of any binary tree, but each player has to start at certain depth of the tree.

419



Definition 4 (Knockout Tournament with Round Placements). Given a setN of players and a
winning probability matrixP , a vectorR ∈ N|N |, if there exists a knockout tournamentKT such
that in KT , player i starts from roundRi (the leaf nodes with the maximum depth in the tree are
considered to be at round 0), thenR is called afeasibleround placement and such tournamentKT
is called a knockout tournament with round placementR. When there is an odd number of players
at any given round, one player playing at that round can automatically advance to the next round.

Note that when all players have round placement 0, the tournament is balanced. We have the
following hardness result:

Theorem 4. Given a set of playersN , the winning probability matrixP such that∀i 6= j ∈ N ,
Pi,j ∈ {0, 1}, and a feasible round placementR, it is NP-complete to decide whether there exists a
tournament agendaKT with round placementsR such thatq(k, KT ) ≥ δ for a givenδ andk ∈ N .

Proof. It is easy to show that the problem is in NP. We will show the problem is NP-complete using
a reduction from the Vertex Cover problem.

Vertex Cover: Given a graphG = {V, E} and an integerk, is there a subsetC ∈ V such that
|C| ≤ k andC coversE?

Reduction method:
We construct a tournamentKT = (T, S) with a special playero such thato wins KT with
probability 1 if and only if there exists a vertex cover of size at mostk.

KT contains the following players1:

1. Objective player:o which starts at round 0.

2. Vertex players:{vi ∈ V } which start at round 0. There aren = |V | such players.

3. Edge players:{ei ∈ E}. There arem = |E| such players.ei starts at round(n− k + i− 1).

4. Filler players: For each roundr such that(n−k+m) > r ≥ (n−k), there is one filler player
fr that starts at roundr. Thus there are a total ofm of them. They are meant for playero.

5. Holder players: For each roundr, there are a set of holder playershr
i (i.e., multiple copies of

hr) that start at roundr. These players are meant for the vertex players. The number of copies
of hr depends on the value ofr:

- If 0 ≤ r < (n− k), there are(n− r − 1) of them

- If (n− k) ≤ r < (n− k + m), there are(k − 1) of them

- If (n− k + m) ≤ r < (n + m), there are(m + n− r − 1) of them

The winning probabilities between the players are assigned as in Table 5.1. In a nutshell:

1. o only wins againstvi andf with probability 1 (always wins) and loses against all others with
probability 1 (always loses).

2. vi always wins againsthr, ej that it covers, andvi′ with i′ > i. It always loses against all
other players.

3. ej always wins againsthr, f , ej′ with j′ > j.

4. Between twofr players, the winner can be either one of them.

5. Between twohr players, the winner can be either one of them.
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o vj ej fr hr
i

o - 1 0 1 0
vi - 1 if i ≤ j, 0 otherwise 1 if vi coversej , 0 otherwise 0 1
ei - - 1 if i ≤ j, 0 otherwise 1 1
fr - - - arbitrary 1
hr

i - - - - arbitrary

Table 1: The winning probabilities of row players against column players inKT

The reduction is polynomial since the numbers of players in the tournament is polynomial.
We first need to show how to construct an agendaKT that letso win with probability 1 if there

exists a vertex coverC of size at mostk. The desiredKT is composed of three phases:
Phase 1:Phase 1 is the first(n − k) rounds. In this phase, we eliminate all vertex players that

are not inC while keeping the remaining vertex players, ando. At each roundr, match upo with
v′ /∈ C and let each of the(n − r) holder playershr match up with the remainingvi. Notice that
after each round, one vertex player gets eliminated and there is one lesshr. After (n − k) rounds,
there arek vertex players left. Each of them corresponds to a vertex inC.

Phase 2:Phase 2 is the followingm rounds. In this phase, we eliminate all edge players. For
each round, we match upo with fr. At each roundr, there will be one edge playere starting at that
round. We matche againstvi ∈ C that covers it. For the remaining vertex players, we match them
up with (k − 1) holder playershr. After m rounds, all of the edge players will be eliminated (since
thek vertex players left form a vertex cover). The remaining players at the end of this phase arek
vertex players ando.

Phase 3:Phase 3 is the finalk rounds after Phase 2. In this phase, we eliminate the remaining
vertex players. At each round, the number of new holder players starting at that round is one less
than the number of remaining vertex players. We match up the vertex players withhr, ando with
the remainingv. At the end of this phase, onlyo remains.

For the other direction, we need to prove thato can win the tournament with probability 1 only
if there is a vertex coverC of sizek. First note that during Phase 1, foro not to get eliminated, it
has to play against a vertex playerv. Thus after the first(n − k) rounds, there are at mostk vertex
players remaining (there can be less if two vertex players play against each other).

During Phase 2, the only ways that an edge playere can be eliminated is to play againstv that
covers it or play against another edge playere′ which started at an earlier round. Ife is eliminated
by e′, there must be either onehr or onev that was eliminated earlier by an edge playere′′ (which
can possibly bee′). Since there is only(k − 1) holder players at each round, ifhr was eliminated
by e′′, two vertex players must have played against each other and one of them must have been
eliminated. Thus for both cases, there is at least onev that got eliminated. Note that in this phase, at
any round, there are only(k + 1) new players. Therefore, at the end of this phase, there are exactly
(k + 1) players remaining includingo. If all edge players get eliminated by vertex players, there are
k vertex players remaining. If there is at least onee which did not get eliminated or got eliminated
by anothere′, there are less thank vertex players remaining.

Now during Phase 3, foro to win the tournament,o can only play against a vertex player. Thus
the number of vertex players is reduced each round by 1. Moreover, since there are(k − 1) holder
playershr starting at the first round of the phase, and one less for each round after that, if there are
less thank vertex players at the beginning of Phase 3, there will be at least one non-vertex player
remaining. If that is the case, at the last round of Phase 3, there must be at least one edge or holder
player remaining ando will lose the tournament.

Therefore, foro to win the tournament, there must bek vertex players at the beginning of Phase
3. This implies all edge players must have been eliminated by vertex players during Phase 2. So

1We overload some notations here but the given the context, it should be clear
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each edge player must be covered by at least one of the remaining vertex players after Phase 1. Since
there are at mostk of them after Phase 1, these remaining vertex players form a vertex cover of size
at mostk.

After placing this constraint on the structure of the tournament tree, the tournament design prob-
lem has changed from easy to hard. This gives an indication that the design problem for balanced
knockout tournament with deterministic match results is probably also hard.

5.2 Win-Lose-Tie Match Results

When the match results are deterministic, it is an open problem whether there exists an efficient
algorithm to find the optimal balanced knockout tournament for a given player. Surprisingly, when
we allow there to be a tie between two players (each has equal chance of winning), the problem
becomes provably hard.

Theorem 5. Given a set of playersN , a winning probability matrixP such thatPi,j ∈ {0, 1, 0.5},
it is NP-complete to decide whether there exists a balanced knockout tournamentKT such that
q(k, KT ) ≥ δ for a givenδ andk ∈ N .

The proof of Theorem 5 is similar to the proof of Theorem 4 with two modifications to the
reduction:
1. We need to construct some gadgets that simulate the round placements, i.e., if playeri starts from
roundr, playeri will not be eliminated until roundr. In order to achieve this, we will introduce
(2r − 1) filler players that only playeri can beat. This will keep playeri busy until at least roundr
2. We need to make sure that the round placement for any player is at mostO(log(n)) with n equal
to the size of the Vertex Cover Problem so that the size of the tournament is still polynomial.

Proof of Theorem 5.Similar to the Proof of Theorem 4, we show here a reduction from the Vertex
Cover problem.

Reduction method:
We construct a tournamentKT = (T, S) with a special playero such thato wins KT with
probability 1 if and only if there exists a vertex cover of size at mostk.

KT contains the following players:

1. Objective player:o

2. Vertex players:{vi ∈ V } and an extra special vertexv0 which does not cover any edge. If we
let n = |V | then there aren + 1 vertex players.

3. Edge players:{ei ∈ E}. There arem = |E| edge players.

4. Filler players: For each roundr such that0 < r ≤ dlog(n − k)e, there arek filler players
fr

v,i, i.e., there arek copies offr
v . These players are meant to keep at leastk vertex players

advancing to the next round. For each roundr such thatdlog(n− k)e < r ≤ dlog(n− k)e+
dlog(m)e, there arek filler playersfr

e,i. These are meant for the edge players. We might refer
to both types of filler players asfr

i or just simplyfr.

5. Holder players: For each edge playerei, there are2dlog(n−k)e − 1 edge holder play-
ers hl

ei
. These will make sure no edge player will be eliminated before reaching round

dlog(n − k)e + 1. For each filler playerfr
i , there are2r − 1 holder playershl

fr
i

that
will make sure no filler player will be eliminated before reaching roundr. There are also
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K = 2dlog(n−k)e+dlog(m)e+dlog(k+1)e+1 − 1 special holder playershl
o that will allow player

o to advance to the final match.

The winning probabilities between the players are assigned as in Table 5.2. In a nutshell:

1. o only wins againstvi andho with probability 1 (always wins) and loses against all others
with probability 1 (always loses).

2. vi always wins againstfr (bothfr
v andfr

e ), ej that it covers, andvi′ with i′ > i. It always
loses against all other players. The special vertex playerv0 does not win against any edge
player but wins against any other vertex player.

3. ej always wins againsthej , fr, and wins with probability 0.5 against anotherej′ .

4. For the holder players, each of them only loses to the player it is meant for. For example, edge
holder playerhl

ej
only loses to the edge playerej . Holder players tie when playing against

each other or against an edge player (except for the edge holder players they are meant for).
They always win againsto and vertex players.

vj ej fr′
j hl′

ej
hl′

fr′
j

hl′
o

o 1 0 0 0 0 1
vi 1 if i < j, 1 if vi coversej , 1 0 0 0

0 otherwise 0 otherwise
ei - 0.5 0.5 1 if i = j, 1 1

0.5 otherwise
fr

i - - 0.5 0.5 1 if fr
i = fr′

j , 1
0.5 otherwise

hl
ei

- - - 0.5 0.5 1
hl

fr
i

- - - - 0.5 1

hl
o - - - - - 0.5

Table 2: The winning probabilities of row players against column players inKT

The reduction is polynomial since the number of players in the tournament isO(K). Without
loss of generality, we assume that the number of total players is a power of 2 because we can always
add moreho players and this will not affect the reduction shown below. Note that we consider the
first round as round 1.

First we need to show how to construct an agendaKT that leto win with probability 1 if there
exists a vertex coverC of size at mostk. The desiredKT is composed of two phases:

Phase 1:Phase 1 is the firstdlog(n − k)e rounds. In this phase, we eliminate allv /∈ C except
the special vertex playerv0 while keepingo and all edge players. During this phase, for each player
that has corresponding holder players, we will match them together. This will help each edge player
e to get to rounddlog(n− k)e+ 1, and each filler playerfr to get to roundr. We also matcho with
the holder playerho to helpo advancing to the final round. At round1 ≤ r ≤ dlog(n − k)e, if the
vertexvi is in C, we match the vertex playervi with the filler playerfr. Otherwise we match it with
another vertex player that is not inC. At the end of this phase , there are onlyk + 1 vertex players
remaining. One of them is the special vertex playerv0.

Phase 2:Phase 2 is the followingdlog(m)e+dlog(k+1)e+1 rounds. In this phase, we eliminate
all the edge players by repeatedly matching each vertex player with the edge players that it covers.
If there are more edge players than vertex players, we will match the remaining edge players who
are covered by the same vertex player with each other. If there is any edge player that does not have
a match, we will match it with the edge filler playerfr

e . Note that there are at mostk edge players
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that do not have a match. After each round, at least half of the edge players will be eliminated. Thus
after at mostdlog(m)e rounds, all the edge players will be eliminated. There will be only vertex
playersv, o andho remaining. We just need to match them up untilo is the only player left sinceo
wins againstv andho with probability 1.

For the other direction, we need to prove thato can win the tournament with probability 1 only if
there is a vertex coverC of sizek. We need to show that ifo wins with probability 1, after Phase 1,
there will be onlyk + 1 vertex players remaining including the special vertexv0, and during Phase
2, all edge players will be eliminated by one of those remaining vertex players, i.e., no edge players
gets eliminated during phase 1.

First note that foro to win with probability 1, no holder players exceptho can get to the fi-
nal. Thus during the firstdlog(n − k)e rounds, no edge player can get eliminated since there are
(2dlog(n−k)e − 1) holder players for each edge player. Also no filler playerfr can get eliminated
before roundr. At roundr such thatr ≤ dlog(n−k)e, the only way for a vertex player to advance to
the next round is either playing against a filler playerfr or another vertex player. It cannot advance
by playing against an edge player that it covers, since that would eliminate that edge player too early.
It cannot advance by playing a filler playerfr′ with r′ > r either, since that would eliminatefr′ too
early. Therefore, besidesk vertex players playing againstfr, at least half of the remaining vertex
players will be eliminated after each round. At the end of rounddlog(n − k)e, there can be only at
mostk + 1 vertex players remaining. Note that since vertex playerv0 wins against any other vertex
players, it must still remain.

For o to win the tournament with probability of 1,o must not play against any edge players
either. Moreover, note that when two edge players play against each other, each of them has a50%
chance moving on to the next round. Thus the only way that an edge player gets eliminated is to play
against a vertex player that covers it. So, each edge player must be covered by at least one of the
remainingk vertex players (sincev0 does not cover any edge). Thus the set ofk remaining vertex
players forms a vertex cover of sizek.

The problem of finding the optimal balanced knockout tournament with Win-Lose-Tie match
results is reducible to our general balanced knockout tournament. This constitutes the proof for
Theorem 3.

When there is no constraint on the structure of the tournament, there exists a polynomial time
algorithm to find an agenda that will allow a target player to win with probability 1 or decide that
such an agenda does not exist. This algorithm is a modification the algorithm introduced in [7] to
compute possible winners. In this algorithm, when there is a tie between 2 players, we remove all
the edges between them in the tournament graph. We will then proceed to finding all the winning
paths from the target player to other players in the tournament. If there is a winning path to each of
the other players, there exists an agenda to make the target player win, and that agenda is the binary
tree formed by combining the winning paths.

5.3 Monotonic Winning Probabilities

Another natural constraint is to require a certain overall structure of the winning probability matrix
P . One of the most common models in the literature is the monotonic model (see for example [5,
10, 6, 14]). In this model, the players are numbered from 1 ton in descending order of unknown
intrinsic abilities. We only know the probability of one player winning against another. These
winning probabilities are also correlated to the intrinsic abilities.

Definition 5 (Knockout Tournament with Monotonic Winning Probabilities). A knockout tourna-
mentKT = {N,T, S, P} has monotonic winning probabilities whenP satisfies the following con-
straints:

1. pij + pji = 1
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2. pij ≥ pji ∀(i, j) : i ≤ j

3. pij ≥ pi(j+1) ∀(i, j)
As in the case of deterministic match results, when we require the tournament to be balanced, the

complexity of finding the optimal tournament is unknown. Unlike the case of balanced tournaments
with win-lose-tie, the monotonicity condition is too restrictive. Yet, when we relax this condition to
allow small violations, we can obtain a hardness result. We call the new conditionε-monotonicity.

Definition 6 (ε-monotonicity). A winning probability matrixP is ε-monotonic withε > 0 whenP
satisfies the following constraints:

1. pij + pji = 1

2. pij ≥ pji ∀(i, j) : i ≤ j

3. pij ≥ pi(j′) − ε ∀(i, j, j′) : j′ > j

As ε goes to 0, the winning probability matrixP will gets closer to being monotonic. Note that
we only relax the second requirement of monotonicity. In this setting, the problem of finding the
optimal balanced agenda is provably hard:

Theorem 6. Given a set of playersN , a ε-monotonic winning probability matrixP with ε > 0, it is
NP-complete to decide if there exists a balanced knockout tournamentKT such thatq(k, KT ) ≥ δ
for a givenδ andk ∈ N .

Proof. To prove this theorem, we show a reduction from the Vertex Cover Problem to the tournament
design problem in this setting. The reduction is similar to the proof of Theorem 3 with the same
set of players but with slightly different winning probabilities (shown in Table 5.3). Essentially, we
convert the probabilities of a vertex player winning against edge players that it does not cover from
0 to (1 − ε). Similarly for o, it now either wins with probabilities1 as before or with probabilities
(1− ε). The new winning probabilities areε-monotonic with this ordering of players in descending
strengths:o, v0... vn, e1... em, fr, he, hfr , ho. Note that foro to win the tournament with
probability 1, she can only play againstv andho. Thus all players of other types must be eliminated
with probability 1. This allows the proof of Theorem 3 to hold in this setting.

vj ej fr′
j hl′

ej
hl′

fr′
j

hl′
o

o 1 1− ε 1− ε 1− ε 1− ε 1
vi 1 if i < j, 1 if vi coversej , 1 1− ε 1− ε 1− ε

0 ow. (1− ε) ow.
ei - 0.5 1 1 if i = j, 1 1

(1− ε) ow.
fr

i - - 0.5 0.5 1 if fr
i = fr′

j , 1
0.5 otherwise

hl
ei

- - - 0.5 0.5 1
hl

fr
i

- - - - 0.5 1

hl
o - - - - - 0.5

Table 3: Theε-monotonic winning probabilities of row players against column players inKT
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6 Conclusion and future work

In this paper we have investigated the computational aspect of agenda control for knockout tour-
naments. We have considered several modelings of the problem based on different constraints that
can be placed on the structure of the tournament or the model of the players. In particular, we have
shown that when the tournament has to be balanced, the agenda control problem is NP-hard, even
when the match results can only be win, lose, or tie, or when the winning probabilities between the
players have to beε-monotonic. This suggests that it is hard to design a knockout tournament with
maximum predictive power. When the match results are deterministic, the complexity of the control
problem remains an open problem for future work. Other directions include finding optimal agenda
for other objective functions such as fairness or “interestingness” of the tournament, or considering
other constraints on the tournament structure and player models.
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