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CHAPTER 16

US vs. European Apportionment
Practices: The Conflict between

Monotonicity and Proportionality

László Á. Kóczy, Péter Biró, and Balázs Sziklai

16.1 Introduction

In a representative democracy citizens exert their influence via elected represen-
tatives. Representation will be fair if the citizens have more or less the same
(indirect) influence, that is, if each representative stands for the same number
of citizens. This idea was explicitly declared in the 14th Amendment of the US
Constitution, but dates back even earlier to the times of the Roman Republic.

“Representatives shall be apportioned among the several States ac-
cording to their respective numbers, counting the whole number of
persons in each State, excluding Indians not taxed. (14th Amendment,
Section 2)

Establishing electoral districts with equal numbers of voters becomes nontriv-
ial, when they must fit into the existing administrative structure of a country. For
instance the distribution of three seats between two equally populated regions
will necessarily lead to inequalities. This example may seem artificial, but under
more realistic circumstances with many regions and a high number of seats to
be allocated the problem remains hard. The general problem of allocating seats
between regions in a fair way is known as the apportionment problem.

Proportional apportionment is one, but not the only ingredient of fair represen-
tation. Other, monotonicity-related issues — studying changes in the allocation
subject to changes in the input parameters — emerged in the past 150 years. The
most notable one is the so-called Alabama paradox. During the 1880 US census
the Chief Clerk of the Census Office considered an enlargement of the House
of Representatives and noted that moving from 299 to 300 seats would result
in a loss of a seat for the State Alabama. This anomaly together with the later
discovered population and new state paradoxes pressed the legislators to revise
the apportionment rules again and again. The currently used seat distribution
method is free from such anomalies. However, it does not satisfy the so called
Hare-quota, a basic guarantee of proportionality (Balinski and Young, 1975).
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While virtually every Western-type democracy adopted the principle laid down
in the US Constitution, their approaches differ on how they deal with the arising
paradoxes and anomalies.

The European Commission for Democracy through Law, better known as the
Venice Commission, a recent entrant to this debate, published a comprehensive
guidebook on good electoral laws in 2002. The Code of Good Practice in Electoral
Matters (Venice Commission, 2002) — consequently used in reviewing Albania’s
and Estonia’s electoral law in 2011 (OSCE/ODIHR, 2011; Venice Commission
and OSCE/ODIHR, 2011) and forming an apparent model to the modifications
Hungary introduced to its electoral law in 2012 —, contains original recommen-
dations for a good practice of apportionment.

“Equality in voting power, where the elections are not being held in
one single constituency, requires constituency boundaries to be drawn
in such a way that seats in the lower chambers representing the people
are distributed equally among the constituencies, in accordance with
a specific apportionment criterion, e.g., the number of residents in the
constituency, the number of resident nationals (including minors), the
number of registered electors, or possibly the number of people actu-
ally voting ... Constituency boundaries may also be determined on the
basis of geographical criteria and the administrative or indeed historic
boundary lines, which often depend on geography ... The maximum
admissible departure from the distribution criterion adopted depends
on the individual situation, although it should seldom exceed 10% and
never 15%, except in really exceptional circumstances (a demographi-
cally weak administrative unit of the same importance as others with at
least one lower-chamber representative, or concentration of a specific
national minority).” (Venice Commission, 2002, §§13–15 in Section 2.2)

The recommendation leaves some details open. Does the maximum admissi-
ble departure refer to the difference of population between any two constituen-
cies or the difference of the population of any constituency from the average
constituency size? The latter approach is more permissive and more common
around the world (see Table 16.1). Indeed, the final version of the 2012 electoral
law of Hungary replaced the former with 10-15% departure limits with the latter
with 15-20% departure limits. Without this significant relaxation the rule was
mathematically impossible to satisfy (Biró et al., 2012).

Similar thresholds exist in many other countries (Table 16.1), but the values
differ greatly from country to country. The strictest limits are set in the United
States that permits no inequalities by its Constitution. Zero-tolerance, however,
remains a theoretical objective. Real life is widely different: the constituencies of
Montana are almost twice as large as the ones in Rhode Island. Assuming that
the voters’ influence is proportional to the size of the constituencies, the voters of
Rhode Island have 88% more influence than the voters of Montana. A shocking
gap, but dwarfed by the differences in Georgia where the electoral law of 1999
did not set rules about the sizes of constituencies. The number of voters per
(single-seat) constituencies ranged from 3,600 in the Lent’ekhi or 4,200 in the
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Country Thresholds Country Thresholds

Albania 5% New Zealand 5%
Armenia 15% Papua New Guinea 20%
Australia 10% Singapore 30%
Canada 25% Ukraine 10%
Czech Republic 15% UK 5%
France 20% USA 0%
Germany 15% Yemen 5%
Hungary 15% (20%) Zimbabwe 20%
Italy 10%

Table 16.1: Thresholds (thresholds under “extraordinary circumstances”) for the
maximum difference from the average constituency size (Handley, 2007).

Kazbegi districts to over 138,000 in Kutaisi City, hugely favouring voters in the
former regions.

Setting a limit on the maximum departure from the average size is a very natu-
ral condition, but already such a mild requirement conflicts with well-established
apportionment standards: for certain apportionment problems all allocations
that respect the given limits violate properties such as Hare-quota and mono-
tonicity (Biró et al., 2015). Furthermore, the recommendation of the Venice Com-
mittee does not generally specify a unique solution, so it still leaves possibilities
of manipulation. This second problem may be overcome by a new apportion-
ment rule, constructed in the spirit of the recommendation. The Leximin Method
efficiently computes a solution where the differences from the average size are
lexicographically minimized (Biró et al., 2015).

In this chapter we survey the apportionment methods and the impact of the
latest policy recommendation by the Venice Commission. First, in Section 16.2
we give an overview on the classical apportionment methods and the Leximin
Method, and discuss their properties. Then we illustrate the usage of the Leximin
Method compared to the solutions by the current legislations from a wide range
of countries. These examples are based on our own calculations that in turn are
made using information on voting systems and population data gathered from
a wide range of sources. The details together with a systematic study of voting
systems will be published elsewhere.

16.2 Overview of Apportionment Methods

In this section we introduce the apportionment problem; we introduce and char-
acterise methods to solve it.

16.2.1 The Apportionment Problem

In a representative democracy higher level decisions are made by a group of
elected representatives. In most countries each representative speaks for citi-
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zens living in a certain geographical area and is elected in one of several voting
districts or constituencies. Generally a constituency elects a single candidate,
although in some countries, like Ireland or Singapore a constituency may elect
multiple representatives. Other countries, like the Netherlands or Israel, has no
non-trivial constituencies, but all representatives are elected at the national level
with no geographical attachment — we regard this as a trivial case with a sin-
gle constituency. Yet others have combinations of these (Csató, 2015, 2016) —
we will focus on the voting districts. The basis of geographical representation is
that people living in certain regions, such as New Yorkers or Scotsmen are not
just arbitrary voters, but people sharing certain cultural or geographical inter-
ests. Constituencies are consequently organised into geographical, political or
administrative regions.

We look for a fair an proportional representation. However natural this ap-
proach seems, it is not universal. The Cambridge Compromise, an academic-
driven proposal for a mathematical method to allocate the seats of the European
Parliament among the member states, for instance, takes proportionality as only
one of the aspects to be taken into account (Grimmett, 2012). In weighted vot-
ing the weights are also not proportional. During the negotiations of the Lisbon
Treaty that, among others, reformed voting in the Council of the European Union
the Jagellonian Compromise proposed to use the Penrose square-root law, where
the allocated weights are proportional to the square root of populations (Penrose,
1946; Słomczyński and Życzkowski, 2006; Kóczy, 2012). While these are exam-
ples where proportionality is knowingly violated, but for the purposes of fairness,
there are many voting systems (Canada and Denmark are examples) where cer-
tain territories, such as rural regions, or less populate states, are overrepresented
by law.

Our interest thus lies in the allocation of representatives among these regions
in a fair way. Allocating seats among parties in party-list proportional represen-
tation, the biproportional apportionment problem (see Chapter 3 in this book) or
voting with multi-winner approval rules (Brill et al., 2017) is analogous and the
general problem of apportionment can go well beyond the districting problem and
can deal with the allocation of any finite, indivisible good among heterogenous
claimants in a fair, proportional way. While the methodology can be used, for
instance for discrete clearing in the bankruptcy literature (Csóka and Herings,
2016), in the following we keep the voting terminology and also take such ap-
plications and examples. We assume that the task is to allocate the seats of a
legislature or House among several, n states — and elegantly skip the problem of
districting (Tasnádi, 2011; Puppe and Tasnádi, 2015), the laying out of the actual
districts, that can introduce additional inefficiencies. Before going any further,
we formally define the problem and introduce some of the best known methods
to solve the apportionment problem.

An apportionment problem (p, H) is a pair consisting a vector

p = (p1, p2, . . . , pn)

of state populations, where P =
∑n

i=1 pi is the population of the country and
H ∈ N+ denotes the number of seats in the House (where N+ = {1, 2, 3, . . . }).
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Our task is to determine the non-negative integers a1, a2, . . . , an with
∑n

i=1 ai = H
representing the number of constituencies in states 1, 2, . . . , n.

Let p ∈ Nn
+ and a ∈ Nn be the n-dimensional vectors that contain the pop-

ulation sizes and the allotted number of seats, respectively. An apportionment
method or rule is a function M that assigns an allotment for each apportionment
problem (p, H). An apportionment method specifies exactly how many House
seats each of the states gets. The resulting apportionment is not necessarily
unique although for a good method the multiplicity only emerges in artificial
examples. Let A = P

H denote the average size of a constituency. The fraction
pi

P H = pi

A is called the respective share of state i. Let δi be the difference in per-
centage, displayed by the constituencies of state i and let di be the departure, its
absolute value. Formally,

δi =

pi

ai
−A
A

and di = |δi| (16.1)

Throughout the paper we will employ the following notation: let x,y ∈ Rn, we
say that x ≥ y if xi ≥ yi for i = 1, 2, . . . , n.

16.2.2 Apportionment Methods

The fundamental idea of apportionment methods is that a representative should
speak for the same number of voters irrespective of the state or region she rep-
resents. Ideally a state i should get a proportional part pi

P H of the seats. This
number is the standard quota. If not all standard quotas are integers and most
of the time they are not, we must diverge from the ideal numbers. Rounding
the numbers down does not immediately solve the problem as the total number
of seats to be distributed is fixed, so if the standard quota is rounded down for
some, it must be rounded up for others, immediately creating inequalities. Many
of the best known methods only differ in rounding up or down the standard quo-
tas differently. See also Chapter 3 where some remarkably different methods
coming from a different stream of literature are presented.

Largest Remainder Methods

The largest remainder methods all rely on the logic of calculating the “price” of
a seat in terms of the number of voters, allocating the fully “paid” seats. The
remaining seats are allocated to the states with the largest remainders, that is,
the states with the largest fractional seat. Several methods exist using different
ways to calculate the price, the Hamilton method is the simplest and best known.

The Hamilton method (also known as Hare-Niemeyer or Vinton method) sets
the price as the standard or Hare divisor DS = P

H , which is the same as the
average constituency size A. By dividing the population of a state by the standard
divisor DS we calculate the ideal number of constituencies in the given state.
From this we can calculate how many seats does the state’s population suffice for:
each state is guaranteed to get the integer part of the quota, the lower quota. The
remaining seats are distributed in the same way as for other largest remainder
methods.
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We are not aware of a specification of a tiebreaking rule when the remainders
are identical, although with real life data this is a non-issue. The Hamilton
method was the first proposal to allocate the seats of the United States Congress
between states, but this was vetoed by president Washington.

Other largest remainder methods differ in the way their quotas are calculated.
The Hagenbach-Bischoff quota (Hagenbach-Bischoff, 1888) is calculated with the
divisor DH-B = P

H+1 , while the Droop and Imperiali (named after Belgian Senator
Pierre Imperiali) quotas with the only very slightly different DD = b P

H+1+1c (Droop,
1881) and DI =

P
H+2 . The Droop quota is typically used in single transferable vote

systems, where voters rank candidates and if their top choice has sufficient votes
to get elected, the vote goes to the second choice and so on. The Droop divisor
is the lowest number satisfying that the number of claimable resources, such
as seats does not exceed the House. In this sense the Hagenbach-Bischoff and
especially the Imperiali method may allocate seats that must later be taken back.

Divisor Methods

Divisor methods (sometimes called highest average or highest quotient methods)
follow a slightly different logic by adjusting the quotient itself. When the (lower)
quotas are calculated there will be some left-over seats. By lowering the divisor —
effectively the price of a seat — states will be able to afford more. Divisor methods
are mathematically equivalent to procedural apportionment methods such as e.g.
the D’Hondt method, which distribute seats one at a time to the state with the
highest claim, then update the claims after each iteration until all the seats are
allocated.

The Jefferson or D’Hondt method, introduced by Thomas Jefferson in 1791
and by Victor D’Hondt in 1878 in two mathematically very different, though
equivalent forms is the simplest of all divisor methods. Under the Jefferson
method the standard divisor DS = P

H is calculated. The lower quotas generally
do not add up to the size of the House, so in this method the standard divisor is
gradually lowered by “trial and error” until they do. While this is not a precise
mathematical algorithm, note that the modified divisor will generally satisfy this
for a whole range of values, so an appropriate value is easy to find.

The D’Hondt method uses the following claim function

D’Hondt method qH
i (s) =

pi
s+ 1

showing how many voters would a representative, on average, represent if an
additional seat were given to the state i already having s seats.

Some voting systems use variants of the D’Hondt method that bias the results
in favour or against larger claimants, such as states with larger voting popula-
tion or parties with many votes in a party-list voting system. These include the
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following

Adams method qA
i (s) =

pi
s

Danish method qD
i (s) =

pi
s+ 1/3

Huntington-Hill method/EP qHH
i (s) =

pi√
s(s+ 1)

Sainte-Laguë/Webster method qSL
i (s) =

pi
s+ 1/2

Imperiali method qI
i(s) =

pi
s+ 2

Macau method qM
i (s) =

pi
2s

displaying an increasing bias against large states with the Adams, Danish
Huntington-Hill and Sainte-Laguë methods favouring large states more than the
D’Hondt, Imperiali or especially the Macau method (Marshall et al., 2002; Bittó,
2017). The Huntington-Hill method, also known as the Method of Equal Propor-
tions (EP) is the method currently used in the United States House of Represen-
tatives.

The Leximin Method

The Leximin Method (Biró et al., 2015) is fundamentally different from the meth-
ods discussed so far. While these were based on finding the standard quota and
then trying to find a good way to round these numbers, the Leximin Method looks
at relative differences. It minimizes the absolute value of the largest relative dif-
ference from the average constituency size — the maximum departure — and does
this in a recursive fashion.

To have a more precise definition, we need to introduce some terminology.
Lexicographic is like alphabetic ordering where words are compared letter-by-
letter and the ordering is based on the first difference. When it comes to real
vectors the ordering is based on the first coordinates where these vectors differ.
Formally vector x ∈ Rm is lexicographically smaller than y ∈ Rm (denoted by x ≺ y)
if x 6= y and there exists a number 1 ≤ j ≤ m such that xi = yi if i < j and xj < yj.

Returning to our model, given an apportionment problem (p, H) and an al-
lotment a, let ∆(a) denote a nonnegative n-dimensional vector, where the dif-
ferences di(a) are contained in a non-increasing order. A solution a is said to
be lexicographically minimal, or simply leximin, if there is no other allotment a′

where ∆(a′) is lexicographically smaller than ∆(a). The Leximin Method chooses
an allocation of seats, such that the non-increasingly ordered vector of differ-
ences is lexicographically minimal. This method is somewhat more complex than
the earlier ones, but while other methods make sure that states do not get too
many seats, the Leximin Method takes both under- and overrepresentation into
account. Perhaps it is not so obvious here, but the method is well-defined and
Biró et al. (2015) gave an efficient algorithm to calculate it.
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16.2.3 Properties and Paradoxes

There are several apportionment methods and while in most cases they all pro-
duce nearly identical results, we would like to understand the reasons for the
small differences that may be observed. The way to argue in favour or against
these methods is by looking at their properties. In the following we list some
properties that apportionment methods satisfy.

Quota

Exact proportional representation is seldom possible as the respective shares of
the states are hardly ever integer numbers. However if such a case occurs, that
is, the fractions ai = pi

P H are integers for all i ∈ {1, . . . , n} then the allotment a is
said to have the exact quota property.

In any other case taking one of the nearest integers to the exactly proportional
share is a natural choice or at least some methods explicitly try to allocate seats
accordingly. An allotment a satisfies lower (upper) quotas, if no state receives
less (more) constituencies than the lower (upper) integer part of its respective
share, that is ai ≥

⌊
pi

P H
⌋

for all i ∈ {1, . . . , n} and ai ≤
⌈
pi

P H
⌉

for all i ∈ {1, . . . , n},
respectively. An allotment satisfies the Hare-quota or simply the quota property
if it satisfies both upper and lower quota.

Similarly, we say that an apportionment method M(p, H) satisfies lower
(upper) quota if for any apportionment problem (p,H), M(p, H)i ≥ bpi

P Hc or
M(p, H)i ≤ dpi

P He respectively for all i ∈ {1, . . . , n} and satisfies Hare-quota if it
satisfies both of them.

Monotonicity

Monotonicity properties describe how changes in the number of available seats
or the (relative) claims made by the states should affect the number of allocated
seats.

House-monotonicity states that the individual states should not lose seats
when more seats are available in the House.

Definition 16.1. An apportionment method M is house-monotonic if M(p, H ′) ≥
M(p, H) for any apportionment problem (p, H) and House sizes H ′ > H.

A scenario where increasing the House size would decrease the number of
seats allotted to a state is often considered undesirable, perhaps even para-
doxical. An apportionment rule where this is possible is said to exhibit the Al-
abama paradox referring to a historical occurrence of the phenomenon for state
Alabama. House-monotonic apportionment methods are free from this paradox.

There is a related monotonicity requirement and an associated paradox when
populations are considered. The population paradox arises when the population
of two states increases at different rates. Then it is possible that the state with
more rapid growth actually loses seats to the state with slower growth. Biró
et al. (2015) present an example where the population paradox emerges; Tasnádi
(2008) surveys the emergence of this paradox historically in the apportionment
among parties in Hungary.
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Definition 16.2. An apportionment rule M is population-monotonic if M(p′, H)i ≥
M(p, H)i for any House size H and population sizes p,p′ such that p′i > pi, p′j > pj

and p′
i

pi
≥ p′

j

pj
while p′k = pk for k ∈ {1, 2, . . . , n}, k 6= i, j.

Note that there are several alternative definitions of this property. The one
presented here is slightly weaker than some others used in the literature (Lauw-
ers and Van Puyenbroeck, 2008; Balinski and Young, 1982). However, as we will
see even this weaker property is violated by some rules.

Departure from the Exact Quota

If it is not possible to distribute the seats according to the exact quota there
will be necessarily some inequality. Departure is the relative difference between
the average number of represented voters per representative in a given state and
nationwide.

Several countries specify an explicit limit on the permitted departure from
the average in their electoral law in accordance with the recommendation of the
Venice Commission (2002). An apportionment satisfies the q-permitted departure
property if all departures are smaller than the given limit q. Then an apportion-
ment method satisfies the admissible departure property if for each apportion-
ment problem, for which there exists an apportionment satisfying the permitted
departure property, it produces such an apportionment. Formally

An apportionment satisfies the Venice or Smallest maximum admissible depar-
ture property if for apportionment problem it produces an apportionment where
the largest departure is the smallest. For a given apportionment problem (p, H)
let α(p,H) be the smallest maximum admissible departure that can be achieved
with an allotment, i.e.,

α(p,H) = min
a∈A(n,H)

max
i∈{1,...,n}

{di} (16.2)

where A(n,H) denotes the set of n-dimensional non-negative vectors for which
the sum of the coordinates is H.

Definition 16.3. An apportionment rule M satisfies the smallest maximum ad-

missible departure property if
∣∣∣∣

pi
M(p,H)i

−A
A

∣∣∣∣ ≤ α(p,H) for any apportionment problem

(p,H) and for each i ∈ {1, . . . , n}.

16.3 Choosing Methods

The reason for looking at the various properties has been to be able to evaluate
the different methods. In Table 16.2 we present some of the known comparison
results about these methods. Apportionment has a long history in the United
States and the method has already been altered several times. Over the years
many new states joined, populations increased dramatically and correspond-
ingly, the House was expanded, too, and we have seen properties violated several
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Table 16.2: A comparison of apportionment methods.
quota House population Venice

monotonicity monotonicity
Hamilton both no no no

Jefferson/D’Hondt lower yes yes no
Webster/Sainte-Laguë mostly yes yes no
Huntingdon-Hill/EP no yes yes no

Leximin no no no yes

times. While apart from the initial use of the Jefferson method, Hamilton and
Webster were used together, Hamilton was found to exhibit both the Alabama
paradox, when house-monotonicity is violated, the population monotonicity and
also the new state paradox that we did not discuss here. As a result the method
has been replaced by the Huntingdon-Hill, or Equal Proportions method that is
still used today.

Even if we treat the Venice property separately, notice that there is no method
that would satisfy all other requirements. Balinski and Young (1975) introduced
the so-called Quota method that is house-monotonic and fulfills the quota prop-
erty as well, but proved that no method that is free from both the Alabama and
the population paradoxes satisfies quota (Balinski and Young, 1982). On the
other hand Biró et al. (2015) have shown that the Venice property is not com-
patible with any of the remaining properties. Notice that the result is also true
if we look at admissible departures only. For a low enough admissible departure
the same counterexamples can be presented. This means that the recommenda-
tion of Venice Commission (2002) inherently violates quota and the monotonicity
properties.

When we say that a method violates a property we mean that there exists an
apportionment problem where the given property is violated. These counterex-
amples are sometimes artificial. They may for instance rely on symmetries that
are extremely unlikely in real life. In the following we look at real apportion-
ment problems gathered from countries all over the world. In the next couple of
sections we test the properties on this real data set.

16.3.1 Bounds on the Maximum Departure

Let us fix an apportionment problem (p, H). Obviously di is the smallest if state
i receives either its lower or upper quota, although it matters which one. Note
that the closest integer to the respective share does not always yield the smallest
difference from the average. Let us elaborate on this relationship a bit further.

Let li =
⌊
pi

P H
⌋

and ui =
⌈
pi

P H
⌉
, respectively, denote the lower and upper quo-

tas of state i and let βi and ωi denote the minimum and maximum difference
achievable for state i when it gets the lower or upper integer part of its respective
share. The maximum of the βi values, denoted by β (for best case), is a natural
lower bound on the maximum departure for any apportionment, which satisfies
the Hare-quota property. Similarly the maximum of the ωi values, denoted by
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ω (for worst case), is an upper bound for any apportionment which satisfies the
Hare-quota. Formally:

βi = min

(∣∣∣∣
pi

li
−A
A

∣∣∣∣,
∣∣∣∣
pi

ui
−A
A

∣∣∣∣
)
, β = max

i∈N
βi. (16.3)

ωi = max

(∣∣∣∣
pi

li
−A
A

∣∣∣∣,
∣∣∣∣
pi

ui
−A
A

∣∣∣∣
)
, ω = max

i∈N
ωi. (16.4)

Suppose we would like to minimize the differences from the average con-
stituency size. We calculate the standard quota for every state and start rounding
it up or down depending on which one yields a smaller difference. Unfortunately
the resulting allotment is infeasible if we have distributed too few or too many
seats. The best case scenario is when the allotted number of seats add up to
the House size. In such cases we can guarantee that the departure is not bigger
than β. Even if some states are rounded in the wrong direction, β is achievable
if we rounded the critical states well. The worst case scenario is when the crit-
ical states are rounded in the wrong direction, in such cases the difference will
be ω. Note that it is always possible to allocate the seats in such way that the
apportionment satisfies the quota property, hence if the goal is to minimize the
differences from the average then ω is achievable even in the worst case.

In contrast the maximum difference α can be implemented by the Leximin
Method, By design, β ≤ α ≤ ω, thus the Leximin Method always yields an appor-
tionment that falls within these bounds. Somewhat surprisingly, empirical data
shows that divisor methods, which are known to violate the quota property never
exceed these bounds either (see Figures 16.1 and 16.2).

16.3.2 Monotonicity vs. Quota vs. Maximum Departure

The Leximin Method fails to be monotonic because it focuses solely on reducing
the maximum departure from the average constituency size. In effect this means
that the Leximin Method will reallocate seats from big states to small ones if the
resulting apportionment has smaller departure. Large states with many seats
serve as puffers where excess seats can be allocated or seats can be acquired
if there are needed elsewhere as these changes do not affect the average size
of constituencies dramatically. For the exact same reasons the Leximin Method
violates quota as well.

Divisor methods are all immune from the Alabama paradox. The reason is
clear: by enlarging the House, the price of a seat decreases, thus each state can
afford more. Similarly, divisor methods are immune from both the population-
and new state paradoxes. In fact if a method avoids the population paradox it
must be a divisor method (Balinski and Young, 1982). As a consequence divisor
methods sometime fail to produce quota apportionments. Interestingly, quota
failures just as for leximin affect only large states (see Tables 16.3 and 16.4).

Quota failures are more common for problems with substantially different
state/county sizes. In case of Hungary the capital Budapest has eight times more
voters than the smallest county, Nógrád. In comparison the Irish administrative
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Figure 16.1: Apportionment over Belgian regions. Leximin coincides with β; EP,
Webster are near. Ironically, D’Hondt performs poorly, reaching ω several times.

ω = 1

ω = 0.5

ω = 0.333

Figure 16.2: Apportionment over Irish counties. Leximin performs best, then EP,
Webster, but all struggle to evenly distribute seats due to regular county sizes.
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Leximin EP Jeff/D’Hondt Adams Webster

Largest county (Budapest) 27 1 74 67 0
2nd largest county (Pest) 4 0 17 21 0
Elsewhere 0 0 0 0 0

Table 16.3: Number of quota failures based on Hungarian constituency data
when House size varies between 100 and 200.

Leximin EP Jeff/D’Hondt Adams Webster

Largest state (California) 112 2 201 201 0
2nd largest state (Texas) 30 0 198 192 0
3rd largest state (New York) 12 0 120 67 0
4th largest state (Florida) 6 0 105 21 0
Elsewhere 0 0 19 24 0

Table 16.4: Number of quota failures based on US constituency data when House
size varies between 335 and 535 (that is current House size ±100).

regions do not vary that much. The population ratio of the largest (Donegal) and
the smallest (South-West Cork) county is only 1.83. Even on a broader range
of House sizes (50-250) the Adams, EP and Webster methods do not violate the
quota property and the leximin and the Jefferson/D’Hondt methods only violate
it 3 times each (again at the two largest counties).

The leximin and EP methods, although conceptually very different, in practice
tend to produce similar apportionments. They coincide for the apportionment
problems in Austria, Denmark, Finland, Ireland, Luxemburg and Portugal, differ
for the US House of Representatives and in England by 1 and 2 seats respectively.
This small difference, however, accounts for the worse (better) departure statistic
and for the (lack of) monotonicity.

The β and ω bounds indicate that proportional representation rests on
whether we can round the critical states in a good direction. Enforcing quota
ensures that the departure will not exceed ω but the additional constraint also
makes it difficult to stay close to β, since it does not allow us to use states as
buffers to lend/borrow problematic or desperately needed seats for critical states
without creating too much inequality. What are the critical states? Critical states
are small states which are only a few times as big as the average constituency
size. It is easy to prove the following upper bounds

β ≤ β def
=

1

2lsm + 1
(16.5)

ω ≤ ω def
=

{
1

lsm
if lsm > 0,

∞ if lsm = 0.
(16.6)

where lsm denotes the lower integer part of the smallest state’s respective share.
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li − ui p∗i β p̂i ω

0− 1 0 1 < A ∞
1− 2 4

3A 1/3 A or 2A 1
2− 3 12

5 A 1/5 2A or 3A 1/2
3− 4 24

7 A 1/7 3A or 4A 1/3
4− 5 40

9 A 1/9 4A or 5A 1/4
5− 6 60

11A 1/11 5A or 6A 1/5

Table 16.5: Critical state populations. The first column shows the lower and
upper quotas. If state i’s population is close to p∗i then βi will be close to β. If
state i’s population is close to p̂i then ωi will be close to ω.

Figure 16.2 demonstrates the meaning of Table 16.5. As the House size in-
creases from 111 to 112 the average constituency size becomes so small that even
the smallest county is at least twice as big as A. As a result ω drops significantly
and never anymore exceeds 50%.

The reason why we are interested in β rather than in ω is that some methods
like the EP and Webster can reach β and the Leximin Method often coincides with
it even for a wide range of House sizes. Since β is achievable it is a valid question
where β takes its maximum and how can we lower it. Equation 16.5 highlights
the relationship of β and lower quota of the smallest state. For example, if the
average constituency size is sufficiently small, less than half of the smallest state,
then the maximum departure will be less than 20% (assuming we achieve β).

The Leximin Method will coincide with β if the House size is not too small and
there are puffer states that enable seat reconfiguration. That means there are at
least one or two large states.

16.4 Conclusion

Several alternative methods exist for the allocation of seats among states or re-
gions and while all these methods have the same goal, fair representation, each
approaches fairness from a different angle. Fairness can be captured by sev-
eral incompatible properties and our interest lies in uncovering the principles
that lead to one or another choice. In particular, we want to understand the
incompatibility of the quota and maximum difference properties. The latter is a
mathematical formulation of a good practice recommended by the Venice Com-
mission (2002) to ensure near-equal representation. The Quota Property on the
other hand puts the states first and guarantees that the states or regions get
very close to their fair share. The conflict between the two views is far from ob-
vious, but we soon learned that fairness at the state level contributes to larger
inequalities among voters elsewhere.

The actual apportionments in certain European countries fall quite far from
both the recommendation of the Venice Commission and the method used in
the US. While the differences can, surely be attribute to the lack of a scientific
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approach, certain countries introduce systematic biases, often to counter the
overrepresentation of the urban areas. Corrections are not needed for a country
with homogeneous constituencies, but if some share common interest, voting
blocks may emerge and proportionality is no longer fair.

For instance the Spanish Congress of Deputies consists of 350 members, but
only 248 are apportioned according to the population data. Each of the fifty
provinces is entitled to an initial minimum of two seats, while the cities of Ceuta
and Melilla get one each. As a result the constituencies of Teruel are roughly 65%
smaller, Madrid’s are 30% larger than the average; the vote of a Teruelian citizen
is worth nearly four times more than that of a Madrilenian. The Danish appor-
tionment, on the other hand, uses the classical D’Hondt method, but based on
the sum of the (1) population, (2) voting population, and (3) 20 times the area in
square kilometres (as a rural bonus) for each region. Other countries have spe-
cial clauses specifying the seat allocated to certain states explicitly, outside the
apportionment procedure. While this is generally to ensure the fair treatment of a
peripheral or underpopulated region, favourable developments of the population
often turns such measures unnecessary or even harmful for the region. Such
anomalies are very interesting from both a theoretical and practical point of view,
but elaborating on them further would be beyond the limits of this paper and we
present them in a companion paper with a systematic study of apportionment
methods and practices.
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