Strategy-Proofness in Markets with Indivisibilities

Lars Ehlers

Université de Montréal

August 2012

Ehlers SCW Prize Lecture

▲ ▶ ▲ ●

Introduction

House Allocation

Priority-Based Allocation

Markets with Indivisibilities

• No monetary transfers

イロト イヨト イヨト イヨト

æ

Markets with Indivisibilities

- No monetary transfers
- Two-sided Matching or Marriage Markets (Preferences on both sides of the market).

Markets with Indivisibilities

- No monetary transfers
- Two-sided Matching or Marriage Markets (Preferences on both sides of the market).
- One-sided Matching:

A⊒ ▶ ∢ ∃

- No monetary transfers
- Two-sided Matching or Marriage Markets (Preferences on both sides of the market).
- One-sided Matching:
 - House Exchange

- No monetary transfers
- Two-sided Matching or Marriage Markets (Preferences on both sides of the market).
- One-sided Matching:
 - House Exchange
 - House Allocation

- No monetary transfers
- Two-sided Matching or Marriage Markets (Preferences on both sides of the market).
- One-sided Matching:
 - House Exchange
 - House Allocation
 - House Allocation with Existing Tenants

- No monetary transfers
- Two-sided Matching or Marriage Markets (Preferences on both sides of the market).
- One-sided Matching:
 - House Exchange
 - House Allocation
 - House Allocation with Existing Tenants
 - Allocation of Houses (or objects) with Fixed Priorities

- No monetary transfers
- Two-sided Matching or Marriage Markets (Preferences on both sides of the market).
- One-sided Matching:
 - House Exchange
 - House Allocation
 - House Allocation with Existing Tenants
 - Allocation of Houses (or objects) with Fixed Priorities
 - Hybrid Models

- No monetary transfers
- Two-sided Matching or Marriage Markets (Preferences on both sides of the market).
- One-sided Matching:
 - House Exchange
 - House Allocation
 - House Allocation with Existing Tenants
 - Allocation of Houses (or objects) with Fixed Priorities
 - Hybrid Models
- Applications: Entry-level labor markets, (on-campus) housing, school choice, kidney exchange, etc..

Focus	Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
	Focus				

• Strategy-proofness

▲ @ ▶ < ≥ ▶</p>

⊸ ≣ ≯

æ

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Focus				

- Strategy-proofness
- Other properties: Individual Rationality, (Weak) Efficiency, Non-Bossiness, (Core-)Stability, Consistency, Solidarity, etc..

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Focus				

- Strategy-proofness
- Other properties: Individual Rationality, (Weak) Efficiency, Non-Bossiness, (Core-)Stability, Consistency, Solidarity, etc..
- Strict Preferences

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Focus				

- Strategy-proofness
- Other properties: Individual Rationality, (Weak) Efficiency, Non-Bossiness, (Core-)Stability, Consistency, Solidarity, etc..
- Strict Preferences
- Weak Preferences

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Focus				

- Strategy-proofness
- Other properties: Individual Rationality, (Weak) Efficiency, Non-Bossiness, (Core-)Stability, Consistency, Solidarity, etc..
- Strict Preferences
- Weak Preferences
- Strict and Weak Priorities

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Focus				

- Strategy-proofness
- Other properties: Individual Rationality, (Weak) Efficiency, Non-Bossiness, (Core-)Stability, Consistency, Solidarity, etc..
- Strict Preferences
- Weak Preferences
- Strict and Weak Priorities
- Tie-Breaking

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Focus				

- Strategy-proofness
- Other properties: Individual Rationality, (Weak) Efficiency, Non-Bossiness, (Core-)Stability, Consistency, Solidarity, etc..
- Strict Preferences
- Weak Preferences
- Strict and Weak Priorities
- Tie-Breaking
- Implementability

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Focus				

- Strategy-proofness
- Other properties: Individual Rationality, (Weak) Efficiency, Non-Bossiness, (Core-)Stability, Consistency, Solidarity, etc..
- Strict Preferences
- Weak Preferences
- Strict and Weak Priorities
- Tie-Breaking
- Implementability
- Incomplete Information and Ordinally Bayesian Incentive Compatibility

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Focus				

- Strategy-proofness
- Other properties: Individual Rationality, (Weak) Efficiency, Non-Bossiness, (Core-)Stability, Consistency, Solidarity, etc..
- Strict Preferences
- Weak Preferences
- Strict and Weak Priorities
- Tie-Breaking
- Implementability
- Incomplete Information and Ordinally Bayesian Incentive Compatibility
- Other solution concepts

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Marriage	Market			

• Set of agents $N = M \cup W$ (men and women)

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Marriage	Market			

- Set of agents $N = M \cup W$ (men and women)
- R_m strict over $W \cup \{\emptyset\}$

< **₽** ► < E

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Marriage	Market			

- Set of agents $N = M \cup W$ (men and women)
- R_m strict over $W \cup \{\emptyset\}$
- R_w strict over $M \cup \{\emptyset\}$

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Marriage	e Market			

- Set of agents $N = M \cup W$ (men and women)
- R_m strict over $W \cup \{\emptyset\}$
- R_w strict over $M \cup \{\emptyset\}$
- Profile $R = (R_i)_{i \in N}$

A ►

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Marriage	Market			

- Set of agents $N = M \cup W$ (men and women)
- R_m strict over $W \cup \{\emptyset\}$
- R_w strict over $M \cup \{\emptyset\}$
- Profile $R = (R_i)_{i \in N}$
- Set of all strict profiles \mathcal{P}^N .

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Marriage	Market			

- Set of agents $N = M \cup W$ (men and women)
- R_m strict over $W \cup \{\emptyset\}$
- R_w strict over $M \cup \{\emptyset\}$
- Profile $R = (R_i)_{i \in N}$
- Set of all strict profiles \mathcal{P}^N .
- Matching $\mu : N \to N \cup \{\emptyset\}$ with $\mu(m) \in W \cup \{\emptyset\}$, $\mu(w) \in M \cup \{\emptyset\}$, and $\mu(m) = w \Leftrightarrow \mu(w) = m$

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Marriage	Market			

- Set of agents $N = M \cup W$ (men and women)
- R_m strict over $W \cup \{\emptyset\}$
- R_w strict over $M \cup \{\emptyset\}$
- Profile $R = (R_i)_{i \in N}$
- Set of all strict profiles \mathcal{P}^N .
- Matching $\mu : N \to N \cup \{\emptyset\}$ with $\mu(m) \in W \cup \{\emptyset\}$, $\mu(w) \in M \cup \{\emptyset\}$, and $\mu(m) = w \Leftrightarrow \mu(w) = m$
- Set of matchings \mathcal{M}_2 .

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Marriage	Market			

- Set of agents $N = M \cup W$ (men and women)
- R_m strict over $W \cup \{\emptyset\}$
- R_w strict over $M \cup \{\emptyset\}$
- Profile $R = (R_i)_{i \in N}$
- Set of all strict profiles \mathcal{P}^N .
- Matching $\mu : N \to N \cup \{\emptyset\}$ with $\mu(m) \in W \cup \{\emptyset\}$, $\mu(w) \in M \cup \{\emptyset\}$, and $\mu(m) = w \Leftrightarrow \mu(w) = m$
- Set of matchings \mathcal{M}_2 .
- Rule (or mechanism) $\varphi : \mathcal{P}^{N} \longrightarrow \mathcal{M}_{2}$.

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Marriage	Market			

- Set of agents $N = M \cup W$ (men and women)
- R_m strict over $W \cup \{\emptyset\}$
- R_w strict over $M \cup \{\emptyset\}$
- Profile $R = (R_i)_{i \in N}$
- Set of all strict profiles \mathcal{P}^N .
- Matching $\mu : N \to N \cup \{\emptyset\}$ with $\mu(m) \in W \cup \{\emptyset\}$, $\mu(w) \in M \cup \{\emptyset\}$, and $\mu(m) = w \Leftrightarrow \mu(w) = m$
- Set of matchings \mathcal{M}_2 .
- Rule (or mechanism) $\varphi : \mathcal{P}^N \longrightarrow \mathcal{M}_2$.
- $\varphi_i(R)$ is agent *i*'s allotment.

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation	
Properti	es				
					ĺ

• Strategy-Proofness (SP): For all R, all $i \in N$ and all R'_i , $\varphi_i(R)R_i\varphi_i(R'_i, R_{-i})$.

A⊒ ▶ ∢ ≣

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Properti	ies			

- Strategy-Proofness (SP): For all R, all $i \in N$ and all R'_i , $\varphi_i(R)R_i\varphi_i(R'_i, R_{-i})$.
- Individual Rationality (IR): For all R and all $i \in N$, $\varphi_i(R)R_i\emptyset$.

æ

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Properti	ies			

- Strategy-Proofness (SP): For all R, all $i \in N$ and all R'_i , $\varphi_i(R)R_i\varphi_i(R'_i, R_{-i})$.
- Individual Rationality (IR): For all R and all $i \in N$, $\varphi_i(R)R_i\emptyset$.
- Efficiency (EFF): For all R there exists no μ such that $\mu(i)R_i\varphi_i(R)$ for all $i \in N$ (with strict preference for some j).

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Properti	es			

- Strategy-Proofness (SP): For all R, all $i \in N$ and all R'_i , $\varphi_i(R)R_i\varphi_i(R'_i, R_{-i})$.
- Individual Rationality (IR): For all R and all $i \in N$, $\varphi_i(R)R_i\emptyset$.
- Efficiency (EFF): For all R there exists no μ such that $\mu(i)R_i\varphi_i(R)$ for all $i \in N$ (with strict preference for some j).
- Weak Efficiency (Weak EFF): For all R there exists no μ such that μ(i)P_iφ_i(R) for all i ∈ N.

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Propert	ies			

- Strategy-Proofness (SP): For all R, all $i \in N$ and all R'_i , $\varphi_i(R)R_i\varphi_i(R'_i, R_{-i})$.
- Individual Rationality (IR): For all R and all $i \in N$, $\varphi_i(R)R_i\emptyset$.
- Efficiency (EFF): For all R there exists no μ such that $\mu(i)R_i\varphi_i(R)$ for all $i \in N$ (with strict preference for some j).
- Weak Efficiency (Weak EFF): For all R there exists no μ such that μ(i)P_iφ_i(R) for all i ∈ N.
- Mutual Best (MB): If $R_m : w \dots$ and $R_w : m \dots$, then $\varphi_m(R) = w$.

・同・ ・ヨ・ ・ヨ・

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Properti	AC			

- Strategy-Proofness (SP): For all R, all $i \in N$ and all R'_i , $\varphi_i(R)R_i\varphi_i(R'_i, R_{-i})$.
- Individual Rationality (IR): For all R and all $i \in N$, $\varphi_i(R)R_i\emptyset$.
- Efficiency (EFF): For all R there exists no μ such that $\mu(i)R_i\varphi_i(R)$ for all $i \in N$ (with strict preference for some j).
- Weak Efficiency (Weak EFF): For all R there exists no μ such that μ(i)P_iφ_i(R) for all i ∈ N.
- Mutual Best (MB): If $R_m : w \dots$ and $R_w : m \dots$, then $\varphi_m(R) = w$.
- Weak Mutual Best (WMB): If $R_m : w\emptyset \dots$ and $R_w : m\emptyset \dots$, then $\varphi_m(R) = w$.

・回 ・ ・ ヨ ・ ・ ヨ ・

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Properti	AC			

- Strategy-Proofness (SP): For all R, all $i \in N$ and all R'_i , $\varphi_i(R)R_i\varphi_i(R'_i, R_{-i})$.
- Individual Rationality (IR): For all R and all $i \in N$, $\varphi_i(R)R_i\emptyset$.
- Efficiency (EFF): For all R there exists no μ such that $\mu(i)R_i\varphi_i(R)$ for all $i \in N$ (with strict preference for some j).
- Weak Efficiency (Weak EFF): For all R there exists no μ such that μ(i)P_iφ_i(R) for all i ∈ N.
- Mutual Best (MB): If $R_m : w \dots$ and $R_w : m \dots$, then $\varphi_m(R) = w$.
- Weak Mutual Best (WMB): If $R_m : w\emptyset \dots$ and $R_w : m\emptyset \dots$, then $\varphi_m(R) = w$.
- (Core-)Stability: For all R, $\varphi(R) \in (Strong)Core(R)$.

・回 ・ ・ ヨ ・ ・ ヨ ・

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Propert				

- Strategy-Proofness (SP): For all R, all $i \in N$ and all R'_i , $\varphi_i(R)R_i\varphi_i(R'_i, R_{-i})$.
- Individual Rationality (IR): For all R and all $i \in N$, $\varphi_i(R)R_i\emptyset$.
- Efficiency (EFF): For all R there exists no μ such that $\mu(i)R_i\varphi_i(R)$ for all $i \in N$ (with strict preference for some j).
- Weak Efficiency (Weak EFF): For all R there exists no μ such that μ(i)P_iφ_i(R) for all i ∈ N.
- Mutual Best (MB): If $R_m : w \dots$ and $R_w : m \dots$, then $\varphi_m(R) = w$.
- Weak Mutual Best (WMB): If $R_m : w\emptyset \dots$ and $R_w : m\emptyset \dots$, then $\varphi_m(R) = w$.
- (Core-)Stability: For all R, $\varphi(R) \in (Strong)Core(R)$.
- Here: (Strong) Core ⇔ IR + Pairwise Stability (no blocking pair).

House Allocation

Impossibilities

T1 (Roth, 1982 MOR): $\not\exists$ SP + Stable φ .

イロト イヨト イヨト イヨト

T1 (Roth, 1982 MOR): $\not\exists$ SP + Stable φ .

T2 (Alcalde and Barbera, 1994 ET): $\not\exists$ SP+IR+EFF φ .

イロン イヨン イヨン イヨン

- **T1 (Roth, 1982 MOR):** $\not\exists$ SP + Stable φ .
- **T2** (Alcalde and Barbera, 1994 ET): $\not\exists$ SP+IR+EFF φ .
- **T3** (Takagi and Serizawa, 2010 SCW): $\not\exists$ SP+IR+MB φ .

<ロ> (日) (日) (日) (日) (日)

- **T1 (Roth, 1982 MOR):** $\not\exists$ SP + Stable φ .
- **T2** (Alcalde and Barbera, 1994 ET): $\not\exists$ SP+IR+EFF φ .
- **T3** (Takagi and Serizawa, 2010 SCW): $\not\exists$ SP+IR+MB φ .
- T4 (Footnote in Ehlers, 2008 MOR): \exists SP+IR+WMB φ .

イロン イヨン イヨン イヨン

- **T1 (Roth, 1982 MOR):** $\not\exists$ SP + Stable φ .
- **T2** (Alcalde and Barbera, 1994 ET): $\not\exists$ SP+IR+EFF φ .
- **T3** (Takagi and Serizawa, 2010 SCW): $\not\exists$ SP+IR+MB φ .
- T4 (Footnote in Ehlers, 2008 MOR): \exists SP+IR+WMB φ .
- Note that T4 \Rightarrow T3 & T2 \Rightarrow T1.

イロン イヨン イヨン イヨン

3

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
"Possibi	lities"			

• Men-Proposing Deferred-Acceptance (DA)-algorithm is SP for *M*.

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
"Possibil	ities"			

- Men-Proposing Deferred-Acceptance (DA)-algorithm is SP for *M*.
- Finds best stable matching for men.

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
"Possibi	ilities"			

- Men-Proposing Deferred-Acceptance (DA)-algorithm is SP for *M*.
- Finds best stable matching for men.

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
"Possibi	ilities"			

- Men-Proposing Deferred-Acceptance (DA)-algorithm is SP for *M*.
- Finds best stable matching for men.

T6 (Ehlers and Masso, 2007 JET): For common prior \mathcal{P} , φ stable + OBIC \Leftrightarrow support(\tilde{P}) $\subseteq \{R \text{ with } |Core(R)| = 1\}.$

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
"Possibi	ilities"			

- Men-Proposing Deferred-Acceptance (DA)-algorithm is SP for *M*.
- Finds best stable matching for men.

- **T6** (Ehlers and Masso, 2007 JET): For common prior \mathcal{P} , φ stable + OBIC \Leftrightarrow support(\tilde{P}) $\subseteq \{R \text{ with } |Core(R)| = 1\}.$
- vNM-stable sets: Ehlers (2007 JET), Wako (2010 Algorithmica).

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
"Possibi	ilities"			

- Men-Proposing Deferred-Acceptance (DA)-algorithm is SP for *M*.
- Finds best stable matching for men.

- **T6** (Ehlers and Masso, 2007 JET): For common prior \mathcal{P} , φ stable + OBIC \Leftrightarrow support(\tilde{P}) $\subseteq \{R \text{ with } |Core(R)| = 1\}.$
- vNM-stable sets: Ehlers (2007 JET), Wako (2010 Algorithmica).
- Farsighted stable sets: Mauleon, Vannetelbosch and Vergote (2011 TE).

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

• Set of agents N (i owns house i (endowment of i))

</i>
< □ > < □ >

- Set of agents N (i owns house i (endowment of i))
- R_i strict over N

</i>
< □ > < □ >

- Set of agents N (i owns house i (endowment of i))
- R_i strict over N
- Profile $R = (R_i)_{i \in N}$

▲ □ ► < □ ►</p>

- Set of agents N (i owns house i (endowment of i))
- R_i strict over N
- Profile $R = (R_i)_{i \in N}$
- Set of all strict profiles \mathcal{P}^N .

- Set of agents N (i owns house i (endowment of i))
- R_i strict over N
- Profile $R = (R_i)_{i \in N}$
- Set of all strict profiles \mathcal{P}^N .
- Matching $\mu: N \to N$ with $\mu(i) \neq \mu(j)$ for all $i \neq j$.

- Set of agents N (i owns house i (endowment of i))
- R_i strict over N
- Profile $R = (R_i)_{i \in N}$
- Set of all strict profiles \mathcal{P}^N .
- Matching $\mu: N \to N$ with $\mu(i) \neq \mu(j)$ for all $i \neq j$.
- Set of matchings \mathcal{M} .

- Set of agents N (i owns house i (endowment of i))
- R_i strict over N
- Profile $R = (R_i)_{i \in N}$
- Set of all strict profiles \mathcal{P}^N .
- Matching $\mu: N \to N$ with $\mu(i) \neq \mu(j)$ for all $i \neq j$.
- Set of matchings \mathcal{M} .
- Rule (or mechanism) $\varphi : \mathcal{P}^{N} \longrightarrow \mathcal{M}$.

- Set of agents N (i owns house i (endowment of i))
- R_i strict over N
- Profile $R = (R_i)_{i \in N}$
- Set of all strict profiles \mathcal{P}^N .
- Matching $\mu: N \to N$ with $\mu(i) \neq \mu(j)$ for all $i \neq j$.
- Set of matchings \mathcal{M} .
- Rule (or mechanism) $\varphi : \mathcal{P}^{N} \longrightarrow \mathcal{M}$.
- $\varphi_i(R)$ is agent *i*'s allotment.

• Individual Rationality (IR): For all R and all $i \in N$, $\varphi_i(R)R_ii$.

・ロト ・回ト ・ヨト ・ヨト

- Individual Rationality (IR): For all R and all $i \in N$, $\varphi_i(R)R_ii$.
- Non-bossiness (NB): For all R and R'_i , if $\varphi_i(R'_i, R_{-i}) = \varphi_i(R)$, then $\varphi(R'_i, R_{-i}) = \varphi(R)$.

- 4 回 2 - 4 □ 2 - 4 □

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
More Pr	roperties			

- Individual Rationality (IR): For all R and all $i \in N$, $\varphi_i(R)R_ii$.
- Non-bossiness (NB): For all R and R'_i , if $\varphi_i(R'_i, R_{-i}) = \varphi_i(R)$, then $\varphi(R'_i, R_{-i}) = \varphi(R)$.
- Group Strategy-Proofness (GSP): For all R, all $S \subseteq N$ and all R'_{S} , if $\varphi_i(R'_{S}, R_{-S})P_i\varphi_i(R)$ for some $i \in S$, then $\varphi_j(R)P_j\varphi_j(R'_{S}, R_{-S})$ for some $j \in S$.

- Individual Rationality (IR): For all R and all $i \in N$, $\varphi_i(R)R_ii$.
- Non-bossiness (NB): For all R and R'_i , if $\varphi_i(R'_i, R_{-i}) = \varphi_i(R)$, then $\varphi(R'_i, R_{-i}) = \varphi(R)$.
- Group Strategy-Proofness (GSP): For all R, all $S \subseteq N$ and all R'_S , if $\varphi_i(R'_S, R_{-S})P_i\varphi_i(R)$ for some $i \in S$, then $\varphi_j(R)P_j\varphi_j(R'_S, R_{-S})$ for some $j \in S$.
- Consistency (CONS): If for some $S \subseteq N$, $S = \bigcup_{i \in S} \{\varphi_i(R)\}$, then $\varphi_i(R) = \varphi_i(R_{N \setminus S})$ for all $i \in N \setminus S$.

イロン イヨン イヨン イヨン

- Individual Rationality (IR): For all R and all $i \in N$, $\varphi_i(R)R_ii$.
- Non-bossiness (NB): For all R and R'_i , if $\varphi_i(R'_i, R_{-i}) = \varphi_i(R)$, then $\varphi(R'_i, R_{-i}) = \varphi(R)$.
- Group Strategy-Proofness (GSP): For all R, all $S \subseteq N$ and all R'_S , if $\varphi_i(R'_S, R_{-S})P_i\varphi_i(R)$ for some $i \in S$, then $\varphi_j(R)P_j\varphi_j(R'_S, R_{-S})$ for some $j \in S$.
- Consistency (CONS): If for some $S \subseteq N$, $S = \bigcup_{i \in S} \{\varphi_i(R)\}$, then $\varphi_i(R) = \varphi_i(R_{N \setminus S})$ for all $i \in N \setminus S$.
- Anonymity (AN): Names do not matter.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Positive	Results			

• μ is a competitive allocation for R if there is $p: N \to \mathbb{R}_+$ such that $jP_i\mu(i)$ implies p(j) > p(i).

→ 御 → → 注 → → 注 →

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Positive	Results			

- μ is a competitive allocation for R if there is $p : N \to \mathbb{R}_+$ such that $jP_i\mu(i)$ implies p(j) > p(i).
- For all strict R, Core(R) = Comp(R) and |Core(R)| = 1.

A (1) > A (1) > A

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Positive	Results			

- μ is a competitive allocation for R if there is $p : N \to \mathbb{R}_+$ such that $jP_i\mu(i)$ implies p(j) > p(i).
- For all strict R, Core(R) = Comp(R) and |Core(R)| = 1.
- *Core*(*R*) is found by applying the top-trading cycles algorithm (TTC).

・ 同・ ・ ヨ・

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Positive	Results			

- μ is a competitive allocation for R if there is $p : N \to \mathbb{R}_+$ such that $jP_i\mu(i)$ implies p(j) > p(i).
- For all strict R, Core(R) = Comp(R) and |Core(R)| = 1.
- *Core*(*R*) is found by applying the top-trading cycles algorithm (TTC).

T7 (Ma, 1994 IJGT): $SP+IR+EFF \varphi \Leftrightarrow \varphi(R) = Core(R)$ for all R.

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Positive	Results			

- μ is a competitive allocation for R if there is $p : N \to \mathbb{R}_+$ such that $jP_i\mu(i)$ implies p(j) > p(i).
- For all strict R, Core(R) = Comp(R) and |Core(R)| = 1.
- *Core*(*R*) is found by applying the top-trading cycles algorithm (TTC).

T7 (Ma, 1994 IJGT): $SP+IR+EFF \varphi \Leftrightarrow \varphi(R) = Core(R)$ for all R.

T8 (Miyagawa, 2002 GEB): $SP+IR+NB+AN \varphi \Leftrightarrow \varphi = Core \text{ or } \varphi = NoTrade.$

▲同 ▶ ▲ 臣 ▶

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Positive Results				

- μ is a competitive allocation for R if there is $p: N \to \mathbb{R}_+$ such that $jP_i\mu(i)$ implies p(j) > p(i).
- For all strict R, Core(R) = Comp(R) and |Core(R)| = 1.
- *Core*(*R*) is found by applying the top-trading cycles algorithm (TTC).

T7 (Ma, 1994 IJGT): $SP+IR+EFF \varphi \Leftrightarrow \varphi(R) = Core(R)$ for all R.

T8 (Miyagawa, 2002 GEB): $SP+IR+NB+AN \varphi \Leftrightarrow \varphi = Core \text{ or } \varphi = NoTrade.$

T9 (Ehlers, 2012 CIREQ-WP Appendix): $SP+IR+Weak EFF+CONS \varphi \Leftrightarrow \varphi = Core.$

Weak Preferences

In applications it is restrictive to assume that preference relations are linear orders.

"Of course there are many reasons, in practical situations of the sort modeled here, to expect that agents might not have the ability to distinguish among all alternatives facing them. Perhaps the most important such reason is that agents might have little information about the alternatives facing them." (Roth and Sotomayor, 1990, p.34)

• weak preferences \mathcal{W}_N .

Weak Preferences

In applications it is restrictive to assume that preference relations are linear orders.

"Of course there are many reasons, in practical situations of the sort modeled here, to expect that agents might not have the ability to distinguish among all alternatives facing them. Perhaps the most important such reason is that agents might have little information about the alternatives facing them." (Roth and Sotomayor, 1990, p.34)

- weak preferences \mathcal{W}_N .
- There are R with $Core(R) = \emptyset$.

Weak Preferences

In applications it is restrictive to assume that preference relations are linear orders.

"Of course there are many reasons, in practical situations of the sort modeled here, to expect that agents might not have the ability to distinguish among all alternatives facing them. Perhaps the most important such reason is that agents might have little information about the alternatives facing them." (Roth and Sotomayor, 1990, p.34)

- weak preferences \mathcal{W}_N .
- There are R with $Core(R) = \emptyset$.
- Comp(R) is always non-empty and is obtained by breaking ties in R in any manner ST(R) and applying TTC, i.e.

$$Comp(R) = \bigcup_{R' \in ST(R)} TTC(R') = UnionCore(R)$$

- 4 回 2 - 4 □ 2 - 4 □

æ

House Exchange with Indifferences

T10 (Jaramillo and Manjunath, 2012 JET): $\not\exists$ SP+IR+EFF+NB φ .

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

House Exchange with Indifferences

T10 (Jaramillo and Manjunath, 2012 JET): \nexists *SP*+*IR*+*EFF*+*NB* φ .

T11 (Alcalde-Unzu and Molis,2011 GEB & Jaramillo and Manjunath, 2012 JET):

 \exists SP+IR+EFF φ (Many!; no characterization).

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

House Exchange with Indifferences

- **T10 (Jaramillo and Manjunath, 2012 JET):** \nexists *SP*+*IR*+*EFF*+*NB* φ .
- T11 (Alcalde-Unzu and Molis,2011 GEB & Jaramillo and Manjunath, 2012 JET):
- \exists SP+IR+EFF φ (Many!; no characterization).
- TTC with fixed tie-breaking: for each *i* use a tie-breaker \succ_i to break ties in R_i , resulting strict $\succ_i (R_i)$.

(4回) (4回) (4回)

House Exchange with Indifferences

- **T10 (Jaramillo and Manjunath, 2012 JET):** \nexists *SP*+*IR*+*EFF*+*NB* φ .
- T11 (Alcalde-Unzu and Molis,2011 GEB & Jaramillo and Manjunath, 2012 JET):
- \exists SP+IR+EFF φ (Many!; no characterization).
- TTC with fixed tie-breaking: for each *i* use a tie-breaker \succ_i to break ties in R_i , resulting strict $\succ_i (R_i)$.
- TTC with fixed tie-breaking $\succ = (\succ_i)_{i \in N}$: for all weak R, $f^{\succ}(R) = TTC(\succ(R))$.

(4回) (1日) (日)

House Exchange with Indifferences

- **T10 (Jaramillo and Manjunath, 2012 JET):** $\not\exists$ SP+IR+EFF+NB φ .
- T11 (Alcalde-Unzu and Molis,2011 GEB & Jaramillo and Manjunath, 2012 JET):
- \exists SP+IR+EFF φ (Many!; no characterization).
- TTC with fixed tie-breaking: for each *i* use a tie-breaker \succ_i to break ties in R_i , resulting strict $\succ_i (R_i)$.
- TTC with fixed tie-breaking $\succ = (\succ_i)_{i \in N}$: for all weak R, $f^{\succ}(R) = TTC(\succ(R))$.
- Say indifferences with the endowment *i* are excluded for *i*.

House Exchange with Indifferences

- **T10 (Jaramillo and Manjunath, 2012 JET):** $\not\exists$ SP+IR+EFF+NB φ .
- T11 (Alcalde-Unzu and Molis,2011 GEB & Jaramillo and Manjunath, 2012 JET):

 \exists SP+IR+EFF φ (Many!; no characterization).

- TTC with fixed tie-breaking: for each *i* use a tie-breaker \succ_i to break ties in R_i , resulting strict $\succ_i (R_i)$.
- TTC with fixed tie-breaking $\succ = (\succ_i)_{i \in N}$: for all weak R, $f^{\succ}(R) = TTC(\succ(R))$.
- Say indifferences with the endowment *i* are excluded for *i*.
 T12 (Ehlers, 2012 CIREQ-WP): SP+IR+Weak EFF+NB+CONS φ ⇒ There is ≻ such that for all R, φ_i(R)I_if[≻]_i(R) for all i ∈ N.

イロト イヨト イヨト イヨト

▲圖▶ ▲屋▶ ▲屋▶

House Exchange with Indifferences

- **T10 (Jaramillo and Manjunath, 2012 JET):** $\not\exists$ SP+IR+EFF+NB φ .
- T11 (Alcalde-Unzu and Molis,2011 GEB & Jaramillo and Manjunath, 2012 JET):

 \exists SP+IR+EFF φ (Many!; no characterization).

- TTC with fixed tie-breaking: for each *i* use a tie-breaker \succ_i to break ties in R_i , resulting strict $\succ_i (R_i)$.
- TTC with fixed tie-breaking $\succ = (\succ_i)_{i \in N}$: for all weak R, $f^{\succ}(R) = TTC(\succ(R))$.
- Say indifferences with the endowment *i* are excluded for *i*.
 T12 (Ehlers, 2012 CIREQ-WP): SP+IR+Weak EFF+NB+CONS φ ⇒ There is ≻ such that for all R, φ_i(R)I_if[≻]_i(R) for all i ∈ N.
- " \Leftarrow " holds for f^{\succ} .

Generalized Matching Problems

• *i* has strict preferences over $S_i \cup \{i\}$ (where $S_i \subseteq N$).

</i>
< □ > < □ >

Generalized Matching Problems

- *i* has strict preferences over $S_i \cup \{i\}$ (where $S_i \subseteq N$).
- μ with $\mu(i) \in S_i \cup \{i\}$; set of feasible matchings $\mathcal{M}_{(S_i)_{i \in N}} \ni \mu^I$ (where $\mu^I(i) = i$ for all i).

< 🗇 > < 🖃 >

House Allocation

Generalized Matching Problems

- *i* has strict preferences over $S_i \cup \{i\}$ (where $S_i \subseteq N$).
- μ with $\mu(i) \in S_i \cup \{i\}$; set of feasible matchings $\mathcal{M}_{(S_i)_{i \in N}} \ni \mu^I$ (where $\mu^I(i) = i$ for all i).
- Special classes are marriage markets, house exchange, roommate problems.

House Allocation

Priority-Based Allocation

Generalized Matching Problems

- *i* has strict preferences over $S_i \cup \{i\}$ (where $S_i \subseteq N$).
- μ with $\mu(i) \in S_i \cup \{i\}$; set of feasible matchings $\mathcal{M}_{(S_i)_{i \in N}} \ni \mu^I$ (where $\mu^I(i) = i$ for all i).
- Special classes are marriage markets, house exchange, roommate problems.

T13 (Sönmez, 1999 ECON): Strict Preferences $SP+IR+EFF \varphi \Rightarrow if Core(R) \neq \emptyset$, then |Core(R)| = 1 and $\varphi(R) \in Core(R)$.

A (1) > A (1) > A

Generalized Matching Problems

- *i* has strict preferences over $S_i \cup \{i\}$ (where $S_i \subseteq N$).
- μ with $\mu(i) \in S_i \cup \{i\}$; set of feasible matchings $\mathcal{M}_{(S_i)_{i \in N}} \ni \mu^I$ (where $\mu^I(i) = i$ for all i).
- Special classes are marriage markets, house exchange, roommate problems.
 - **T13 (Sönmez, 1999 ECON):** Strict Preferences $SP+IR+EFF \varphi \Rightarrow if Core(R) \neq \emptyset$, then |Core(R)| = 1 and $\varphi(R) \in Core(R)$.
 - **T14 (Sönmez, 1996 JME):** Strict Preferences (Maskin-)MONOTONICITY+IR+EFF $\varphi \Rightarrow Core(R) \subseteq \varphi(R)$ for all R (Multi-valuedness!).

Generalized Matching Problems

- *i* has strict preferences over $S_i \cup \{i\}$ (where $S_i \subseteq N$).
- μ with $\mu(i) \in S_i \cup \{i\}$; set of feasible matchings $\mathcal{M}_{(S_i)_{i \in N}} \ni \mu^I$ (where $\mu^I(i) = i$ for all i).
- Special classes are marriage markets, house exchange, roommate problems.
 - **T13 (Sönmez, 1999 ECON):** Strict Preferences $SP+IR+EFF \varphi \Rightarrow if Core(R) \neq \emptyset$, then |Core(R)| = 1 and $\varphi(R) \in Core(R)$.
 - **T14 (Sönmez, 1996 JME):** Strict Preferences (Maskin-)MONOTONICITY+IR+EFF $\varphi \Rightarrow Core(R) \subseteq \varphi(R)$ for all R (Multi-valuedness!).
 - T15 (Ehlers, 2004 JET): Weak Preferences

イロト イヨト イヨト イヨト

House Allocation

Priority-Based Allocation

Generalized Matching Problems

- *i* has strict preferences over $S_i \cup \{i\}$ (where $S_i \subseteq N$).
- μ with $\mu(i) \in S_i \cup \{i\}$; set of feasible matchings $\mathcal{M}_{(S_i)_{i \in N}} \ni \mu^I$ (where $\mu^I(i) = i$ for all i).
- Special classes are marriage markets, house exchange, roommate problems.
 - **T13 (Sönmez, 1999 ECON):** Strict Preferences $SP+IR+EFF \varphi \Rightarrow if Core(R) \neq \emptyset$, then |Core(R)| = 1 and $\varphi(R) \in Core(R)$.
 - **T14 (Sönmez, 1996 JME):** Strict Preferences (Maskin-)MONOTONICITY+IR+EFF $\varphi \Rightarrow Core(R) \subseteq \varphi(R)$ for all R (Multi-valuedness!).
 - T15 (Ehlers, 2004 JET): Weak Preferences
 - (i) For $MON+IR+EFF \varphi$, $\mu \in \varphi(R) \Leftrightarrow \mu(i)R_i j$ for all $i \in N$ and all $j \in S_i \cup \{i\}$.

イロト イヨト イヨト イヨト

Generalized Matching Problems

- *i* has strict preferences over $S_i \cup \{i\}$ (where $S_i \subseteq N$).
- μ with $\mu(i) \in S_i \cup \{i\}$; set of feasible matchings $\mathcal{M}_{(S_i)_{i \in N}} \ni \mu^I$ (where $\mu^I(i) = i$ for all i).
- Special classes are marriage markets, house exchange, roommate problems.
 - **T13 (Sönmez, 1999 ECON):** Strict Preferences $SP+IR+EFF \varphi \Rightarrow if Core(R) \neq \emptyset$, then |Core(R)| = 1 and $\varphi(R) \in Core(R)$.
 - **T14 (Sönmez, 1996 JME):** Strict Preferences (Maskin-)MONOTONICITY+IR+EFF $\varphi \Rightarrow Core(R) \subseteq \varphi(R)$ for all R (Multi-valuedness!).
 - T15 (Ehlers, 2004 JET): Weak Preferences
 - (i) For $MON+IR+EFF \varphi$, $\mu \in \varphi(R) \Leftrightarrow \mu(i)R_i j$ for all $i \in N$ and all $j \in S_i \cup \{i\}$.
 - (ii) minimalmonotonicextension(Core) = UnionCore.

House Allocation

Generalized Matching Problems

- *i* has strict preferences over $S_i \cup \{i\}$ (where $S_i \subseteq N$).
- μ with $\mu(i) \in S_i \cup \{i\}$; set of feasible matchings $\mathcal{M}_{(S_i)_{i \in N}} \ni \mu^I$ (where $\mu^I(i) = i$ for all i).
- Special classes are marriage markets, house exchange, roommate problems.
 - **T13 (Sönmez, 1999 ECON):** Strict Preferences $SP+IR+EFF \varphi \Rightarrow if Core(R) \neq \emptyset$, then |Core(R)| = 1 and $\varphi(R) \in Core(R)$.
 - **T14 (Sönmez, 1996 JME):** Strict Preferences (Maskin-)MONOTONICITY+IR+EFF $\varphi \Rightarrow Core(R) \subseteq \varphi(R)$ for all R (Multi-valuedness!).
 - T15 (Ehlers, 2004 JET): Weak Preferences
 - (i) For $MON+IR+EFF \varphi$, $\mu \in \varphi(R) \Leftrightarrow \mu(i)R_i j$ for all $i \in N$ and all $j \in S_i \cup \{i\}$.
 - (ii) minimalmonotonic extension(Core) = UnionCore.

● House exchange: mme(Core) = Comp. ← □ → (□ → (⊇ → (□ →

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
House A	llocation			

• Set of agents N

<**∂** > < ∃

문 🕨 🗉 문

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
House A	llocation			

- Set of agents N
- Set of houses $H \cup \{\emptyset\}$ (where \emptyset is the null house)

▲ ▶ ▲ ●

- Set of agents N
- Set of houses $H \cup \{\emptyset\}$ (where \emptyset is the null house)
- R_i strict over $H \cup \{\emptyset\}$ (often $hP_i\emptyset$ for all $h \in H$)

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
House A	llocation			

- Set of agents N
- Set of houses $H \cup \{\emptyset\}$ (where \emptyset is the null house)
- R_i strict over $H \cup \{\emptyset\}$ (often $hP_i\emptyset$ for all $h \in H$)
- Profile $R = (R_i)_{i \in N}$

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
House A	llocation			

- Set of agents N
- Set of houses $H \cup \{\emptyset\}$ (where \emptyset is the null house)
- R_i strict over $H \cup \{\emptyset\}$ (often $hP_i\emptyset$ for all $h \in H$)

• Profile
$$R = (R_i)_{i \in N}$$

• Set of all strict profiles \mathcal{P}^N .

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
House Allocation				

- Set of agents N
- Set of houses $H \cup \{\emptyset\}$ (where \emptyset is the null house)
- R_i strict over $H \cup \{\emptyset\}$ (often $hP_i\emptyset$ for all $h \in H$)

• Profile
$$R = (R_i)_{i \in N}$$

- Set of all strict profiles \mathcal{P}^N .
- Set of all strict profiles \mathcal{P}_0^N where \emptyset is at the bottom.

- Set of agents N
- Set of houses $H \cup \{\emptyset\}$ (where \emptyset is the null house)
- R_i strict over $H \cup \{\emptyset\}$ (often $hP_i\emptyset$ for all $h \in H$)

• Profile
$$R = (R_i)_{i \in N}$$

- Set of all strict profiles \mathcal{P}^N .
- Set of all strict profiles \mathcal{P}_0^N where \emptyset is at the bottom.
- Matching $\mu : N \to H \cup \{\emptyset\}$ with $\mu(i) = \mu(j)$ for $i \neq j$ implies $\mu(i) = \mu(j) = \emptyset$.

- Set of agents N
- Set of houses $H \cup \{\emptyset\}$ (where \emptyset is the null house)
- R_i strict over $H \cup \{\emptyset\}$ (often $hP_i\emptyset$ for all $h \in H$)

• Profile
$$R = (R_i)_{i \in N}$$

- Set of all strict profiles \mathcal{P}^N .
- Set of all strict profiles \mathcal{P}_0^N where \emptyset is at the bottom.
- Matching $\mu : N \to H \cup \{\emptyset\}$ with $\mu(i) = \mu(j)$ for $i \neq j$ implies $\mu(i) = \mu(j) = \emptyset$.
- Set of matchings (or allocations) \mathcal{M} .

- Set of agents N
- Set of houses $H \cup \{\emptyset\}$ (where \emptyset is the null house)
- R_i strict over $H \cup \{\emptyset\}$ (often $hP_i\emptyset$ for all $h \in H$)

• Profile
$$R = (R_i)_{i \in N}$$

- Set of all strict profiles \mathcal{P}^N .
- Set of all strict profiles \mathcal{P}_0^N where \emptyset is at the bottom.
- Matching $\mu : N \to H \cup \{\emptyset\}$ with $\mu(i) = \mu(j)$ for $i \neq j$ implies $\mu(i) = \mu(j) = \emptyset$.
- Set of matchings (or allocations) \mathcal{M} .
- Rule (or mechanism) $\varphi : \mathcal{P}_0^N (\text{or } \mathcal{P}^N) \longrightarrow \mathcal{M}.$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Set of agents N
- Set of houses $H \cup \{\emptyset\}$ (where \emptyset is the null house)
- R_i strict over $H \cup \{\emptyset\}$ (often $hP_i\emptyset$ for all $h \in H$)

• Profile
$$R = (R_i)_{i \in N}$$

- Set of all strict profiles \mathcal{P}^N .
- Set of all strict profiles \mathcal{P}_0^N where \emptyset is at the bottom.
- Matching $\mu : N \to H \cup \{\emptyset\}$ with $\mu(i) = \mu(j)$ for $i \neq j$ implies $\mu(i) = \mu(j) = \emptyset$.
- Set of matchings (or allocations) \mathcal{M} .
- Rule (or mechanism) $\varphi : \mathcal{P}_0^N(\text{or } \mathcal{P}^N) \longrightarrow \mathcal{M}$.
- $\varphi_i(R)$ is agent *i*'s allotment.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

House Allocation

Priority-Based Allocation

Strict Preferences I

• (Papai, 2000 ECON): SP+NB \Leftrightarrow GSP.

イロト イヨト イヨト イヨト

æ

• (Papai, 2000 ECON): $SP+NB \Leftrightarrow GSP$.

T16 (Papai, 2000 ECON): For \mathcal{P}_0^N SP+EFF+NB+Reallocationproof $\varphi \Leftrightarrow \varphi$ is a hierarchical exchange rule.

< 🗇 > < 🖃 >

• (Papai, 2000 ECON): SP+NB \Leftrightarrow GSP.

T16 (Papai, 2000 ECON): For \mathcal{P}_0^N SP+EFF+NB+Reallocationproof $\varphi \Leftrightarrow \varphi$ is a hierarchical exchange rule.

T17 (Pycia and Ünver, 2009 WP): For \mathcal{P}_0^N SP+EFF+NB $\varphi \Leftrightarrow \varphi$ is a trading cycles mechanism. • (Papai, 2000 ECON): SP+NB \Leftrightarrow GSP.

T16 (Papai, 2000 ECON): For \mathcal{P}_0^N SP+EFF+NB+Reallocationproof $\varphi \Leftrightarrow \varphi$ is a hierarchical exchange rule.

T17 (Pycia and Ünver, 2009 WP): For \mathcal{P}_0^N SP+EFF+NB $\varphi \Leftrightarrow \varphi$ is a trading cycles mechanism.

T18 (Ehlers, Klaus and Papai, 2002 JME, Ehlers and Klaus, 2004 IJGT, 2006 GEB, 2007 ET): For \mathcal{P}^N or \mathcal{P}^N_0 SP+EFF+Solidarity/Consistency $\varphi \Leftrightarrow \varphi$ is a mixed dictator-pairwise exchange rule.

Strict Preferences II

Serial Dictatorship (SD): For each R, using this order let each agent choose his most preferred house from the remaining ones. Below we assume that |H| = |N| (and implicitly that the null object is not available)

T19 (Svensson, 1999 SCW): For \mathcal{P}_0^N SP+NB+NEUTR $\varphi \Leftrightarrow \varphi$ is a serial dictatorship.

Strict Preferences II

Serial Dictatorship (SD): For each R, using this order let each agent choose his most preferred house from the remaining ones. Below we assume that |H| = |N| (and implicitly that the null object is not available)

T19 (Svensson, 1999 SCW): For \mathcal{P}_0^N SP+NB+NEUTR $\varphi \Leftrightarrow \varphi$ is a serial dictatorship.

T20 (Abdulkadiroglu and Sönmez, 1998 ECON): For \mathcal{P}_0^N Random serial dictatorship = core from random endowments.


```
T20 (Ehlers, 2002 JET):
```

< 🗇 > < 🖃 >

∃ >


```
T20 (Ehlers, 2002 JET):
(i) \not\exists GSP+EFF \varphi on \mathcal{W}_0^N.
```


T20 (Ehlers, 2002 JET):

- (i) $\not\exists GSP + EFF \varphi \text{ on } W_0^N$.
- (ii) indifferences-at-the-bottom domain \mathcal{D}_0^N is the unique maximal domain \mathcal{R}_0^N containing \mathcal{P}_0^N and where GSP+EFF are compatible.

T20 (Ehlers, 2002 JET):

- (i) $\not\exists GSP + EFF \varphi \text{ on } W_0^N$.
- (ii) indifferences-at-the-bottom domain \mathcal{D}_0^N is the unique maximal domain \mathcal{R}_0^N containing \mathcal{P}_0^N and where GSP+EFF are compatible.
- (iii) On \mathcal{D}_0^N , GSP+EFF $\varphi \Leftrightarrow \varphi$ is a mixed dictator-pairwise exchange rule.

T20 (Ehlers, 2002 JET):

- (i) $\not\exists GSP + EFF \varphi \text{ on } W_0^N$.
- (ii) indifferences-at-the-bottom domain D₀^N is the unique maximal domain R₀^N containing P₀^N and where GSP+EFF are compatible.
- (iii) On \mathcal{D}_0^N , GSP+EFF $\varphi \Leftrightarrow \varphi$ is a mixed dictator-pairwise exchange rule.

T21 (Bogomolnaia, Deb and Ehlers, 2005 JET): For \mathcal{W}_0^N SP+(weak) NB+EFF $\varphi \Leftrightarrow \varphi$ is a bi-polar serial dictatorship.

A (1) > A (2) > A

House Allocation

Priority-Based Allocation

- 4 回 2 - 4 □ 2 - 4 □

æ

Priority-Based Allocation

• For each $h \in H$ there is a fixed priority \succeq_h on N.

< 同 > < 臣 > < 臣 >

Priority-Based Allocation

- For each $h \in H$ there is a fixed priority \succeq_h on N.
- $i \succ_h j$ means "*i* has higher priority than *j* to obtain *h*"

Priority-Based Allocation

- For each $h \in H$ there is a fixed priority \succeq_h on N.
- $i \succ_h j$ means "*i* has higher priority than *j* to obtain *h*"
- For strict ≿_h, we write ≻_h and ≻= (≻_h)_{h∈H} (Balinski and Sönmez, 1999 JET— Abdulkadiroglu and Sönmez, 2003 AER).

▲ 同 ▶ | ▲ 三 ▶

・ 同 ト ・ ヨ ト ・ ヨ ト

- For each $h \in H$ there is a fixed priority \succeq_h on N.
- $i \succ_h j$ means "*i* has higher priority than *j* to obtain *h*"
- For strict ≿_h, we write ≻_h and ≻= (≻_h)_{h∈H} (Balinski and Sönmez, 1999 JET— Abdulkadiroglu and Sönmez, 2003 AER).
- Otherwise $\succeq = (\succeq_h)_{h \in H}$.

- For each $h \in H$ there is a fixed priority \succeq_h on N.
- $i \succ_h j$ means "*i* has higher priority than *j* to obtain *h*"
- For strict ≿_h, we write ≻_h and ≻= (≻_h)_{h∈H} (Balinski and Sönmez, 1999 JET— Abdulkadiroglu and Sönmez, 2003 AER).
- Otherwise $\succeq = (\succeq_h)_{h \in H}$.
- (often quota q_h for house h (here omitted))

- 4 回 2 - 4 三 2 - 4 三 2

- For each $h \in H$ there is a fixed priority \succeq_h on N.
- $i \succ_h j$ means "*i* has higher priority than *j* to obtain *h*"
- For strict ≿_h, we write ≻_h and ≻= (≻_h)_{h∈H} (Balinski and Sönmez, 1999 JET— Abdulkadiroglu and Sönmez, 2003 AER).
- Otherwise $\succeq = (\succeq_h)_{h \in H}$.
- (often quota q_h for house h (here omitted))
- For \emptyset , all agents have equal priority $(i \sim_{\emptyset} j \text{ for all } i, j)$

- For each $h \in H$ there is a fixed priority \succeq_h on N.
- $i \succ_h j$ means "*i* has higher priority than *j* to obtain *h*"
- For strict ≿_h, we write ≻_h and ≻= (≻_h)_{h∈H} (Balinski and Sönmez, 1999 JET— Abdulkadiroglu and Sönmez, 2003 AER).
- Otherwise $\succeq = (\succeq_h)_{h \in H}$.
- (often quota q_h for house h (here omitted))
- For \emptyset , all agents have equal priority $(i \sim_{\emptyset} j \text{ for all } i, j)$
- Domain \mathcal{P}^N .

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Properti	es			

・ロト ・回ト ・目と

⊸ ≣ ≯

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Properti	es			

```
Stability: For all R \in \mathcal{P}^N,
• \varphi(R) is IR;
```

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Properti	es			

- $\varphi(R)$ is IR;
- (Fairness) there are no $i, j \in N$ with $\varphi_j(R) = h$, $i \succ_h j$ and $hP_i\varphi_i(R)$;

- 4 同 ト 4 臣 ト 4 臣 ト

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Properti	es			

- $\varphi(R)$ is IR;
- (Fairness) there are no $i, j \in N$ with $\varphi_j(R) = h$, $i \succ_h j$ and $hP_i\varphi_i(R)$;
- (Non-Wastefulness) there are no $i \in N$ and $h \in H$ such that $hP_i\varphi_i(R)$ and $\varphi_j(R) \neq h$ for all $j \in N$.

/⊒ > < ≣ >

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Properti	es			

- $\varphi(R)$ is IR;
- (Fairness) there are no $i, j \in N$ with $\varphi_j(R) = h$, $i \succ_h j$ and $hP_i\varphi_i(R)$;
- (Non-Wastefulness) there are no $i \in N$ and $h \in H$ such that $hP_i\varphi_i(R)$ and $\varphi_j(R) \neq h$ for all $j \in N$.

Constrained Efficiency (CEFF): There is no other stable μ which Pareto dominates $\varphi(R)$ ($\mu(i)R_i\varphi_i(R)$ for all $i \in N$ and $\mu \neq \varphi(R)$).

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Properti	es			

- $\varphi(R)$ is IR;
- (Fairness) there are no $i, j \in N$ with $\varphi_j(R) = h$, $i \succ_h j$ and $hP_i\varphi_i(R)$;
- (Non-Wastefulness) there are no $i \in N$ and $h \in H$ such that $hP_i\varphi_i(R)$ and $\varphi_j(R) \neq h$ for all $j \in N$.

Constrained Efficiency (CEFF): There is no other stable μ which Pareto dominates $\varphi(R)$ ($\mu(i)R_i\varphi_i(R)$ for all $i \in N$ and $\mu \neq \varphi(R)$).

T22 (Balinski and Sönmez, 1999 JET): For strict >

< 🗇 > < 🖃 >

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Properti	es			

- $\varphi(R)$ is IR;
- (Fairness) there are no $i, j \in N$ with $\varphi_j(R) = h$, $i \succ_h j$ and $hP_i\varphi_i(R)$;
- (Non-Wastefulness) there are no $i \in N$ and $h \in H$ such that $hP_i\varphi_i(R)$ and $\varphi_j(R) \neq h$ for all $j \in N$.

Constrained Efficiency (CEFF): There is no other stable μ which Pareto dominates $\varphi(R)$ ($\mu(i)R_i\varphi_i(R)$ for all $i \in N$ and $\mu \neq \varphi(R)$).

T22 (Balinski and Sönmez, 1999 JET): For strict >

(i) stable+CEFF $\varphi \Leftrightarrow \varphi = Agent$ -proposing DA;

(4月) (4日) (4日)

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Properti	es			

- $\varphi(R)$ is IR;
- (Fairness) there are no $i, j \in N$ with $\varphi_j(R) = h$, $i \succ_h j$ and $hP_i\varphi_i(R)$;
- (Non-Wastefulness) there are no $i \in N$ and $h \in H$ such that $hP_i\varphi_i(R)$ and $\varphi_j(R) \neq h$ for all $j \in N$.

Constrained Efficiency (CEFF): There is no other stable μ which Pareto dominates $\varphi(R)$ ($\mu(i)R_i\varphi_i(R)$ for all $i \in N$ and $\mu \neq \varphi(R)$).

T22 (Balinski and Sönmez, 1999 JET): For strict ≻

(i) stable+CEFF
$$\varphi \Leftrightarrow \varphi = Agent-proposing DA$$
;

(ii) Agent-proposing DA is SP.

Introduction	Marriage Markets	House Exchange	House Allocation	Priority-Based Allocation
Properti	es			

- $\varphi(R)$ is IR;
- (Fairness) there are no $i, j \in N$ with $\varphi_j(R) = h$, $i \succ_h j$ and $hP_i\varphi_i(R)$;
- (Non-Wastefulness) there are no $i \in N$ and $h \in H$ such that $hP_i\varphi_i(R)$ and $\varphi_j(R) \neq h$ for all $j \in N$.

Constrained Efficiency (CEFF): There is no other stable μ which Pareto dominates $\varphi(R)$ ($\mu(i)R_i\varphi_i(R)$ for all $i \in N$ and $\mu \neq \varphi(R)$).

T22 (Balinski and Sönmez, 1999 JET): For strict >

- (i) stable+CEFF $\varphi \Leftrightarrow \varphi = Agent-proposing DA$;
- (ii) Agent-proposing DA is SP.
- Note that Agent-proposing DA is not EFF but is WEFF.

Acyclicity of \succ : There are no $a, b \in H$ and $i, j, k \in N$ such $i \succ_a j \succ_a k \succ_b i$.

T23 (Ergin, 2002 ECON): For strict \succ the following are equivalent

< 🗇 > < 🖃 >

Acyclicity of \succ : There are no $a, b \in H$ and $i, j, k \in N$ such $i \succ_a j \succ_a k \succ_b i$.

T23 (Ergin, 2002 ECON): For strict \succ the following are equivalent

(i) Agent-proposing DA is EFF

・ 同 ト ・ 三 ト

Acyclicity of \succ : There are no $a, b \in H$ and $i, j, k \in N$ such $i \succ_a j \succ_a k \succ_b i$.

T23 (Ergin, 2002 ECON): For strict \succ the following are equivalent

- (i) Agent-proposing DA is EFF
- (ii) Agent-proposing DA is GSP

Acyclicity of \succ : There are no $a, b \in H$ and $i, j, k \in N$ such $i \succ_a j \succ_a k \succ_b i$.

T23 (Ergin, 2002 ECON): For strict \succ the following are equivalent

- (i) Agent-proposing DA is EFF
- (ii) Agent-proposing DA is GSP
- (iii) Agent-proposing DA is CONS

Acyclicity of \succ : There are no $a, b \in H$ and $i, j, k \in N$ such $i \succ_a j \succ_a k \succ_b i$.

T23 (Ergin, 2002 ECON): For strict \succ the following are equivalent

- (i) Agent-proposing DA is EFF
- (ii) Agent-proposing DA is GSP
- (iii) Agent-proposing DA is CONS
- (iv) \succ is acyclic.

House Allocation

Priority-Based Allocation

Weak Priorities I: Special Cases

House Allocation:

イロト イヨト イヨト イヨト

- 4 回 2 - 4 □ 2 - 4 □

æ

Weak Priorities I: Special Cases

House Allocation:

• For all h, $i \sim_h j$ for all $i, j \in N$.

House Allocation:

- For all $h, i \sim_h j$ for all $i, j \in N$.
- Stability+CEFF=EFF.

▲ □ ▶ ▲ 三 ▶

_∢≣≯

House Allocation:

- For all h, $i \sim_h j$ for all $i, j \in N$.
- Stability+CEFF=EFF.
- Serial dictatorship is stable, CEFF and SP.

House Allocation:

- For all h, $i \sim_h j$ for all $i, j \in N$.
- Stability+CEFF=EFF.
- Serial dictatorship is stable, CEFF and SP.

House Exchange:

House Allocation:

- For all h, $i \sim_h j$ for all $i, j \in N$.
- Stability+CEFF=EFF.
- Serial dictatorship is stable, CEFF and SP.

House Exchange:

• For house *i*, $i \succ_i j \sim_i k$ for all $j, k \in \mathbb{N} \setminus \{i\}$.

House Allocation:

- For all h, $i \sim_h j$ for all $i, j \in N$.
- Stability+CEFF=EFF.
- Serial dictatorship is stable, CEFF and SP.

House Exchange:

- For house *i*, $i \succ_i j \sim_i k$ for all $j, k \in \mathbb{N} \setminus \{i\}$.
- Stability=IR; Stability+CEFF=IR+EFF.

House Allocation:

- For all h, $i \sim_h j$ for all $i, j \in N$.
- Stability+CEFF=EFF.
- Serial dictatorship is stable, CEFF and SP.

House Exchange:

- For house *i*, $i \succ_i j \sim_i k$ for all $j, k \in \mathbb{N} \setminus \{i\}$.
- Stability=IR; Stability+CEFF=IR+EFF.
- Ma (1994) rephrased: stable+CEFF+SP $\varphi \Leftrightarrow \varphi = TTC$.

< 🗇 🕨 < 🖻 🕨

- 4 回 ト - 4 回 ト - 4 回 ト

Weak Priorities I: Special Cases

House Allocation:

- For all h, $i \sim_h j$ for all $i, j \in N$.
- Stability+CEFF=EFF.
- Serial dictatorship is stable, CEFF and SP.

House Exchange:

- For house *i*, $i \succ_i j \sim_i k$ for all $j, k \in \mathbb{N} \setminus \{i\}$.
- Stability=IR; Stability+CEFF=IR+EFF.
- Ma (1994) rephrased: stable+CEFF+SP φ ⇔ φ = TTC.
 House Allocation with Existing Tenants (Abdulkadiroglu and Sönmez, 1999 JET): ...

House Exchange

House Allocation

Priority-Based Allocation

(本部) (本語) (本語)

æ

Weak Priorities II: (Constrained) Efficiency

For (weak) \succeq .

Weak Priorities II: (Constrained) Efficiency

For (weak) \succeq .

 For all R ∈ P^N, if µ is stable+CEFF, then there exists \'∈ ST(\>) such that µ = DA^{>'}(R).

周▶ 《 ≧ ▶

Weak Priorities II: (Constrained) Efficiency

For (weak) \succeq .

• For all $R \in \mathcal{P}^N$, if μ is stable+CEFF, then there exists $\succ' \in ST(\succ)$ such that $\mu = DA^{\succ'}(R)$.

T24 (Erdil and Ergin, 2008 AER):

For all $R \in \mathcal{P}^N$, the stable improvement cycles algorithm can be used to obtain a stable+CEFF matching.

Weak Priorities II: (Constrained) Efficiency

For (weak) \succeq .

• For all $R \in \mathcal{P}^N$, if μ is stable+CEFF, then there exists $\succ' \in ST(\succ)$ such that $\mu = DA^{\succ'}(R)$.

T24 (Erdil and Ergin, 2008 AER): For all $R \in \mathcal{P}^N$, the stable improvement cycles algorithm can be used to obtain a stable+CEFF matching.

Weak Priorities II: (Constrained) Efficiency

For (weak) \succeq .

• For all $R \in \mathcal{P}^N$, if μ is stable+CEFF, then there exists $\succ' \in ST(\succ)$ such that $\mu = DA^{\succ'}(R)$.

T24 (Erdil and Ergin, 2008 AER): For all $R \in \mathcal{P}^N$, the stable improvement cycles algorithm can be used to obtain a stable+CEFF matching.

T25 (Ehlers and Erdil, 2010 JET): The following are equivalent.

- 4 回 ト - 4 回 ト - 4 回 ト

Weak Priorities II: (Constrained) Efficiency

For (weak) \succeq .

• For all $R \in \mathcal{P}^N$, if μ is stable+CEFF, then there exists $\succ' \in ST(\succ)$ such that $\mu = DA^{\succ'}(R)$.

T24 (Erdil and Ergin, 2008 AER): For all $R \in \mathcal{P}^N$, the stable improvement cycles algorithm can be used to obtain a stable+CEFF matching.

T25 (Ehlers and Erdil, 2010 JET): The following are equivalent.

(i) The stable+CEFF rule is EFF;

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Weak Priorities II: (Constrained) Efficiency

For (weak) \succeq .

• For all $R \in \mathcal{P}^N$, if μ is stable+CEFF, then there exists $\succ' \in ST(\succ)$ such that $\mu = DA^{\succ'}(R)$.

T24 (Erdil and Ergin, 2008 AER): For all $R \in \mathcal{P}^N$, the stable improvement cycles algorithm can be used to obtain a stable+CEFF matching.

T25 (Ehlers and Erdil, 2010 JET): The following are equivalent.

- (i) The stable+CEFF rule is EFF;
- (ii) the stable+CEFF rule is CONS;

Weak Priorities II: (Constrained) Efficiency

For (weak) \succeq .

• For all $R \in \mathcal{P}^N$, if μ is stable+CEFF, then there exists $\succ' \in ST(\succ)$ such that $\mu = DA^{\succ'}(R)$.

T24 (Erdil and Ergin, 2008 AER): For all $R \in \mathcal{P}^N$, the stable improvement cycles algorithm can be used to obtain a stable+CEFF matching.

T25 (Ehlers and Erdil, 2010 JET): The following are equivalent.

(iii) \succeq is strongly acyclic.

(1日) (日)

House Allocation

Priority-Based Allocation

Weak Priorities III: Incentives

T26 (Erdil and Ergin, 2008 AER): There are \succeq where \nexists stable+CEFF+SP φ .

House Allocation

Priority-Based Allocation

Weak Priorities III: Incentives

T26 (Erdil and Ergin, 2008 AER): There are \succeq where \nexists stable+CEFF+SP φ .

T27 (Abdulkadiroglu, Pathak and Roth, 2009 AER): For all $\succ' \in ST(\succeq)$ there exists no SP φ which Pareto dominates (for all profiles) the (agent-proposing) $DA^{\succ'}$.

House Allocation

Priority-Based Allocation

Weak Priorities III: Incentives

T26 (Erdil and Ergin, 2008 AER): There are \succeq where $\not\exists$ stable+CEFF+SP φ .

T27 (Abdulkadiroglu, Pathak and Roth, 2009 AER): For all $\succ' \in ST(\succeq)$ there exists no SP φ which Pareto dominates (for all profiles) the (agent-proposing) $DA^{\succ'}$.

• Of course, $DA^{\succ'}$ is not CEFF.

Weak Priorities III: Incentives

T26 (Erdil and Ergin, 2008 AER): There are \succeq where \nexists stable+CEFF+SP φ .

T27 (Abdulkadiroglu, Pathak and Roth, 2009 AER): For all $\succ' \in ST(\succeq)$ there exists no SP φ which Pareto dominates (for all profiles) the (agent-proposing) $DA^{\succ'}$.

- Of course, $DA^{\succ'}$ is not CEFF.
- When are stable+CEFF+SP compatible? (=solvability of \succeq)

Weak Priorities IV: Solvability

T28 (Ehlers and Westkamp, 2011 CIREQ-WP): If \exists stable+CEFF+SP φ , then \succeq is "acyclic", \succeq has no strong priority reversals, and \succeq has no inconsistent weak priority reversal.

< 🗇 > < 🖃 >

Weak Priorities IV: Solvability

T28 (Ehlers and Westkamp, 2011 CIREQ-WP): If \exists stable+CEFF+SP φ , then \succeq is "acyclic", \succeq has no strong priority reversals, and \succeq has no inconsistent weak priority reversal.

• "\equiv " holds for indifferences-at-the-bottom priorities.

Weak Priorities IV: Solvability

T28 (Ehlers and Westkamp, 2011 CIREQ-WP): If \exists stable+CEFF+SP φ , then \succeq is "acyclic", \succeq has no strong priority reversals, and \succeq has no inconsistent weak priority reversal.

- "
 </r>
 "holds for indifferences-at-the-bottom priorities.
- Constructed rule is DA with TTC used for breaking ties in \succeq .

Weak Priorities IV: Solvability

T28 (Ehlers and Westkamp, 2011 CIREQ-WP): If \exists stable+CEFF+SP φ , then \succeq is "acyclic", \succeq has no strong priority reversals, and \succeq has no inconsistent weak priority reversal.

- "
 </r>
 "holds for indifferences-at-the-bottom priorities.
- Constructed rule is DA with TTC used for breaking ties in \succeq .
- Confirming our "nice environments and rules (DA+TTC)".

Weak Priorities IV: Solvability

T28 (Ehlers and Westkamp, 2011 CIREQ-WP): If \exists stable+CEFF+SP φ , then \succeq is "acyclic", \succeq has no strong priority reversals, and \succeq has no inconsistent weak priority reversal.

- " \Leftarrow " holds for indifferences-at-the-bottom priorities.
- Constructed rule is DA with TTC used for breaking ties in \succeq .
- Confirming our "nice environments and rules (DA+TTC)".
- T29 (Ehlers and Westkamp, 2011 CIREQ-WP): Let |N| ≥ 4 and for all i, j ∈ N there exist a, b ∈ H such that i ≻_a j and j ≻_b i. If ∃ stable+CEFF+SP φ, then ≿ is strict or ≿ is "house allocation with existing tenants".

イロト イヨト イヨト イヨト

 Properties imply that the rule must use some strict priorities
 → and the associated DA[>].

</i>
< □ > < □ >

∢ ≣⇒

æ

- Properties imply that the rule must use some strict priorities
 → and the associated DA[>].
 - T30 (Kojima and Manea, 2010 ECON):

 Properties imply that the rule must use some strict priorities
 → and the associated DA[>].

T30 (Kojima and Manea, 2010 ECON):

(i) Non-wasteful+IR-monotonicity $\varphi \Leftrightarrow \varphi$ is DA with acceptant substitutable priorities.

 Properties imply that the rule must use some strict priorities
 → and the associated DA[>].

T30 (Kojima and Manea, 2010 ECON):

- (i) Non-wasteful+IR-monotonicity $\varphi \Leftrightarrow \varphi$ is DA with acceptant substitutable priorities.
- (ii) Non-wasteful+weak-monotonicity+population-monotonicity $\varphi \Leftrightarrow \varphi$ is DA with acceptant substitutable priorities.

 Properties imply that the rule must use some strict priorities
 → and the associated DA[>].

T30 (Kojima and Manea, 2010 ECON):

- (i) Non-wasteful+IR-monotonicity $\varphi \Leftrightarrow \varphi$ is DA with acceptant substitutable priorities.
- (ii) Non-wasteful+weak-monotonicity+population-monotonicity $\varphi \Leftrightarrow \varphi$ is DA with acceptant substitutable priorities.

T31 (Ehlers and Klaus, 2009 CIREQ-WP, soon revised): unavailable type invariant, IR, weak non-wasteful, two-agent consistent con ict resolution, truncation invariant, and SP φ $\Leftrightarrow \varphi$ is DA with responsive priorities \succ .

▲ 同 ▶ ▲ 臣 ▶

 Properties imply that the rule must use some strict priorities
 → and the associated DA[>].

T30 (Kojima and Manea, 2010 ECON):

- (i) Non-wasteful+IR-monotonicity $\varphi \Leftrightarrow \varphi$ is DA with acceptant substitutable priorities.
- (ii) Non-wasteful+weak-monotonicity+population-monotonicity $\varphi \Leftrightarrow \varphi$ is DA with acceptant substitutable priorities.

T31 (Ehlers and Klaus, 2009 CIREQ-WP, soon revised): unavailable type invariant, IR, weak non-wasteful, two-agent consistent con ict resolution, truncation invariant, and SP φ $\Leftrightarrow \varphi$ is DA with responsive priorities \succ .

• Remark: Priority mechanisms or LP mechanisms satisfy all properties except for SP.

イロト イヨト イヨト イヨト

 Properties imply that the rule must use some strict priorities
 → and the associated DA[>].

T30 (Kojima and Manea, 2010 ECON):

- (i) Non-wasteful+IR-monotonicity $\varphi \Leftrightarrow \varphi$ is DA with acceptant substitutable priorities.
- (ii) Non-wasteful+weak-monotonicity+population-monotonicity $\varphi \Leftrightarrow \varphi$ is DA with acceptant substitutable priorities.
- **T31 (Ehlers and Klaus, 2009 CIREQ-WP, soon revised):** unavailable type invariant, IR, weak non-wasteful, two-agent consistent con ict resolution, truncation invariant, and SP φ $\Leftrightarrow \varphi$ is DA with responsive priorities \succ .
- Remark: Priority mechanisms or LP mechanisms satisfy all properties except for SP.

SP MAKES THE DIFFERENCE!

・ロト ・回ト ・ヨト

House Allocation

Priority-Based Allocation

æ

Other Directions/Agendas

• Random House Allocation (or random assignment)

- Random House Allocation (or random assignment)
- Multiple House Exchange

周▶ 《 ≧ ▶

- Random House Allocation (or random assignment)
- Multiple House Exchange
- Multiple House Allocation

- Random House Allocation (or random assignment)
- Multiple House Exchange
- Multiple House Allocation
- Kidney Exchange

- Random House Allocation (or random assignment)
- Multiple House Exchange
- Multiple House Allocation
- Kidney Exchange
- Control (regional or racial)

- Random House Allocation (or random assignment)
- Multiple House Exchange
- Multiple House Allocation
- Kidney Exchange
- Control (regional or racial)
- Matching with contracts and substitutability conditions

- Random House Allocation (or random assignment)
- Multiple House Exchange
- Multiple House Allocation
- Kidney Exchange
- Control (regional or racial)
- Matching with contracts and substitutability conditions
- Matching/House allocation with a continuum of agents

- Random House Allocation (or random assignment)
- Multiple House Exchange
- Multiple House Allocation
- Kidney Exchange
- Control (regional or racial)
- Matching with contracts and substitutability conditions
- Matching/House allocation with a continuum of agents
- New applications of matching: military, assignment of landing slots.