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Abstract

A mechanism is manipulable if it is in agents’ best interest to misrepresent their
private information (lie) to the center. We provide the first formal treatment of the
windfall of manipulability, the seemingly paradoxical quality by which the failure of
any agent to play their best manipulation yields a strictly better result than an opti-
mal truthful mechanism. We dub such mechanisms manipulation optimal. We prove
that any manipulation-optimal mechanism can have at most one manipulable type
per agent. We show the existence of manipulation-optimal multiagent mechanisms
with the goal of social welfare maximization, but not in dominant strategies when
agents are anonymous and the mechanism is symmetric, the most common setting.
For this setting, we show the existence of manipulation-optimal mechanisms when
the goal is affine welfare maximization.

1 Introduction

Mechanism design is the science of generating rules of interaction—such as auctions and vot-
ing protocols—so that desirable outcomes result despite the participation of self-interested
agents. A mechanism receives a set of preferences (i.e. type revelations) from the agents, and
based on that information imposes an outcome (such as a choice of president, an allocation
of items, and potentially also payments).

A central concept in mechanism design is truthfulness, which means that an agent’s
best strategy is to reveal its type (private information) truthfully to the mechanism. The
revelation principle, a foundational result in mechanism design, proves that any social choice
function that can be implemented in some equilibrium form, can also be implemented using
a mechanism where all the agents are motivated to tell the truth. The proof is based
on the idea of supplementing the manipulable mechanism with a strategy formulator for
each agent that acts strategically on the agent’s behalf (see, e.g., Mas-Colell et al. (1995)).
Since truthfulness is certainly worth something—with real people, fairness and simplicity,
with virtual agents, the elimination of the need to strategically compute—the revelation
principle produces something for nothing, a free lunch. As a result, contemporary research
into mechanism design has focused almost exclusively on truthful mechanisms.

But manipulable mechanisms protected by the “shield” of computational hardness are
intuitively appealing. Computational complexity could be used to sever the symmetry
between manipulable and truthful mechanisms, opening up exciting new possibilities in the
outcome space. One notable caveat in this agenda is that an agent’s inability to find its
optimal manipulation does not imply that the agent will act truthfully. Unable to solve the
hard problem of finding their optimal manipulation, an agent may submit their true private
type but they could also submit their best guess for what their optimal manipulation might
be or, by similar logic, give an arbitrary revelation. A challenge in manipulable mechanisms
is that it is difficult to predict in which specific ways agents, particularly human agents, will
behave if they do not play according to game-theoretic rationality.

In manipulable mechanisms, there are several reasons why agents may fail to play their
optimal manipulations. Humans may play suboptimally due to cognitive limitations and
other forms of incompetence. The field of behavioral game theory studies the gap be-
tween theoretical optimality and human actions (see Camerer (2003) for a survey). Vir-
tual agents may be unable to find their optimal manipulations due to computational lim-
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its: finding an optimal strategy is NP-hard in many settings (e.g., Bartholdi et al. (1989);
Conitzer and Sandholm (2003, 2004); Procaccia and Rosenschein (2007)), and can be #P-
hard (Conitzer and Sandholm, 2003), PSPACE-hard (Conitzer and Sandholm, 2003), or
even uncomputable (Nachbar and Zame, 1996). The idea of using complexity as a shield
against manipulations has been most prominent in the field of voting theory (e.g., Bartholdi
et al. (1989); Conitzer and Sandholm (2003); Procaccia and Rosenschein (2007)).

In this paper, we explore mechanism design beyond the realm of truthful mechanisms
using a concept we call manipulation optimality, where a mechanism benefits—and does
better than any truthful mechanism—if agents fail to play their optimal manipulations in
any way. This enables the mechanism designer to do better than the revelation principle
would suggest, and obviates the need for predicting agents’ irrational behavior. Conitzer
and Sandholm (2004) show the existence of such a mechanism in an artificial setting, but
leave open the question of how broadly this paradigm applies and whether it applies to any
practical settings. These are the questions that we answer in this paper.

We prove an impossibility result that curtails the windfall of manipulability significantly.
Specifically, we show impossibility if any agent has more than one manipulable type. Cur-
tailed by this first impossibility result, we proceed to study settings where each agent has
at most one manipulable type. For single-agent settings, we show impossibility under the
social welfare maximization objective and possibility under affine welfare maximization. In
contrast, in the multiagent setting we get possibility under both of those objectives, but
only under the affine version if agents are symmetric.

2 The general setting

Each agent i has type θi and a utility function uθi

i (o), which depends on the outcome o that
the mechanism selects. An agent’s type captures all of the agent’s private information. For
brevity, we sometimes write ui(o).

The mechanism designer has an objective (which can be thought of as mechanism utility)
that he tries to maximize:

M(o) =
n∑

i=1

γiui(o) + m(o),

where m(·) captures the designer’s desires unrelated to the agents’ utilities. This formalism
has three widely-explored objectives as special cases:

• Social welfare: γi = 1 and m(·) = 0.

• Affine welfare: γi > 0 and m(·) ≥ 0.

• Revenue: Let outcome o correspond to agent payments to the mechanism of
π1(o), . . . , πn(o). Fix γi = 0 and m(o) =

∑n
i=1 πi(o).

An agent’s type is manipulable if reporting some other type yields higher utility for the
agent. That report is the agents’ best response and is generally conditional on the reports
of the other agents. If a certain report is a best response for every possible report of the
other agents, it is known as a dominant strategy. A mechanism implements a social choice
function, a function from agent reports to outcomes.

Two manipulable types are distinct if, for some revelation of the other agents, the types
have different optimal manipulations which lead to different outcomes.

A mechanism M is truthful if each agent’s dominant strategy in the mechanism is to
reveal her true type. A mechanism M is an optimal truthful mechanism if it is not (weakly)
Pareto-dominated by any other truthful mechanism.
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Now we are ready to introduce the main notion of this paper. We say a mechanism is
manipulation optimal if, when agents play their optimal strategies, the mechanism utility
equals that of the best truthful mechanism, and any failure of agents to perform their
optimal manipulations yields greater mechanism utility.

We assume that, if an agent’s optimal play is to reveal her true type, then she will do so.
The mechanism, for instance, can publish which types are truthful, and it can be expected
that those agents will behave rationally. With software agents, such behavior can be hard-
coded in. On the other hand, agents with manipulable types may not behave optimally;
for instance, finding an optimal manipulation can be computationally intractable. It is
important to note that we do not assume that an agent necessarily tells the truth if it fails
to find its optimal manipulation.

We now proceed to formalize this. Let o be the outcome that would arise from all agents
playing strategically optimally in some manipulable mechanism M̂ . We will denote by ô an
outcome in M̂ that arises if one or more agents fail to perform their optimal manipulations.
Now (using the revelation principle), transform M̂ into the truthful mechanism M which,
given the true types of agents, yields outcome o.

Definition 1 We call M̂ manipulation-optimal if it meets the following characteristics:

1. M is an optimal truthful mechanism.

2. ∀ô 6= o, M(ô) > M(o).

2.1 A general impossibility result

While Conitzer and Sandholm (2004) showed that manipulation-optimal mechanisms do
exist, the following result strongly curtails their existence generally.

Proposition 1 No mechanism satisfies Characteristic 2 of Definition 1 if any agent has
more than one distinct manipulable type.

Proof. Suppose, for contradiction, that f is a social choice function satisfying Character-
istic 2. Let agent i with type a have a best-response revelation a′, and let agent i with
type b have a best-response revelation b′. Fix the plays of the other agents as x, such that
f(a′,x) 6= f(b′,x). Since a and b are distinct, there must exist such an x.

We first define the following shorthand notation:∑
(a′) ≡

∑
j 6=i

γjuj(f(a′,x)) + m(f(a′,x))

∑
(b′) ≡

∑
j 6=i

γjuj(f(b′,x)) + m(f(b′,x))

Because f satisfies Characteristic 2, we get the following two inequalities on mechanism
utilities—for agent i of type b and agent i of type a, respectively.

γiu
b
i(f(b′,x)) +

∑
(b′) < γiu

b
i(f(a′,x)) +

∑
(a′)

γiu
a
i (f(a′,x)) +

∑
(a′) < γiu

a
i (f(b′,x)) +

∑
(b′)

Because a′ and b′ are best-response plays for agents of their respective types, ua
i (f(a′,x)) ≥

ua
i (f(b′,x)) and ub

i(f(b′,x)) ≥ ub
i(f(a′,x)). Thus since γi ≥ 0 we have

γiu
b
i(f(a′,x)) +

∑
(a′) ≤ γiu

b
i(f(b′,x)) +

∑
(a′)

γiu
a
i (f(b′,x)) +

∑
(b′) ≤ γiu

a
i (f(a′,x)) +

∑
(b′)
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Combining the first lines of the above two equation blocks yields
∑

(b′) <
∑

(a′), while
combining the second lines yields

∑
(a′) <

∑
(b′), a contradiction. �

Note that this impossibility result is driven by the strict inequality in Characteristic 2 of
Definition 1. Weakening the strict inequality to loose inequality results in a very different
conclusion: that the mechanism should have identical utilities for reports of both a′ and b′.
Taken more generally, replacing the strict inequality with loose inequality yields the result
that the outcome from reporting any type which is an optimal manipulation must deliver
to the mechanism exactly the same utility.

We argue that strict inequality, and the impossibility it implies, is more appropriate for
this setting. When we talk about the “windfall of manipulability”, what we are talking about
are beneficial results beyond the scope of what truthful mechanisms can reach. That is, we
want the mechanism to do better when agents make mistakes, not to be so indifferent to
agent inputs that it does not matter agents are making mistakes! Moreover, strict inequality
was used by Conitzer and Sandholm (2004), so our results are in keeping with that work.

In the rest of this section we explore mechanisms where each agent can have at most one
manipulable type; the above impossibility result precludes the existence of manipulation-
optimal mechanisms if the other types are not dominant-strategy truthful.

2.2 Single-agent settings

In this subsection we study settings where there is only one agent reporting their private
information. (If there are other agents, their types are assumed to be known.)

Proposition 2 There exist no single-agent manipulation-optimal mechanisms with the ob-
jective of social welfare maximization.

Proof. In the single-agent context, social welfare maximization means maximizing the util-
ity of the single agent. For contradiction, let f be a manipulation-optimal mechanism. Let
the agent of type a have optimal play a′ such that u(f(a′)) ≥ u(f(x)) ∀x ∈ Θi. But by
Characteristic 2, u(f(a′)) < u(f(x)) ∀x ∈ Θi \ a′. �

Proposition 3 There exist single-agent manipulation-optimal mechanisms with the objec-
tive of affine welfare maximization.

Proof. We can derive this result from the constructive proof of Conitzer and Sandholm
(2004). Because the transformation is non-trivial, we restate that result here.

There exists a manager with three possible true types for a team of workers that needs
to be assembled:

1. “Team with no friends”, which we abbreviate TNF.

2. “Team with friends”, which we abbreviate TF.

3. “No team preference”, which we abbreviate NT.

The mechanism implements one of two outcomes: picking a team with friends (TF),
or picking a team without friends (TNF). The manager gets a base utility 1 if TNF is
chosen, and 0 if TF is chosen. If a manager has a team preference, implementing that team
preference (either with or without friends) gives the manager an additional utility of 3.

In addition to the manager, the other agent in the game is the HR director, who has
utility 2 if a team with friends is chosen. Even though there are two agents in the game,
because the HR director does not report a type, this is not a multiagent setting. In fact, the
HR director’s utilities are equivalent to the payoffs from the outcome-specific mechanism
utility map m.
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The optimal truthful mechanism maps reports of NT and TNF to TNF and TF to TF.
Now consider the manipulable mechanism which maps reports of TNF to TNF and NT and
TF to TF. Note that in this mechanism there is only one manipulable type, NT, and that
its optimal strategic play is to report TNF. This mechanism is manipulation-optimal: if
the manager has type NT and reports NT or TF instead of TNF, the mechanism generates
affine welfare of 2, whereas the optimal truthful mechanism generates affine welfare of 1. �

Conitzer and Sandholm (2004) showed that, for an NT agent, reporting TNF is NP-
hard because actually constructing a team of size k without friends requires solving the
independent set problem in a graph of people where the edges are friend relationships.
Computational complexity is a strong justification for why an agent may not be able to find
its optimal manipulation.

2.3 Multi-agent settings

Though we proved above that there do not exist single-agent social welfare maximizing
manipulation-optimal mechanisms, they do exist in multi-agent settings.

Proposition 4 There exist multi-agent manipulation-optimal mechanisms with the objec-
tive of social welfare maximization.

Proof. Consider a game in which two agents, the row agent and the column agent, can have
one of two types, a or a′. Our mechanism maps reports to one of four different outcomes:

Report a′ a
a′ o1 o2

a o3 o4

The following two payoff matrices over the four outcomes constitute a manipulation-
optimal mechanism. Payoffs for type a are on the left and for type a′ on the right:

Report a′ a
a′ 1,1 4,0
a 0,3 3,0

Report a′ a
a′ 3,4 5,0
a 0,6 0,0

Here, playing a′ is a strictly dominant strategy for agents of both types. By the revelation
principle, we can “box” this mechanism into a truthful mechanism, M1, that always chooses
o1. However, when an agent of type a plays a rather than a′, social welfare is strictly
higher than with o1. (This holds regardless of how others play.) We have now proven
Characteristic 2.

What remains to be proven is Characteristic 1; we must demonstrate that M1 is optimal
among truthful mechanisms. We begin by examining the following table, which lists the
payoffs for agents over outcomes given the four possible true type combinations:

True types o1 o2 o3 o4

a, a 2 4 3 3
a, a′ 5 4 6 3
a′, a 4 5 3 0
a′, a′ 7 5 6 0

Now, for contradiction, let MD be a truthful mechanism that Pareto dominates M1. Note
that M1 delivers the highest payoff when both agents are of type a′. Thus, MD(a′, a′) =
o1. But this implies MD(a, a′) and MD(a′, a) must also equal o1: mapping them to the
outcome that gives higher social welfare (in the former case, o3 and in the latter, o2) is
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not truthful because the agent of type a has incentive to report a′ and force o1. At the
same time, mapping to an outcome that is not o1 delivers less social welfare than M1. So,
MD(a′, a′) = MD(a′, a) = MD(a, a′) = o1. But if these three inputs map to o1, MD cannot
truthfully map revelations of (a, a) to any outcome other than o1, because some agent will
always want to deviate, report type a′, and force outcome o1. Thus, our construction of
MD fails because MD = M1. �

The result above uses dominant strategy equilibrium as the solution concept. Therefore,
the result implies possibility for weaker equilibrium notions as well.

The agents in our construction are not symmetric. (Symmetry means that all agents
have the same payoffs for their reports relative to the reports of the other agents.) We
may ask whether manipulation-optimal mechanisms exist for what can be considered the
most common setting: where agents are symmetric, the mechanism is anonymous, and the
objective is welfare maximization. (By anonymous we mean that the mechanism selects
an outcome based only on the distribution of reported types, rather than the agents who
reported those types.)

Proposition 5 There exist no dominant-strategy anonymous multi-agent manipulation-
optimal mechanisms with the objective of social welfare maximization for symmetric agents.

While the impossibility results earlier in this paper were based on a violation of Charac-
teristic 2 of manipulation-optimal mechanisms alone, here the impossibility comes from not
being able to satisfy Characteristics 1 and 2 together.
Proof. By Proposition 1, we can focus on mechanisms with a single manipulable type. Call
the type a, with dominant strategy a′. Suppose mechanism M̂ satisfies Characteristic 2.
By the revelation principle it has a corresponding truthful mechanism M . We show that we
can construct a truthful mechanism M that Pareto dominates M ′.

First, if a set of reports includes a type other than a or a′, we set MD to simply mirror the
action taken by M . Strategic implications for agents other than types a and a′ are unaffected
because for agents of those types revealing their true type was a dominant strategy under
M̂ .

Let o be the outcome implemented by M when all agents reveal a, and let o′ be the
outcome implemented by M when all agents reveal a′. Denote by ã any combination of
revelations a and a′; note that M ′(ã) = o′.

By Characteristic 2 we know that we get higher social welfare if agents of type a—whose
best manipulation is to report a′—cannot find the manipulation and report a instead. Since
agents are symmetric, this implies ua(o′) < ua(o). This is akin to the Prisoner’s Dilemma:
the dominant strategy of type a is to report a′ , but the outcome is worse for agents if they
all report a′ rather than a.

Now we construct MD based on the payoff structure of agents of type a′.

• Case I: ua′
(o′) < ua′

(o). In this case we let MD map each ã to o. MD Pareto
dominates M .

• Case II: ua′
(o′) ≥ ua′

(o). In this case we let MD select o if all agents report a and
o′ for any other ã. MD Pareto dominates M . Note that MD is identical to M for all
reports except the one where all agents report a. �

Note that both our possibility results and this impossibility result have used the dom-
inant strategy solution concept. This implies the strongest possibility, but the weakest
impossibility. Here, our requirement for dominant strategy manipulability avoids issues
with degenerate special cases.

We can get around this impossibility by moving to the affine welfare objective. Note
that for an anonymous mechanism, the outcome-specific mechanism utility function m(·)
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can depend only on the distribution of types, rather than the identities associated with those
types.

Proposition 6 There exist dominant-strategy anonymous multi-agent manipulation-
optimal mechanisms with the objective of affine welfare maximization for symmetric agents.

Proof. We provide a constructive proof with the same framework as Proposition 4. But
now let the payoff matrices be as follows (left matrix for type a and right matrix for type
a′).

Report a′ a
a′ 2,2 1,1
a 1,1 0,0

Report a′ a
a′ 4,4 1,3
a 3,1 0,0

Let γi = 1 for all i, and let the mechanism’s additional payoff, m(·), be {0, 3, 3, 5} for
outcomes o1 through o4, respectively. Note that the row and column agents are symmetric
(the payoff matrices are symmetric) and that m(o2) = m(o3). The dominant strategy
equilibrium for this mechanism is for every agent to report type a′. Therefore this mechanism
has truthful analogue M1, the mechanism that always chooses o1.

We now show that M1 is an optimal truthful mechanism. First, note that M1 maximizes
the objective when both agents have type a′. It can be shown that (using a construction
akin to the last table in the proof of Proposition 4) that due to agent incentives to deviate,
any truthful mechanism that would dominate M1 must map all reports to o1. Therefore M1

is an optimal truthful mechanism.
The manipulation-optimality of the mechanism defined by the payoff matrices above

comes from noting that whenever agents of type a fail to report a′, affine welfare is strictly
higher. �

3 Conclusions and Future Directions

The strategic equivalence of manipulable and truthful mechanisms—captured by the reve-
lation principle—does not mean that any manipulable mechanism is automatically flawed.
The failure of agents to perform their best response (or play a particular equilibrium among
many), either due to computational constraints or any flavor of incompetence, can actually
increase mechanism utility. When the equivalent truthful mechanism to such a manipulable
mechanism is optimal among truthful mechanisms, then the manipulable mechanism is truly
a better solution. We call such a mechanism manipulation optimal.

For a completely general setting, we show that manipulation optimality is limited to
mechanisms that have at most one manipulable type per agent. Thus there is a “cost of
manipulability” — implementing a manipulable mechanism inherently exposes the designer
to achieving an unnecessarily poor result when agents do not perform optimally. This result
is, in large part, in line with the revelation principle, although here the considerations
are more subtle and the impossibility not universal. This is an inauspicious finding for
the concept of using computational complexity as a “trick” to get around the revelation
principle: if our mechanism utility function is sufficiently non-trivial (i.e. so that agents’
reports with manipulable types can affect it), then the mechanism designer is exposed to
the risk of bad outcomes.

It is worth noting how our results apply to the now-copious literature on the complexity
of voting schemes. Here they are less disheartening, because non-trivial voting schemes are
inherently manipulable by the Gibbard-Satterthwaite impossibility result. So in the voting
setting, there is no “truthful analogue” that our manipulable mechanism is performing worse
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than. Note also that most voting schemes use cardinal utility (ranked preference lists) as
opposed to the ordinal utilities employed here.

It would be interesting to study manipulation optimality under other objectives, such
as notions of fairness. As another direction, we plan to explore whether automated mech-
anism design (Conitzer and Sandholm, 2002) can be used to design manipulation-optimal
mechanisms. Given priors over types (and perhaps also over behaviors), it may be possible
to ignore incentive compatibility constraints and design manipulable mechanisms that yield
higher mechanism utility.
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