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Abstract

The stable matching problem has many practical applications in two-sided markets, like those
that assign doctors to hospitals, students to schools, or buyers to vendors. Usually it is assumed
that the participants of one side explicitly express a preference ordering over all those on the
other side. This can be unfeasible when the number of options is large or has a combinatorial
structure. We consider using soft constraints to model preferences compactly in stable match-
ing problems. We study the impact of this choice on the computational complexity of finding
stable matchings. We show that, when agents model their preferences via tree-shaped fuzzy
constraint problems, this approach does not increase the complexity of stable matching pro-
cedures, while maintaining stability of the matching returned. We also evaluate the approach
experimentally.

1 Introduction
The stable matching (SM) problem is a well-known problem with many practical applications. It
has to do with two sets of agents, often called men and women, that should be matched in such
a way that no man and woman, who are not married to each other, both prefer each other to their
current partner [11, 14]. This property is called stability. Problems of this kind arise in many real-
life situations, such as assigning junior doctors to hospitals [17], children to schools [18], students
to campus housing, kidney transplant patients to donors, and so on.

The most well-known and used algorithm to find a stable matching is the GS algorithm [9], that
runs in polynomial time. This algorithm assumes that both men and women express their preferences
over all members of the other gender. However, this can be unfeasible, since the number of men and
women can be very large. For example, in China, over 10 million students apply for admission to
higher education annually via a centralized process.

In addition, eliciting the preferences may be a costly and time-consuming process. However, the
sets of men and women may have a combinatorial structure, which allows for expressing preferences
in a compact way by referring to features rather than entire men or women. For instance, consider
a large set of hospitals offering residencies to doctors. Doctors might not want to rank explicitly all
the hospitals, but might wish to express preferences over some of their features. For example, they
might say ”I prefer a position close to my home town”, or ”If the hospital is far away from my home
town, then I want a better salary”. The same can be for hospitals over doctors, which may have
preferences such as ”We prefer doctors who did well on a certain exam”.

Our challenge is to understand how to adapt the GS algorithm to work with such preference
statements over features, and to study the impact of this approach over the computational properties
of the algorithm.

The main operations performed by the GS algorithm are the following ones: men need to exploit
their preferences over women to find their most preferred woman, and possibly also their next most
preferred woman (several times), while women need to compare two men according to their prefer-
ences over men. Thus we need to check what it means to perform such operations when preference
statements are over features of men and women.

In this paper we consider the use of soft constraints [15] to model such preferences, both for
men and for women. In this formalism, preferences are modeled in a quantitative way, with several
levels of acceptance to express the degrees of preference for the variable assignments. To use such



formalism within the GS stable matching procedure, we need to model the GS operations mentioned
above in a soft constraint setting. Soft constraints induce a total order over men and women, possibly
with ties. The GS algorithm requires a strict total order (that is, no ties) over men and women. We
consider three ways to break ties, with particular attention to fuzzy constraints.

We therefore propose a setting where SM preference lists are modelled via soft constraints, and
the GS algorithm is augmented by a soft constraint solver which performs the GS operations over
the soft constraints representing preferences of men and women, when needed by the GS algorithm.

It is easy to see that the use of soft constraints reduces the amount of time and space needed
by each agent to specify its preference ordering. Moreover, there are benefits also for the stable
matching procedure, which receives an input which is much smaller. Furthermore, when the soft
constraints of men respect some reasonable restrictions, such as a bounded tree-width for the con-
straint graph [7], the time complexity of the stable matching procedure does not suffer in terms of
time, as shown by our experimental evaluation. In fact, with this restriction, all the GS operations are
polynomial in the number of features, which is much smaller than the number of men and women.

Problems with bounded tree-width occur frequently in practical settings, such as experts systems,
evolution theory, and natural language processing as described in [2]. We believe that they are often
adequate also when modelling the preferences in a stable matching scenario. For example, in the
resident-hospital case, it may be reasonable to organize the features in a hierarchy, and this can
be modelled by tree-shaped problems, which have a tree-width 1. Note also that the restriction is
needed only for men, since women only perform GS operations which are computationally easy
also for problems without a tree shape.

A similar study was done using CP-nets instead of soft constraints [16]. CP-nets [4] have a
different expressive power compared to soft constraints. Moreover, they also behave differently in
terms of computational complexity of reasoning with them. CP-nets never induce orderings with ties,
which is instead typical in soft constraints, but instead present many incomparable outcomes. Also,
different techniques are needed to handle CP-nets and soft constraints in SMs. Thus the linearization
considered for CP-net was very different than those we define in this paper for soft constraints.

Constraints have been considered in the context of stable matching only as a means to encode
the problem and to solve it efficiently [10, 13, 1], rather than as a way to compactly model the
preferences of the agents and then to solve the problem by interleaving the GS algorithm and the
constraint solver.

2 Background

2.1 Stable matching problems
The stable matching problem (SM) [11, 14] is the problem of finding a matching between the ele-
ments of two sets, usually called men and women. Given n men and n women, where each person
strictly orders all members of the opposite sex, we wish to marry the men to the women such that
there is not a man and woman who would both rather be married to each other than to their current
partners. If there is no such couple, the matching is called stable.

Here we consider the classical version of the stable marriage problem, where there is the same
number of men and women, and each person has a strict total order over the members of the other
gender. Other versions allow for different numbers of men and women, ties and/or incomplete lists
in the preference orderings [12].

The Gale-Shapley algorithm (GS) [9] is widely used to solve SMs. The algorithm takes O(n2)
steps and constructs a stable matching. It consists of a number of rounds in which each un-engaged
man proposes to his most preferred woman to whom he has not yet proposed. Each woman receiving
a proposal becomes “engaged”, provisionally accepting the proposal from her most preferred man.
In subsequent rounds, an already engaged woman can “trade up”, becoming engaged to a more



preferred man and rejecting a previous proposal, or if she prefers him, she can stick with her current
partner.

Given a matching M , we will denote with M(w) (resp., M(m)) the man (resp., woman) associ-
ated to the woman w (resp., man m) in M . Also, pref(x) denotes the preference list of a man or a
woman x. The GS algorithm (see Algorithm 1), includes the following operations:

• Opt(pref(m)): Computes the optimal woman for m (i.e., m’s first proposal).

• Next(pref(m), w): computes the next best woman after w for man m (i.e., a new proposal
for m).

• Compare(pref(w),m,m′): returns true if woman w prefers man m to m′. This is needed
when woman w, currently matched with m′, must decide whether to accept or decline a pro-
posal from m.

Algorithm 1: GS
foreach man m and woman w do

M(m)← null; M(w)← null;

while ∃m such that M(m) = null do
w ← Opt(pref(m));
while M(m) = null do

if M(w) = null then
M(m)← w; M(w)← m;

else
if Compare(pref(w),m,M(w)) then

pref(m)← pref(m)− {wi|wi �M(m)};
M(M(w))← null; M(w)← m; M(m)← w;

else
w ← Next(pref(m), w);

2.2 Soft constraints
Given a set of variables X , a soft constraint [15] over X is a way to associate a preference value
to each assignment of the variables in X . Such preference values belong to a (totally or partially
ordered) set which is equipped with an operator to combine preference values. A soft constraint
problem (soft CSP) is a set of variables and set of soft constraints over subsets of these variables.

A classical CSP [8] is just a soft CSP where the preference structure has just two values (True
and False) and preferences are combined via logical and. Classical CSPs are useful when we know
what to accept and what to reject.

Fuzzy CSPs are instead modeled with preference values between 0 and 1, totally ordered, where
a higher value denotes a more preferred item, and preferences are combined via the min operator.
That is, we maximize the minimum preference. Fuzzy CSPs are useful when we have safety-critical
applications, since we just focus on the worst preference value when we evaluate a complete variable
assignment.

In weighted CSPs, preferences are interpreted as costs from 0 to +∞, and we minimize the sum
of costs. Weighted CSPs are the ones to use when we have costs or penalties, and it is natural to sum
them up to assign a value to a complete assignment.

Given an assignment s to all the variables of a soft CSP P , its preference, written pref(P, s), is
obtained by combining the preferences associated by each constraint to the subtuples of s referring to
the variables of the constraint. For example, in fuzzy CSPs, the preference of a complete assignment
is the minimum preference given by the constraints. In weighted constraints, it is the sum of the
costs given by the constraints. An optimal solution of a soft CSP P is then a complete assignment s



such that there is no other complete assignment s′ with pref(P, s) < pref(P, s′), where < is the
preference ordering of the considered preference structure.

In general, finding an optimal solution for a soft CSP is computationally hard. However, it is
polynomial for some classes of soft constraints. This is the case for tree-shaped fuzzy CSPs, where
a technique called directional arc-consistency, applied bottom-up on the tree shape of the problem,
is enough to make the search for an optimal solution backtrack-free and thus polynomial. A tree-
shaped soft CSP is a soft CSP whose constraint graph (where nodes represent variables and arcs
connect variables involved in the same constraint) is a tree. Given a variable ordering o, a fuzzy
CSP is directional arc-consistent (DAC) if, for any two variables x and y linked by a fuzzy binary
constraint, such that x precedes y in the ordering o, we have that, for each a in the domain of
x, fx(a) = maxb∈D(y)(min(fx(a), fxy(a, b), fy(b))), where fx, fy , and fxy are the preference
functions of cx, cy and cxy . If a soft CSP is not DAC, it is possible to make it DAC in polynomial
time. Once the fuzzy CSP is DAC, we may find an optimal solution by instantiating each variable in
the ordering o in linear time.

The tree-like restriction is not the only one to assure tractability. In fact, it is polynomial to find
a solution even if, instead of a tree, we have a graph with cycles but with bounded tree-width. Many
classes of graphs do have bounded tree-width, such as cactus graphs (where every two cycles have at
most one vertex in common), pseudo-forests (in which every connected component has at most one
cycle), series-parallel graphs, outerplanar graphs, Halin graphs, Apollonian networks [3], as well as
the control flow graphs arising in the compilation of structured programs.

Fuzzy CSPs can also be solved via a cut-based approach. Given a fuzzy CSP P , an α-cut of P ,
where α is between 0 and 1, is a classical CSP with the same variables, domains, and constraint
topology as the given fuzzy CSP, and where each constraint allows only the tuples that have prefer-
ence above α in the fuzzy CSP. We will denote such a problem by cut(P, α). The set of solutions of
P with preference greater than or equal to α coincides with the set of solutions of cut(P, α). Thus,
to find an optimal solution for a given fuzzy CSP, it is enough to find a solution of the CSP cut(P, α)
with the highest α such that the problem has some solution.

Fuzzy and weighted CSPs generate a solution ordering which is a total order with ties, where
the ties are given by all the solutions with the same preference value, and a solution dominates an-
other one if its preference value is higher. Thus, linearizing the solution ordering just means giving
an order over the elements in each tie. It has been shown in [5] that it is possible to define a lin-
earization of the solution ordering of a tree-shaped fuzzy CSP where finding the next solution is
computationally easy.

For weighted CSPs, instead, unfortunately there in no linearization with this property. However,
in [7], it has been shown that, for weighted CSPs with bounded tree-width, it is polynomial to find
the top k solutions when k is bounded. So, to find the next solution after we already have the top
k − 1 ones, it is easy if k is bounded.

3 Modelling SMs via soft constraints
We consider a stable marriage problem with n men and n women, where each man and each woman
specify their preferences over the members of the other gender via a set of soft constraints. We call
this a Soft CSP based SM (SSM).

Each man and woman is described by a set of features, that are represented by the variables of
the soft constraint problems. If each variable has d possible values, the number of variables, say f , of
each soft constraint problem is O(logdn). Summarizing, we have 2f features, of which f describe
men and f describe women.

In the GS algorithm, men make proposals, starting from their most preferred woman and going
down in their ordering, while women receive proposals and compare these against the man to whom
they are currently engaged. We will now model the GS operations.



Opt(pref(m)) must return the optimal solution of a soft constraint problem defining the prefer-
ences of manm over the women. In general, finding the optimal solution of a soft constraint problem
is a computationally difficult problem. However, if the soft constraint problem has a tree-like shape,
or bounded tree-width, it can be done in polynomial time [6].

Compare(pref(w),m1, m2) compares two complete assignments m1 and m2 and checks if
m1 is strictly more preferred to m2. In fuzzy constraint problems, this is computationally easy to
do, if the combination operator is polynomially computable and there is a polynomial number of
constraints. In fact, m1 is strictly preferred to m2 when the preference of m1 for w is strictly greater
than that ofm2 for w. Notice that women need only to perform Compare operations. Thus we do not
need any restriction on the shape of the constraint graph for women’s preferences to make Compare
polynomial.

For the Next(pref(m), w) operation, we need to understand how to linearize the solution or-
dering of a soft constraint problem. In fact, this operation is used to find the next most preferred
woman in a man’s preference ordering, so when two or more women are tied, we need to put an
order over them to understand who to propose first.

3.1 Linearizations
In fuzzy constraints, the solution ordering is in general a total order with ties: some solutions are
equally preferred and a solution dominates another one if its preference value is higher. In this
context, linearizing the solution ordering means giving an order over the elements in each tie.

We aim to define linearizations where finding the next best solution (that is, applying operation
Next) is tractable and where solutions which are less distant from optimal ones appear earlier in the
linearized order.

We will define three linearizations L1, L2, and L3 which break ties by taking into account the
distance of a solution preference from the optimal preference (L1), or also the minimum number of
preference values for parts of the solutions to be changed to make the solution optimal (L2), or also
the amount of change required (L3). Among the solutions which are still in ties, we put first those
that are lexicographically earlier, according to an ordering over variables and domain values.

We are given an ordering over variables and an ordering over the elements in each variable
domain. This allows us to define a lexicographic ordering, say ≺lex, over complete or incomplete
variable assignments, and also another ordering ≺oT , which orders first partial assignments with
higher preference and then orders them lexicographically.

Given a solution s, we define tuple(s) as the first tuple of s according to lex that has preference
equal to pref(s). We can now define an ordering ≺t over solutions: s1 ≺t s2 ⇐⇒ tuple(s1) ≺oT

tuple(s2).
We now define our linearizations:

• L1: s1 ≺L1
s2 iff (opt − pref(s1)) < (opt − pref(s2)), or (opt − pref(s1)) = (opt −

pref(s2)) and s1 ≺t s2, or (opt− pref(s1)) = (opt− pref(s2)), s1 =t s2 and s1 ≺lex s2.

• L2: s1 ≺L2
s2 iff (opt − pref(s1)) < (opt − pref(s2)), or (opt − pref(s1)) = (opt −

pref(s2)) and t(s1) < t(s2), or (opt−pref(s1)) = (opt−pref(s2)) and t(s1) = t(s2) and
s1 ≺t s2, or (opt− pref(s1)) = (opt− pref(s2)), t(s1) = t(s2), s1 =t s2, and s1 ≺lex s2,
where t(s) is the minimum number of tuples of s that must be changed to make s optimal. For
fuzzy constraints, this is the number of tuples of s with preference value less than opt.

• L3: s1 ≺L3 s2 iff (opt − pref(s1)) < (opt − pref(s2)), or (opt − pref(s1)) = (opt −
pref(s2)) and ct(s1) < ct(s2), or (opt−pref(s1)) = (opt−pref(s2)) and ct(s1) = ct(s2)
and s1 ≺t s2, or (opt − pref(s1)) = (opt − pref(s2)), ct(s1) = ct(s2), s1 =t s2, and
s1 ≺lex s2, where ct(s) is sumti(opt− pref(ti)), where ti is any tuple of s with preference
less than opt.



We will now see how to perform operations Next on such three linearizations. We will call
these operations Nexti, for Li = 1, 2, 3.

Next1. From results in [5], we know that performing Next1 can be accomplished by just us-
ing the Next operation (as defined in the background section) when we have a tree-like fuzzy
CSP, and that this operation takes polynomial time for such problems. In Algorithm 2 we describe
procedure Next1 for fuzzy CSPs which is a slightly modified version of the one presented in [5]:

• next(p) is the preference value, among those appearing in P , following p in decreasing order;

• given a fuzzy CSP P and one of its tuples t = (xi = v, xj = w), fix(P, t) returns the fuzzy
CSP obtained from P by removing from the domains of xi and xj all values except v and w;

• given a fuzzy CSP P and a preference p, cut(P, p) returns the CSP obtained from P by
zeroing all preferences less than p in all the constraints;

• given a tree shaped CSP P , cspSolve(P ) returns the first solution in lexicographic order given
the variable and domain orderings;

• given a tree-shaped CSP and one of its solutions s, cspNext(P, s) returns the solution fol-
lowing s in lexicographic order if one exists.

In a fuzzy CSP, a solution has preference p only if it includes a tuple that has preference p. When
a solution s is given in input, we look for ts, the smallest tuple of s w.r.t. ordering oT that has
preference p in the corresponding constraint. This is the tuple that generates solution s. Thus, we fix
tuple ts via fix(P, ts) and cut the obtained fuzzy CSP at level p. By calling cspNext we look for
the solution lexicographically following s. If it doesn’t exist, s must be the last solution generated
by tuple ts with preference p.
The next solution may have preference p or lower. If it has preference p, such a preference must
come from a tuple with preference p which follows ts w.r.t. ordering oT . To avoid finding solutions
with preference p that come from tuples preceding ts we zero out tuple ts and all tuples with
preference p preceding tS w.r.t ordering oT . If none of the tuples with preference p following ts
generates a valid solution with preference p, we move down one preference level, restoring all
zeroed tuples back to their original values. This search continues until a solution is found or all
tuples with preference greater than 0 have been considered.

Next2 and Next3. To perform Next2 and Next3 for tree-shaped fuzzy CSPs, when we already
have the top k − 1 solutions, we find the top k solution according L2 and L3 by computing the top
k solutions of a set of weighted CSPs.

Our algorithm, which we callKCheapest, will work, with suitable variants, for both L2 and L3.
The input is a tree-shaped fuzzy CSP P , an integer k, and a linearization L (either L2 or L3). The
output is a set of top k solutions of P according to the linearization. The first step of KCheapest
is to look for k optimal solutions of P . As mentioned in background, given a fuzzy CSP P with
optimal preference opt, the set of optimal solutions of P coincides with the set of solutions of
the CSP cut(P, opt), obtained by allowing only tuples mapped to preferences equal or above opt.
Thus, to look for k optimal solutions of P , it is sufficient to compute opt and generate solutions of
cut(P, opt). If there are at least k optimal solutions, KCheapest will return them and stop.

Otherwise, we need to consider other, non-optimal solutions, in decreasing order of preference.
To do so, we exploit the fact that, in fuzzy CSPs, all solutions with a given preference level, say
pl, must have at least a tuple with preference pl. Let us now consider the fuzzy CSP which we
obtain from P by fixing a tuple, say t, with preference pl, in a constraint (that is, by forbidding all
other tuples in that constraint), and by forbidding all tuples with preference smaller than pl. Such
a problem will have either no solution (with a non-zero preference), or all its solutions will have



Algorithm 2: Next1
Input : tree-shaped and DAC Fuzzy CSP P , orderings o, o1, . . . , on, oT , assignment s with
preference p
Output : an assignment s′, or ”no more solutions”
compute tuple ts
t∗ = ts; p∗ = p; P ′ = cut(fix(P, t∗), p∗)
if cspNext(P ′, s) 6= ”no more solutions” then

return cspNext(P ′, s)
pref(t) = 0,∀t ∈ T s.t. pref(t) = p∗ and t ≤oT t∗

cpref = p∗
foreach tuple t >oT t∗with pref(t) > 0 do

if pref(t) < cpref then
reset all preferences previuosly set to 0 to their original values

if pref(cspSolve(cut(fix(P, t), pref(t)))) = pref(t) then
return cspSolve(cut(fix(P, t), pref(t)))

cpref = pref(t)
pref(t) = 0

return ”no more solutions”

Algorithm 3: KCheapest
1. Find k optimal solutions of P , or all optimal solutions if they are less than k. If the number of
solutions found is k, we stop, otherwise let k′ be the number of remaining solutions to be found.
2. Look for the remaining top solutions within non-optimal solutions. More in detail, until k′ best
solutions have been found or all solutions of P have been exhausted, consider each preference pl
associated to some tuple in P in decreasing order and, for each tuple t of P with preference pl, perform
the following:

1. Compute the new fuzzy CSP, Pt = fix(P, t).

2. If cspSolve(cut(Pt, pl)) has no solution, restart the loop with next iteration from 2.

3. Compute a new soft CSP, say Pw
t , associated to Pt as follows:

(a) the constraint topology of Pw
t and Pt coincide;

(b) each tuple with a preference greater than or equal to opt in Pt has weight 0 in Pw
t ;

(c) each tuple with a preference pt s. t. pl ≤ pt < opt in Pt has weight c in Pw
t defined as follows:

c = 1 if L = L2, c = pt− opt if L = L3;

(d) each tuple with preference less than pl in Pt has weight +∞ in Pw
t .

Thus, Pw
t is a weighted CSP if L = L2 or L = L3;

4. Compute the k′ best solutions or all the solutions if they are less than k′ of Pw
t .

5. Take the k′ top solutions (or all solutions if less than k′) among the sets of best solutions computed for
Pw
t , ∀t with pref(t) = pl.

preference pl. Let us consider the set of such problems which have at least one solution. It is easy to
see that the set of all solutions with preference pl of P coincides with the union of the sets of optimal
solutions of such new fuzzy problems. L2 linearizes solutions with the same preference by counting
the number of tuples that have preference lower than opt, and L3 by weighting such a count with
the distance from opt. To account for this we transform each of the fuzzy problems for preference
pl, which have solutions, into a weighted problem. The main idea is to make solutions costs in the
weighted problem coincide with the component of the L2 and L3 which depends on the changes to



be performed to make a solution optimal. Thus, the weighted problems will have the same variables
and the same constraint topology as the fuzzy CSPs. All tuples with preference below pl will be
forbidden by setting their cost to be +∞, and all tuples with preference equal or above opt will
have cost 0. All the remaining tuples, that is, tuples with a non-zero preference smaller than opt, are
those that determine the distance to optimality of solutions, according to both L2 and L3. If we are
linearizing according to L2, they will be assigned cost 1, while, in the case of L3, the cost will be
the difference between opt and the preference of the tuple. Assuming we are still looking for k′ ≤ k
solutions we must compute the top k′ solution for each weighted CSP and then compute the union
of such sets. Once we have the union, we pick the top k′ solutions of the union. Of course we may
be able to obtain less than k′ solutions, in which case we proceed as described above for each other
preference level in decreasing order.

Theorem 1. Given a fuzzy CSP P with a tree-shape, computing a set of top k outcomes according
to L2 and L3 is in P when k is polynomial in f and d.

As stated before, from [16] we know that on average only 2% of all proposals are made, so the
main idea is to call KCheapest with k = 2% of the maximum number of proposals and cache the
returned set of solutions. Only when all cached solutions have already been returned, we need to call
KCheapest again.

4 Complexity issues and stability
Let us now compare the worst case space and time complexity of using the GS algorithm with and
without soft constraints. In the classical setting, with n men and n women, and preference lists
given explicitly, an SM needs O(n2) space and O(n2) time [11]. When we use soft constraints,
each man and woman needs O(dkm) space and time to state their preferences, where d is the size
of domains, k is the number of variables of the largest soft constraint, and m is the number of soft
constraints. When we use soft constraints with bounded tree-width for the men, each proposal in
the GS algorithm takes O(poly(f)) time, where f is the number of variables and each Compare
operation takes O(poly(m)). So, overall, the GS algorithm may need up to O(n2 × poly(f) ×
poly(m)) time, although the number of proposals have been shown to be much lower in practice
[16].

If we run the GS algorithm on any of the linearizations we defined, by definition we obtain a
matching which is stable w.r.t. this linearization. In SMs with ties [11], a matching is said to be
weakly stable when there is no man and woman who strictly prefer each other to their partner in
the matching. Since our linearizations order more pairs than the ordering of the soft CSPs, it is easy
to see that any matching which is stable for the linearizations is also weakly stable for the initial
orderings.

5 Experimental setting and results
The described linearizations can be used in two different ways within the GS algorithm. One way
is to compute the whole preference lists for each man and then run GS over this strict total order as
usual. The other is to use the linearization only when GS requires a new proposal. We ran experi-
ments to compare the running time of these two scenarios on a 2,4 Ghz Intel Core i5 machine with
8 GB of RAM, and averaged values over 100 executions, setting a time limit of 10 minutes. For
each man a tree-shaped Fuzzy CSP tree over f features is generated by randomizing the preference
values from domains of size d. Each woman is represented by a randomly generated Fuzzy CSP
with a generic topology over the same number of f features and a constraint density of 50%. Thus,
the whole generated SSM problem consists of n = df individuals on each side.



In the first test we fixed d, and measured the execution time needed to find a stable match-
ing while increasing the number of features f . Results for Next1 are shown in Fig.1(a), where
GS-next1-lists is GS run on precomputed lists obtained running Next1 exactly n2 times, whereas
SoftGS1 is GS which calls Next1 on demand. We note that for f = 15 GS-next1-lists didn’t com-
plete within the time limit an that, in general, SoftGS substantially outperforms GS-next1-lists both
in space and time. This result is not surprising as we know from [16] that GS makes on average
only 2% of all possible proposals. This justifies the advantage of an on demand Next1, Next2, and
Next3 implementation.

We ran the same tests on Next2−3, that is, the algorithm that calls KCheapest, only when
needed, for either L2 or L3. The results are plotted in Fig.1(c) where GS-next23-lists is again the
implementation that runs over full precomputed lists while SoftGS23 only precomputes the first
2% of every preference list and then eventually asks for more. SoftGS23 is considerably better
than its equivalent that runs on precomputed lists, with an average running time of 4.875s versus
107.202s. In Fig.1(d) we compared the performance of the different linearizations L1 and L2−3. As
expected, solving the Weighted CSP cost minimization problem brings additional overhead to the
Next operation, resulting in a performance worsening w.r.t. Next1.
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Figure 1: Computation time varying the number of variables with d = 2 and varying d with 5
variables (f = 5).

In the second test setting, we fixed f , and measured execution time as a function of the domains
cardinality d. As shown in Fig.1(b), SoftGS1 clearly behaves better than GS with precomputed lists,
despite the fact that n = df . The performance of SoftGS1 is very interesting as for a setting of
d = 2 and f = 12 (which means 8192 individuals to be matched), the average computation time
is 1.83s versus 137.43s of the version with precomputed lists. In a real world scenario of this size,
ranking 8192 individuals of the opposite sex may be impractical, while the compact preference
representation makes it feasible, as each individual has just to express his/her preferences over 12



features.

6 Conclusions and future work
We have considered the use of fuzzy constraints in the context of stable marriage problems, to
model compactly the preference orderings of men and women. Our experiments suggests that this
reduces the amount of time and space needed by each agent to specify its preference ordering, as
well as the overall time complexity of the GS algorithm to find a stable matching, if men can model
their preferences via soft CSPs with bounded tree-width. The operations we have studied in this
context can be useful also in other multi- or single-agent settings, such as in web search, or when
an additional solution is looked for. We plan to study stable matching procedures where agents can
express their preferences both in a quantitative way via soft constraints and in a qualitative way via
CP-nets.
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