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A competition problem

Prove that any finite subset H of the planar grid has a subset K
with the property that

1. any vertical or horizontal line intersects K in at most 2 points,

2. any point of H \ K lies on a vertical or horizontal segment
determined by K .
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Yet another competition problem

In a certain country intercity traffic is served by trains and coaches.
Both the railway and bus company runs its lines between certain
pairs of cities, but between two cities there migth be no line that
goes both ways. We know that no matter how we pick two cities,
one can travel from one city to the other either by bus or by train,
perhaps with changes, and the opposite travel is not necessarily
possible. Prove that there exists a city from which any other city is
reachable with possible changes by using only one mean of
transport such that for different cities we might need different kind
of transport.

Hey! Who cares about obscure competion problems??? We wanna
learn about two-sided markets. Give us value for the money!!!



Yet another competition problem

In a certain country intercity traffic is served by trains and coaches.
Both the railway and bus company runs its lines between certain
pairs of cities, but between two cities there migth be no line that
goes both ways. We know that no matter how we pick two cities,
one can travel from one city to the other either by bus or by train,
perhaps with changes, and the opposite travel is not necessarily
possible. Prove that there exists a city from which any other city is
reachable with possible changes by using only one mean of
transport such that for different cities we might need different kind
of transport.

Hey! Who cares about obscure competion problems??? We wanna
learn about two-sided markets. Give us value for the money!!!



Yet another competition problem

In a certain country intercity traffic is served by trains and coaches.
Both the railway and bus company runs its lines between certain
pairs of cities, but between two cities there migth be no line that
goes both ways. We know that no matter how we pick two cities,
one can travel from one city to the other either by bus or by train,
perhaps with changes, and the opposite travel is not necessarily
possible. Prove that there exists a city from which any other city is
reachable with possible changes by using only one mean of
transport such that for different cities we might need different kind
of transport.

Hey! Who cares about obscure competion problems??? We wanna
learn about two-sided markets. Give us value for the money!!!



Yet another competition problem

In a certain country intercity traffic is served by trains and coaches.
Both the railway and bus company runs its lines between certain
pairs of cities, but between two cities there migth be no line that
goes both ways. We know that no matter how we pick two cities,
one can travel from one city to the other either by bus or by train,
perhaps with changes, and the opposite travel is not necessarily
possible. Prove that there exists a city from which any other city is
reachable with possible changes by using only one mean of
transport such that for different cities we might need different kind
of transport.

Hey! Who cares about obscure competion problems??? We wanna
learn about two-sided markets. Give us value for the money!!!



Yet another competition problem

In a certain country intercity traffic is served by trains and coaches.
Both the railway and bus company runs its lines between certain
pairs of cities, but between two cities there migth be no line that
goes both ways. We know that no matter how we pick two cities,
one can travel from one city to the other either by bus or by train,
perhaps with changes, and the opposite travel is not necessarily
possible. Prove that there exists a city from which any other city is
reachable with possible changes by using only one mean of
transport such that for different cities we might need different kind
of transport.

Hey! Who cares about obscure competion problems??? We wanna
learn about two-sided markets. Give us value for the money!!!



Two-sided markets: college admissions and graphs



Two-sided markets: college admissions and graphs

A

C

Model:
Color classes A and C are applicants and colleges

edges of the underlying bipartite graph correspond to applications



Two-sided markets: college admissions and graphs

A

C

Model:
Color classes A and C are applicants and colleges
edges of the underlying bipartite graph correspond to applications



Two-sided markets: college admissions and graphs
12 23

A

C

Model:
Color classes A and C are applicants and colleges
edges of the underlying bipartite graph correspond to applications
q(c) is the quota on admissible students for college c



Two-sided markets: college admissions and graphs

1 2 1

2
3

4

1

2
2
1

1
2 1 2 1

12 23

A

C

Model:
Color classes A and C are applicants and colleges
edges of the underlying bipartite graph correspond to applications
q(c) is the quota on admissible students for college c
each applicant has a linear preference order on her applications



Two-sided markets: college admissions and graphs

2
1

21213

2

1 3
3

45
6

4

1 2 1

2
3

4

1

2
2
1

1
2 1 2 1

12 23

A

C

Model:
Color classes A and C are applicants and colleges
edges of the underlying bipartite graph correspond to applications
q(c) is the quota on admissible students for college c
each applicant has a linear preference order on her applications
and each college has a linear preference order on its applicants.



Two-sided markets: college admissions and graphs

2
1

21213

2

1 3
3

45
6

4

1 2 1

2
3

4

1

2
2
1

1
2 1 2 1

12 23

A

C

Model:
Color classes A and C are applicants and colleges
edges of the underlying bipartite graph correspond to applications
q(c) is the quota on admissible students for college c
each applicant has a linear preference order on her applications
and each college has a linear preference order on its applicants.
An admission scheme or assignment is a set of applications that
assigns each applicant to at most 1 college and each college c to
at most q(c) applicants.



Two-sided markets: college admissions and graphs

2
1

21213

2

1 3
3

45
6

4

1 2 1

2
3

4

1

2
2
1

1
2 1 2 1

12 23

A

C

Model:
Color classes A and C are applicants and colleges
edges of the underlying bipartite graph correspond to applications
q(c) is the quota on admissible students for college c
each applicant has a linear preference order on her applications
and each college has a linear preference order on its applicants.
An admission scheme or assignment is a set of applications that
assigns each applicant to at most 1 college and each college c to
at most q(c) applicants.
An application blocks an assignment if both the applicant and the
college would be happy to realize it.



Two-sided markets: college admissions and graphs

2
1

21213

2

1 3
3

45
6

4

1 2 1

2
3

4

1

2
2
1

1
2 1 2 1

12 23

A

C

Model:
Color classes A and C are applicants and colleges
edges of the underlying bipartite graph correspond to applications
q(c) is the quota on admissible students for college c
each applicant has a linear preference order on her applications
and each college has a linear preference order on its applicants.
An admission scheme or assignment is a set of applications that
assigns each applicant to at most 1 college and each college c to
at most q(c) applicants.
An application blocks an assignment if both the applicant and the
college would be happy to realize it.
An assignment is stable if no application blocks it.



Two-sided markets: college admissions and graphs

2
1

21213

2

1 3
3

45
6

4

1 2 1

2
3

4

1

2
2
1

1
2 1 2 1

12 23

A

C

An assignment is stable if no application blocks it.



Two-sided markets: college admissions and graphs

2
1

21213

2

1 3
3

45
6

4

1 2 1

2
3

4

1

2
2
1

1
2 1 2 1

12 23

A

C

An assignment is stable if no application blocks it.



Two-sided markets: college admissions and graphs

2
1

21213

2

1 3
3

45
6

4

1 2 1

2
3

4

1

2
2
1

1
2 1 2 1

12 23

A

C

An assignment is stable if no application blocks it.
Or, in other words, an assignment is stable if it dominates all other
applicatons: either the student has a better place or the college has
quota many students, each of them is better than the applicant.
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if colleges are offered S ∪ DC (S) then they choose S .
That is, CA(S ∪ DA(S)) = S and CC (S ∪ DC (S)) = S .
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applicatons: either the student has a better place or the college has
quota many students, each of them is better than the applicant.
We can define three sets: admitted applications S ,

student-dominated applications DA(S)
and college-dominated applications DC (S).

Property:
If students are offered S ∪ DA(S) then they choose S ,
if colleges are offered S ∪ DC (S) then they choose S .
That is, CA(S ∪ DA(S)) = S and CC (S ∪ DC (S)) = S .
Goal: A choice-function based approach to two-sided markets.



Stability and choice functions

Contract: application (edge of the underlying graph).

Choice funcion model: applicants and colleges have choice
functions on the contracts: CA(F ) ⊆ F and CC (F ) ⊆ F ∀F ⊆ E .
Example: CA(F ) := each applicant’s best contract from F .
CC (F ) := best contracts from F s.t. all quotas are observed.
Stable assignment: A subset S of E such that
S = CC (S) = CA(S) (quotas observed, i.e. an assignment) and
e 6∈ S ⇒ e 6∈ CC (S ∪ {e}) or e 6∈ CA(S ∪ {e}) (no blocking)
Abstract definition: Set E of contracts, choice fns CA and CC .
Subset S of E is stable if ∃X ,Y ⊆ E st
X ∪ Y = E , X ∩ Y = S and CA(X ) = CC (Y ) = S .
Properties of choice functions: Ch fn C : 2E → 2E is
substitutable (or comonotone) if F ′ ⊂ F ⇒ F ′ \ C(F ′) ⊆ F \ C(F )
path independent (PI) if C(F ) ⊆ F ′ ⊆ F ⇒ C(F ′) = C(F ) and
increasing (satisfies the “law of aggregate demand”) if

F ′ ⊆ F ⇒ |C(F ′)| ≤ |C(F )|.
Fact: If C is substitutable and increasing then C is PI.
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The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching.

Proof Boys propose, girls reject alternatingly until no rejection.
Generalization for choice functions.

E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.
Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?
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Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?
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Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly

until no rejection.
Generalization for choice functions.

E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.
Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?
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Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly

until no rejection.
Generalization for choice functions.

E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.
Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?
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Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly

until no rejection.
Generalization for choice functions.

E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.
Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?



The deferred acceptance algorithm

31

3

21

3

1 3
1 4

2

1
2

4 3

23 2

7

2

2

3 4

1

34

1 2 1

3

1
2

2

13

2 1 3
4

2

2

2 311 4

116 4
5

2

Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.
Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?
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Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.

E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.
Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?
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Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.

Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?



The deferred acceptance algorithm

31

3

21

3

1 3
1 4

2

1
2

4 3

23 2

7

2

2

3 4

1

34

1 2 1

3

1
2

2

13

2 1 3
4

2

2

2 311 4

116 4
5

2
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Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.

Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?
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Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.

Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?



The deferred acceptance algorithm

31

3

21

3

1 3
1 4

2

1
2

4 3

23 2

7

2

2

3 4

1

34

1 2 1

3

1
2

2

13

2 1 3
4

2

2

2 311 4

116 4
5

2

E0

Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.

Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?
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Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.

Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?



The deferred acceptance algorithm
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E1

Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.

Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?



The deferred acceptance algorithm
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E1

Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.

Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?



The deferred acceptance algorithm
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E2

Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.

Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?



The deferred acceptance algorithm
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E2

Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.

Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?



The deferred acceptance algorithm
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E2

Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.

Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?



The deferred acceptance algorithm
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E2

Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.
Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.

Stupid question: What makes this algorithm work?



The deferred acceptance algorithm
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Gale-Shapley Theorem: There always exists a stable matching.
Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
E0 = E and Ei+1 = Ei \ (CA(Ei ) \ CC (CA(Ei ))).
If Ei = Ei+1 then CA(Ei ) is the stable solution.
Kelso-Crawford Theorem: If ch fns CA and CC are substitutable
and path independent then the above algorithm finds a stable set.
Stupid question: What makes this algorithm work?



Tarski’s fixed point theorem

Def: A set function F is monotone if A ⊆ B ⇒ F(A) ⊆ F(B).
Observation: Define C(X ) = X \ C(X ).
Now choice function C is substitutable iff C is monotone.
Knaster-Tarski fixed point thm: If F : 2E → 2E is monotone
then there exists a fixed point: F(X ) = X (for some X ⊆ E ).
Moreover, fixed points form a lattice: if F(X ) = X and F(Y ) = Y
then X ∩ Y contains a unique inclusionwise maximal fixed point
and X ∪ Y is contained in a unique inclwise minimal fixed point.
Canor-Bernstein thm: If |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.

Algorithm for the finite case By ∅ ⊆ F(∅) and monotonicity,
F(∅) ⊆ F(F(∅)).

Hence F(∅) ⊆ F(F(∅)) ⊆ F(F(F(∅))) ⊆ . . .
So F (i)(∅) = F (i+1)(∅) = F(F (i)(∅)) hold for some i , and
X = F (i)(∅) is a fixed point. (Also, decreasing chain
F(E ) ⊇ F(F(E )) ⊇ F(F(F(E ))) ⊇ . . . ends in a fixed point.)
Observation: The Gale-Shapely algorithm is an iteration of a
monotone function. By definition, Ei+1 = F(Ei ), where
F(X ) = X \ (CA(X ) \ CC (CA(X )) =(by PI)= E \ CC (E \ CA(X ))



Tarski’s fixed point theorem

Def: A set function F is monotone if A ⊆ B ⇒ F(A) ⊆ F(B).

Observation: Define C(X ) = X \ C(X ).
Now choice function C is substitutable iff C is monotone.
Knaster-Tarski fixed point thm: If F : 2E → 2E is monotone
then there exists a fixed point: F(X ) = X (for some X ⊆ E ).
Moreover, fixed points form a lattice: if F(X ) = X and F(Y ) = Y
then X ∩ Y contains a unique inclusionwise maximal fixed point
and X ∪ Y is contained in a unique inclwise minimal fixed point.
Canor-Bernstein thm: If |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.

Algorithm for the finite case By ∅ ⊆ F(∅) and monotonicity,
F(∅) ⊆ F(F(∅)).

Hence F(∅) ⊆ F(F(∅)) ⊆ F(F(F(∅))) ⊆ . . .
So F (i)(∅) = F (i+1)(∅) = F(F (i)(∅)) hold for some i , and
X = F (i)(∅) is a fixed point. (Also, decreasing chain
F(E ) ⊇ F(F(E )) ⊇ F(F(F(E ))) ⊇ . . . ends in a fixed point.)
Observation: The Gale-Shapely algorithm is an iteration of a
monotone function. By definition, Ei+1 = F(Ei ), where
F(X ) = X \ (CA(X ) \ CC (CA(X )) =(by PI)= E \ CC (E \ CA(X ))



Tarski’s fixed point theorem

Def: A set function F is monotone if A ⊆ B ⇒ F(A) ⊆ F(B).
Observation: Define C(X ) = X \ C(X ).
Now choice function C is substitutable iff C is monotone.

Knaster-Tarski fixed point thm: If F : 2E → 2E is monotone
then there exists a fixed point: F(X ) = X (for some X ⊆ E ).
Moreover, fixed points form a lattice: if F(X ) = X and F(Y ) = Y
then X ∩ Y contains a unique inclusionwise maximal fixed point
and X ∪ Y is contained in a unique inclwise minimal fixed point.
Canor-Bernstein thm: If |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.

Algorithm for the finite case By ∅ ⊆ F(∅) and monotonicity,
F(∅) ⊆ F(F(∅)).

Hence F(∅) ⊆ F(F(∅)) ⊆ F(F(F(∅))) ⊆ . . .
So F (i)(∅) = F (i+1)(∅) = F(F (i)(∅)) hold for some i , and
X = F (i)(∅) is a fixed point. (Also, decreasing chain
F(E ) ⊇ F(F(E )) ⊇ F(F(F(E ))) ⊇ . . . ends in a fixed point.)
Observation: The Gale-Shapely algorithm is an iteration of a
monotone function. By definition, Ei+1 = F(Ei ), where
F(X ) = X \ (CA(X ) \ CC (CA(X )) =(by PI)= E \ CC (E \ CA(X ))



Tarski’s fixed point theorem

Def: A set function F is monotone if A ⊆ B ⇒ F(A) ⊆ F(B).
Observation: Define C(X ) = X \ C(X ).
Now choice function C is substitutable iff C is monotone.
Knaster-Tarski fixed point thm: If F : 2E → 2E is monotone
then there exists a fixed point: F(X ) = X (for some X ⊆ E ).
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Observation: Define C(X ) = X \ C(X ).
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Observation: Define C(X ) = X \ C(X ).
Now choice function C is substitutable iff C is monotone.
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then there exists a fixed point: F(X ) = X (for some X ⊆ E ).
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Def: A set function F is monotone if A ⊆ B ⇒ F(A) ⊆ F(B).
Observation: Define C(X ) = X \ C(X ).
Now choice function C is substitutable iff C is monotone.
Knaster-Tarski fixed point thm: If F : 2E → 2E is monotone
then there exists a fixed point: F(X ) = X (for some X ⊆ E ).
Moreover, fixed points form a lattice: if F(X ) = X and F(Y ) = Y
then X ∩ Y contains a unique inclusionwise maximal fixed point
and X ∪ Y is contained in a unique inclwise minimal fixed point.
Canor-Bernstein thm: If |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.
Algorithm for the finite case By ∅ ⊆ F(∅) and monotonicity,
F(∅) ⊆ F(F(∅)).

Hence F(∅) ⊆ F(F(∅)) ⊆ F(F(F(∅))) ⊆ . . .
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Tarski’s fixed point theorem

Def: A set function F is monotone if A ⊆ B ⇒ F(A) ⊆ F(B).
Observation: Define C(X ) = X \ C(X ).
Now choice function C is substitutable iff C is monotone.
Knaster-Tarski fixed point thm: If F : 2E → 2E is monotone
then there exists a fixed point: F(X ) = X (for some X ⊆ E ).
Moreover, fixed points form a lattice: if F(X ) = X and F(Y ) = Y
then X ∩ Y contains a unique inclusionwise maximal fixed point
and X ∪ Y is contained in a unique inclwise minimal fixed point.
Canor-Bernstein thm: If |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.
Algorithm for the finite case By ∅ ⊆ F(∅) and monotonicity,
F(∅) ⊆ F(F(∅)). Hence F(∅) ⊆ F(F(∅)) ⊆ F(F(F(∅))) ⊆ . . .
So F (i)(∅) = F (i+1)(∅) = F(F (i)(∅)) hold for some i , and
X = F (i)(∅) is a fixed point.

(Also, decreasing chain
F(E ) ⊇ F(F(E )) ⊇ F(F(F(E ))) ⊇ . . . ends in a fixed point.)
Observation: The Gale-Shapely algorithm is an iteration of a
monotone function. By definition, Ei+1 = F(Ei ), where
F(X ) = X \ (CA(X ) \ CC (CA(X )) =(by PI)= E \ CC (E \ CA(X ))
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Def: A set function F is monotone if A ⊆ B ⇒ F(A) ⊆ F(B).
Observation: Define C(X ) = X \ C(X ).
Now choice function C is substitutable iff C is monotone.
Knaster-Tarski fixed point thm: If F : 2E → 2E is monotone
then there exists a fixed point: F(X ) = X (for some X ⊆ E ).
Moreover, fixed points form a lattice: if F(X ) = X and F(Y ) = Y
then X ∩ Y contains a unique inclusionwise maximal fixed point
and X ∪ Y is contained in a unique inclwise minimal fixed point.
Canor-Bernstein thm: If |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.
Algorithm for the finite case By ∅ ⊆ F(∅) and monotonicity,
F(∅) ⊆ F(F(∅)). Hence F(∅) ⊆ F(F(∅)) ⊆ F(F(F(∅))) ⊆ . . .
So F (i)(∅) = F (i+1)(∅) = F(F (i)(∅)) hold for some i , and
X = F (i)(∅) is a fixed point. (Also, decreasing chain
F(E ) ⊇ F(F(E )) ⊇ F(F(F(E ))) ⊇ . . . ends in a fixed point.)

Observation: The Gale-Shapely algorithm is an iteration of a
monotone function. By definition, Ei+1 = F(Ei ), where
F(X ) = X \ (CA(X ) \ CC (CA(X )) =(by PI)= E \ CC (E \ CA(X ))
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Corollaries and applications

Key observation: Stable solutions = fixed points (...)

Man- and woman-optimality: The deferred acceptance algorithm
finds the solution that (among stable solutions) is best for each
man and worse for each woman. (Fixed point at the end of chain
F(E ) ⊇ F(F(E )) ⊇ F(F(F(E ))) ⊇ . . . is inclusionwise maximal.)
Polarization of interests: best for men = worse for women.
Def: Stable solution S is A-better than S ′ (i.e. S �A S ′) if
CA(S ∪ S ′) = S .
Fact: If CA is substitutable and PI then �A is a partial order.
Blair’s thm: If both CA and CC are path independent and
substituable then stable solutions form a lattice for �A. That is, if
S1 and S2 are stable solutions then there is a stable solution
S = S1 ∧ S2 such that S �A S1, S �A S2 and if S ′ �A S1,
S ′ �A S2 holds for stable solution S ′ then S ′ �A S .
Stronger lattice property: If both CA and CC are increasing and
substitutable then lattice operations in Blair’s thm are
S1 ∧ S2 = CA(S1 ∪ S2) and S1 ∨ S2 = CC (S1 ∪ S2).
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Example: an “alternative” marriage model

Women estimate the strength and the wealth of each man.

Men rank the look of women and the food they cook.
Everyone strives to have (at most) two partners:
I women look for a strong and a wealthy husband and
I man dream about a pretty wife and one that cooks best.

In a marriage scheme, everyone has at most two partners.
Such a scheme is stable if whenever m and w are not married then

I m has both a better looking and better cooking wife than w
I or w has both a stronger and a wealthier husband than m.

Corollary: There exists a stable marriage scheme in this model.
Proof: We need to find substitutable path independent choice
functions on contracts. Naturally, from any set F of contracts,
CW (F ) consists of the strongest and wealthiest partners in F for
each woman and CM(F ) contains the best looking and best
cooking partners for each man.
Both CW and CM are substitutable and PI. So GS works. �
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A special case

Rows=men, columns=women,
dots=possible contracts.
Left=prettier, right=better cooking,
up=stronger, down=wealthier
Follow the GS algorithm.

The man-oriented GS algorithm finds the man-optimal stable
solution: the “widest” set of gridpoints. The woman-optimal
solution would be the “tallest” such set.
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Choice functions from partial orders

Def: C�(U): the set of �-minima of U for partial order � on V .

Fact: C� is substitutable and path independent.
Corollary: If � and �′ are partial orders on V then there is a
subset S of V such that no two elements of S are comparable in �
or in �′ and for any element x ∈ V \ S there is an element s of S
such that s � x or s �′ x holds.

Special case: If both G1 and G2 are acyclic directed graphs on V
st for any u, v ∈ V there exists a directed path connecting them in
G1 or in G2 then there is a vertex v such that from any other
vertex u, there is a directed uv path of G1 or a directed uv path of
G2.
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Corollaries from the lattice property

Stronger lattice property: If both CA and CC are increasing and
substitutable then lattice operations in Blair’s thm are
S1 ∧ S2 = CA(S1 ∪ S2) and S1 ∨ S2 = CC (S1 ∪ S2).

Corollary (Comparability theorem of Roth and Sotomayor):
In the college admission problem, for any two stable assignments
S1 and S2 and college c , Cc(S1 ∪ S2) ∈ {S1,S2}. Hence, any
college has a linear preference order on any set S1, . . . ,Sk of stable
assignments.

Corollary (Teo and Sethuraman): Let S1, . . . ,Sk be stable
assignments. If each college chooses its mth choice then a stable
assignment is created where each applicants gets her (k −m + 1)st
place.
Proof: Let S i

c be the ith choice of college c out of S1, . . . ,Sk . By
the lattice property, S :=

∨
c∈C

∧m
i=1 S

i
c is a stable assignment,

moreover each college receives its mth choice and consequently,
each applicant gets her (k −m + 1)st place.
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Stable assignments on many-to-one markets

Gale-Shapley: in the college admissions model (strict preferences
and college-quotas) there always exists a stable assignment.
(DA, college and student-optimality and lattice property.)
Hamada-Miyazaki-Iwama: if colleges have lower quotas as well
then the number of blocking edges is inapproximable.
Biró-F-Irving-Manlove: many-to-one market, colleges have lower
quotas but a college can be closed if it cannot reach that (so
blocking is by a pair or by a coalition) then deciding existence of
stable assignment is NP-complete.

Lesson learnt: lower quotas are difficult.
Surprise: Huang’s “Classified stable matching” model. There are
quota sets with an upper and a lower quota on each.
Result: if quota sets are nested then the problem is tractable.

???
Explanation: An applicant might be refused if her admission would
imply the violation of some (seemingly independent) lower quota.
Next goal: generalization of Huang’s framework.
Main tool: matroid-based choice functions.
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A crash course on matroids

Matroid: M = (E , I) st (1) ∅ ∈ I, (2) A ⊆ B ∈ I ⇒ A ∈ I,
(3) A,B ∈ I, |A| < |B| ⇒ ∃b ∈ B \ A : A ∪ {b} ∈ I.
Examples: (1) Linear matroid (vectors with linear independence)
(2) Graphic matroid (edges of a graph with no cycles)
(3) Trivial matroid (I = 2E )
(4) Uniform matroid truncation of a trivial matroid
(5) Partition matroid

(E = E1 ∪ E2 ∪ . . . ∪ Ek is a partition. I ∈ I iff |I ∩ Ei | ≤ 1).
(6) Direct sum of uniform matroids (E = E1 ∪ E2 ∪ . . . ∪ Ek is a
partition, b1, b2, . . . , bk given. I ∈ I iff |I ∩ Ei | ≤ bi∀i).
Basis: maximal independent set of E (same cardinality)
Rank fn: rk(A) = max{|A′| : A′ ⊆ A independent}.
Span: sp(A) := {e ∈ E : rk(A ∪ {e}) = rk(A).
Greedy prop: maxweight indep set can be constructed greedily
deciding on the elements one by one in the order of decr weights.
Fact: The matroid greedy alg is a substitutable increasing ch fn.



Matroids and stable assignments

Fact: The matroid greedy alg is a substitutable increasing ch fn.

Cor: If both CC and CA are greedy choice fn’s then stable
assignments always exist, can be found by a natural generalization
of the Gale-Shapley algorithm, and lattice operations are natural.
Examples: (1) Stable marriages CM , CW from partition matroids.
(2) College admissions

CA: partition matroid, CC : direct sum of uniform matroids.
(3) Many-to-many markets with quotas

C1, C2: direct sum of uniform matroids.
(4) College admissions with nested quota sets
CA: partition matroid,
CC : repeated direct sum and truncation of trivial matroids.
“Rural hospitals” Thm: If both CC and CA are greedy choice fn’s
then stable assignments have the same span.
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The classified stable matching problem

Problem input: Two-sided market between C and A with set E of
possible contracts, nested systems QC ,QA ⊆ 2E of common quota
sets, l , u : QA ∪QA → N+ lower and upper quotas and preferences
≺C and ≺A st any common quota set is linearly ordered.

Assignment: Subset F of contracts st all common quotas are
observed: l(Q) ≤ |F ∩ Q| ≤ u(Q) ∀Q ∈ QC ∪QA .
Assignment F is blocked by contract F 63 e = ca is if
I F ∪ {e} observes all quotas of QC or there is a contract

e ≺C f ∈ F st F ∪ {e} \ {f } obeys all quotas of QC and

I the “same” holds for QA and ≺A.
Stable assignment: unblocked assignment.
Solution: Application of the choice function framework.
Key question: how do colleges decide on accepted contracts if
contracts are coming in the order of preference.
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Obs: Dashed quota sets are “implicitely” saturated, no new
contract is possible.
Recursive definition: For F ⊆ E , if Q is an inclwise min member
of QC then d(Q,F ) := max{|F ∩ Q|, l(Q)}.
If Q ∈ QC has maximal children Q1, . . .Qk then

d(Q,F ) := max{d(Q1,F ) + . . . d(Qk ,F ), l(Q)}
Key thm: Family IC := {F ⊆ E : d(Q,F ) ≤ u(Q) ∀Q ∈ QC}
forms the independent sets of a matroid.
Cor: Stable assignment for ch fns CC and CA always exists.
Trick: As span is always the same, either all CCCA-stable solutions
obey the lower quotas or none of them does. So if Gale-Shapley
solution violates a lower quota then no stable assignment exists
whatsoever. Otherwise GS outputs a solution.
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Conclusion

I Introduction of choice functions on 2-sided markets provides a
flexible model.

I Tarski’s fixed point theorem helps us to prove generalizations:
existence of a stable solution, optimality, lattice-results, etc.

I A known but fairly abstract matroid-framework allowed us a
fast proof of interesting results on a natural college admission
model. This seems to be hopeless by a “direct” approach.

I Lesson for Economists:
a fairly abstract approach can be useful in practical models.

I Lesson for Mathematicians:
a practical model might motivate a class of interesting
matroids
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Thank you for the attention!


