Two-sided problems with choice functions, matroids and lattices

Tamás Fleiner ${ }^{1}$

Summer School on
Matching Problems, Markets, and Mechanisms
24 June 2013, Budapest

${ }^{1}$ Budapest University of Technology and Economics

A competition problem

Prove that any finite subset H of the planar grid has a subset K with the property that

1. any vertical or horizontal line intersects K in at most 2 points,
2. any point of $H \backslash K$ lies on a vertical or horizontal segment determined by K.

A competition problem

Prove that any finite subset H of the planar grid has a subset K with the property that

1. any vertical or horizontal line intersects K in at most 2 points,
2. any point of $H \backslash K$ lies on a vertical or horizontal segment determined by K.

A competition problem

Prove that any finite subset H of the planar grid has a subset K with the property that

1. any vertical or horizontal line intersects K in at most 2 points,
2. any point of $H \backslash K$ lies on a vertical or horizontal segment determined by K.

Yet another competition problem

In a certain country intercity traffic is served by trains and coaches. Both the railway and bus company runs its lines between certain pairs of cities, but between two cities there migth be no line that goes both ways. We know that no matter how we pick two cities, one can travel from one city to the other either by bus or by train, perhaps with changes, and the opposite travel is not necessarily possible. Prove that there exists a city from which any other city is reachable with possible changes by using only one mean of transport such that for different cities we might need different kind of transport.

Yet another competition problem

In a certain country intercity traffic is served by trains and coaches. Both the railway and bus company runs its lines between certain pairs of cities, but between two cities there migth be no line that goes both ways. We know that no matter how we pick two cities, one can travel from one city to the other either by bus or by train, perhaps with changes, and the opposite travel is not necessarily possible. Prove that there exists a city from which any other city is reachable with possible changes by using only one mean of transport such that for different cities we might need different kind of transport.

Yet another competition problem

In a certain country intercity traffic is served by trains and coaches. Both the railway and bus company runs its lines between certain pairs of cities, but between two cities there migth be no line that goes both ways. We know that no matter how we pick two cities, one can travel from one city to the other either by bus or by train, perhaps with changes, and the opposite travel is not necessarily possible. Prove that there exists a city from which any other city is reachable with possible changes by using only one mean of transport such that for different cities we might need different kind of transport.

Yet another competition problem

In a certain country intercity traffic is served by trains and coaches. Both the railway and bus company runs its lines between certain pairs of cities, but between two cities there migth be no line that goes both ways. We know that no matter how we pick two cities, one can travel from one city to the other either by bus or by train, perhaps with changes, and the opposite travel is not necessarily possible. Prove that there exists a city from which any other city is reachable with possible changes by using only one mean of transport such that for different cities we might need different kind of transport.

Yet another competition problem

In a certain country intercity traffic is served by trains and coaches. Both the railway and bus company runs its lines between certain pairs of cities, but between two cities there migth be no line that goes both ways. We know that no matter how we pick two cities, one can travel from one city to the other either by bus or by train, perhaps with changes, and the opposite travel is not necessarily possible. Prove that there exists a city from which any other city is reachable with possible changes by using only one mean of transport such that for different cities we might need different kind of transport.

Hey! Who cares about obscure competion problems??? We wanna learn about two-sided markets. Give us value for the money!!!

Two-sided markets: college admissions and graphs

Two-sided markets: college admissions and graphs

Model:
Color classes A and C are applicants and colleges

Two-sided markets: college admissions and graphs

Model:

Color classes A and C are applicants and colleges edges of the underlying bipartite graph correspond to applications

Two-sided markets: college admissions and graphs

Model:

Color classes A and C are applicants and colleges edges of the underlying bipartite graph correspond to applications $q(c)$ is the quota on admissible students for college c

Two-sided markets: college admissions and graphs

Model:

Color classes A and C are applicants and colleges edges of the underlying bipartite graph correspond to applications $q(c)$ is the quota on admissible students for college c each applicant has a linear preference order on her applications

Two-sided markets: college admissions and graphs

Model:

Color classes A and C are applicants and colleges edges of the underlying bipartite graph correspond to applications $q(c)$ is the quota on admissible students for college c each applicant has a linear preference order on her applications and each college has a linear preference order on its applicants.

Two-sided markets: college admissions and graphs

Model:

Color classes A and C are applicants and colleges edges of the underlying bipartite graph correspond to applications $q(c)$ is the quota on admissible students for college c each applicant has a linear preference order on her applications and each college has a linear preference order on its applicants. An admission scheme or assignment is a set of applications that assigns each applicant to at most 1 college and each college c to at most $q(c)$ applicants.

Two-sided markets: college admissions and graphs

Model:

Color classes A and C are applicants and colleges edges of the underlying bipartite graph correspond to applications $q(c)$ is the quota on admissible students for college c each applicant has a linear preference order on her applications and each college has a linear preference order on its applicants. An admission scheme or assignment is a set of applications that assigns each applicant to at most 1 college and each college c to at most $q(c)$ applicants.
An application blocks an assignment if both the applicant and the college would be happy to realize it.

Two-sided markets: college admissions and graphs

Model:

Color classes A and C are applicants and colleges edges of the underlying bipartite graph correspond to applications $q(c)$ is the quota on admissible students for college c each applicant has a linear preference order on her applications and each college has a linear preference order on its applicants. An admission scheme or assignment is a set of applications that assigns each applicant to at most 1 college and each college c to at most $q(c)$ applicants.
An application blocks an assignment if both the applicant and the college would be happy to realize it.
An assignment is stable if no application blocks it.

Two-sided markets: college admissions and graphs

An assignment is stable if no application blocks it.

Two-sided markets: college admissions and graphs

An assignment is stable if no application blocks it.

Two-sided markets: college admissions and graphs

An assignment is stable if no application blocks it.
Or, in other words, an assignment is stable if it dominates all other applicatons: either the student has a better place or the college has quota many students, each of them is better than the applicant.

Two-sided markets: college admissions and graphs

An assignment is stable if no application blocks it.
Or, in other words, an assignment is stable if it dominates all other applicatons: either the student has a better place or the college has quota many students, each of them is better than the applicant.
We can define three sets:
admitted applications S, student-dominated applications $\mathcal{D}_{A}(S)$ and college-dominated applications $\mathcal{D}_{C}(S)$.

Two-sided markets: college admissions and graphs

An assignment is stable if no application blocks it.
Or, in other words, an assignment is stable if it dominates all other applicatons: either the student has a better place or the college has quota many students, each of them is better than the applicant.
We can define three sets:
admitted applications S, student-dominated applications $\mathcal{D}_{A}(S)$ and college-dominated applications $\mathcal{D}_{C}(S)$.

Property:

If students are offered $S \cup \mathcal{D}_{A}(S)$ then they choose S, if colleges are offered $S \cup \mathcal{D}_{C}(S)$ then they choose S.
That is, $\mathcal{C}_{A}\left(S \cup \mathcal{D}_{A}(S)\right)=S$ and $\mathcal{C}_{C}\left(S \cup \mathcal{D}_{C}(S)\right)=S$.

Two-sided markets: college admissions and graphs

An assignment is stable if no application blocks it.
Or, in other words, an assignment is stable if it dominates all other applicatons: either the student has a better place or the college has quota many students, each of them is better than the applicant.
We can define three sets:
admitted applications S, student-dominated applications $\mathcal{D}_{A}(S)$ and college-dominated applications $\mathcal{D}_{C}(S)$.

Property:

If students are offered $S \cup \mathcal{D}_{A}(S)$ then they choose S, if colleges are offered $S \cup \mathcal{D}_{C}(S)$ then they choose S.
That is, $\mathcal{C}_{A}\left(S \cup \mathcal{D}_{A}(S)\right)=S$ and $\mathcal{C}_{C}\left(S \cup \mathcal{D}_{C}(S)\right)=S$.
Goal: A choice-function based approach to two-sided markets.

Stability and choice functions

Contract: application (edge of the underlying graph).

Stability and choice functions

Contract: application (edge of the underlying graph). Choice funcion model: applicants and colleges have choice functions on the contracts: $\mathcal{C}_{A}(F) \subseteq F$ and $\mathcal{C}_{C}(F) \subseteq F \quad \forall F \subseteq E$.

Stability and choice functions

Contract: application (edge of the underlying graph).
Choice funcion model: applicants and colleges have choice functions on the contracts: $\mathcal{C}_{A}(F) \subseteq F$ and $\mathcal{C}_{C}(F) \subseteq F \quad \forall F \subseteq E$. Example: $\mathcal{C}_{A}(F):=$ each applicant's best contract from F. $\mathcal{C}_{C}(F):=$ best contracts from F s.t. all quotas are observed.

Stability and choice functions

Contract: application (edge of the underlying graph).
Choice funcion model: applicants and colleges have choice functions on the contracts: $\mathcal{C}_{A}(F) \subseteq F$ and $\mathcal{C}_{C}(F) \subseteq F \quad \forall F \subseteq E$.
Example: $\mathcal{C}_{A}(F):=$ each applicant's best contract from F.
$\mathcal{C}_{C}(F):=$ best contracts from F s.t. all quotas are observed.
Stable assignment: A subset S of E such that
$S=\mathcal{C}_{C}(S)=\mathcal{C}_{A}(S) \quad$ (quotas observed, i.e. an assignment) and $e \notin S \Rightarrow e \notin \mathcal{C}_{C}(S \cup\{e\})$ or $e \notin \mathcal{C}_{A}(S \cup\{e\}) \quad$ (no blocking)

Stability and choice functions

Contract: application (edge of the underlying graph).
Choice funcion model: applicants and colleges have choice functions on the contracts: $\mathcal{C}_{A}(F) \subseteq F$ and $\mathcal{C}_{C}(F) \subseteq F \quad \forall F \subseteq E$.
Example: $\mathcal{C}_{A}(F):=$ each applicant's best contract from F.
$\mathcal{C}_{C}(F):=$ best contracts from F s.t. all quotas are observed.
Stable assignment: A subset S of E such that
$S=\mathcal{C}_{C}(S)=\mathcal{C}_{A}(S) \quad$ (quotas observed, i.e. an assignment) and $e \notin S \Rightarrow e \notin \mathcal{C}_{C}(S \cup\{e\})$ or $e \notin \mathcal{C}_{A}(S \cup\{e\}) \quad$ (no blocking) Abstract definition: Set E of contracts, choice fns \mathcal{C}_{A} and \mathcal{C}_{C}.
Subset S of E is stable if
$\exists X, Y \subseteq E$ st
$X \cup Y=E, \quad X \cap Y=S \quad$ and $\quad \mathcal{C}_{A}(X)=\mathcal{C}_{C}(Y)=S$.

Stability and choice functions

Contract: application (edge of the underlying graph).
Choice funcion model: applicants and colleges have choice functions on the contracts: $\mathcal{C}_{A}(F) \subseteq F$ and $\mathcal{C}_{C}(F) \subseteq F \quad \forall F \subseteq E$.
Example: $\mathcal{C}_{A}(F):=$ each applicant's best contract from F.
$\mathcal{C}_{C}(F):=$ best contracts from F s.t. all quotas are observed.
Stable assignment: A subset S of E such that
$S=\mathcal{C}_{C}(S)=\mathcal{C}_{A}(S) \quad$ (quotas observed, i.e. an assignment) and $e \notin S \Rightarrow e \notin \mathcal{C}_{C}(S \cup\{e\})$ or $e \notin \mathcal{C}_{A}(S \cup\{e\}) \quad$ (no blocking) Abstract definition: Set E of contracts, choice fns \mathcal{C}_{A} and \mathcal{C}_{C}.
Subset S of E is stable if

$$
\exists X, Y \subseteq E \text { st }
$$

$X \cup Y=E, \quad X \cap Y=S \quad$ and $\quad \mathcal{C}_{A}(X)=\mathcal{C}_{C}(Y)=S$.
Properties of choice functions: Ch fn $\mathcal{C}: 2^{E} \rightarrow 2^{E}$ is substitutable (or comonotone) if $F^{\prime} \subset F \Rightarrow F^{\prime} \backslash \mathcal{C}\left(F^{\prime}\right) \subseteq F \backslash \mathcal{C}(F)$

Stability and choice functions

Contract: application (edge of the underlying graph).
Choice funcion model: applicants and colleges have choice functions on the contracts: $\mathcal{C}_{A}(F) \subseteq F$ and $\mathcal{C}_{C}(F) \subseteq F \quad \forall F \subseteq E$.
Example: $\mathcal{C}_{A}(F):=$ each applicant's best contract from F.
$\mathcal{C}_{C}(F):=$ best contracts from F s.t. all quotas are observed.
Stable assignment: A subset S of E such that
$S=\mathcal{C}_{C}(S)=\mathcal{C}_{A}(S) \quad$ (quotas observed, i.e. an assignment) and $e \notin S \Rightarrow e \notin \mathcal{C}_{C}(S \cup\{e\})$ or $e \notin \mathcal{C}_{A}(S \cup\{e\}) \quad$ (no blocking) Abstract definition: Set E of contracts, choice fns \mathcal{C}_{A} and \mathcal{C}_{C}.
Subset S of E is stable if

$$
\exists X, Y \subseteq E \text { st }
$$

$X \cup Y=E, \quad X \cap Y=S \quad$ and $\quad \mathcal{C}_{A}(X)=\mathcal{C}_{C}(Y)=S$.
Properties of choice functions: Ch fn $\mathcal{C}: 2^{E} \rightarrow 2^{E}$ is substitutable (or comonotone) if $F^{\prime} \subset F \Rightarrow F^{\prime} \backslash \mathcal{C}\left(F^{\prime}\right) \subseteq F \backslash \mathcal{C}(F)$ path independent (PI) if $\mathcal{C}(F) \subseteq F^{\prime} \subseteq F \Rightarrow \mathcal{C}\left(F^{\prime}\right)=\mathcal{C}(F)$ and

Stability and choice functions

Contract: application (edge of the underlying graph).
Choice funcion model: applicants and colleges have choice functions on the contracts: $\mathcal{C}_{A}(F) \subseteq F$ and $\mathcal{C}_{C}(F) \subseteq F \quad \forall F \subseteq E$.
Example: $\mathcal{C}_{A}(F):=$ each applicant's best contract from F.
$\mathcal{C}_{C}(F):=$ best contracts from F s.t. all quotas are observed.
Stable assignment: A subset S of E such that
$S=\mathcal{C}_{C}(S)=\mathcal{C}_{A}(S) \quad$ (quotas observed, i.e. an assignment) and $e \notin S \Rightarrow e \notin \mathcal{C}_{C}(S \cup\{e\})$ or $e \notin \mathcal{C}_{A}(S \cup\{e\}) \quad$ (no blocking) Abstract definition: Set E of contracts, choice fns \mathcal{C}_{A} and \mathcal{C}_{C}.
Subset S of E is stable if

$$
\exists X, Y \subseteq E \text { st }
$$

$X \cup Y=E, \quad X \cap Y=S \quad$ and $\quad \mathcal{C}_{A}(X)=\mathcal{C}_{C}(Y)=S$.
Properties of choice functions: Ch fn $\mathcal{C}: 2^{E} \rightarrow 2^{E}$ is
substitutable (or comonotone) if $F^{\prime} \subset F \Rightarrow F^{\prime} \backslash \mathcal{C}\left(F^{\prime}\right) \subseteq F \backslash \mathcal{C}(F)$ path independent (PI) if $\mathcal{C}(F) \subseteq F^{\prime} \subseteq F \Rightarrow \mathcal{C}\left(F^{\prime}\right)=\mathcal{C}(F)$ and increasing (satisfies the "law of aggregate demand") if

$$
F^{\prime} \subseteq F \Rightarrow\left|\mathcal{C}\left(F^{\prime}\right)\right| \leq|\mathcal{C}(F)|
$$

Stability and choice functions

Contract: application (edge of the underlying graph).
Choice funcion model: applicants and colleges have choice functions on the contracts: $\mathcal{C}_{A}(F) \subseteq F$ and $\mathcal{C}_{C}(F) \subseteq F \quad \forall F \subseteq E$.
Example: $\mathcal{C}_{A}(F):=$ each applicant's best contract from F.
$\mathcal{C}_{C}(F):=$ best contracts from F s.t. all quotas are observed.
Stable assignment: A subset S of E such that
$S=\mathcal{C}_{C}(S)=\mathcal{C}_{A}(S) \quad$ (quotas observed, i.e. an assignment) and $e \notin S \Rightarrow e \notin \mathcal{C}_{C}(S \cup\{e\})$ or $e \notin \mathcal{C}_{A}(S \cup\{e\}) \quad$ (no blocking) Abstract definition: Set E of contracts, choice fns \mathcal{C}_{A} and \mathcal{C}_{C}.
Subset S of E is stable if

$$
\exists X, Y \subseteq E \text { st }
$$

$X \cup Y=E, \quad X \cap Y=S \quad$ and $\quad \mathcal{C}_{A}(X)=\mathcal{C}_{C}(Y)=S$.
Properties of choice functions: Ch fn $\mathcal{C}: 2^{E} \rightarrow 2^{E}$ is
substitutable (or comonotone) if $F^{\prime} \subset F \Rightarrow F^{\prime} \backslash \mathcal{C}\left(F^{\prime}\right) \subseteq F \backslash \mathcal{C}(F)$ path independent (PI) if $\mathcal{C}(F) \subseteq F^{\prime} \subseteq F \Rightarrow \mathcal{C}\left(F^{\prime}\right)=\mathcal{C}(F)$ and increasing (satisfies the "law of aggregate demand") if

$$
F^{\prime} \subseteq F \Rightarrow\left|\mathcal{C}\left(F^{\prime}\right)\right| \leq|\mathcal{C}(F)|
$$

Fact: If \mathcal{C} is substitutable and increasing then \mathcal{C} is PI .

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching.

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching.

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose,

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly until no rejection.

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
$E_{0}=E \quad$ and $\quad E_{i+1}=E_{i} \backslash\left(\mathcal{C}_{A}\left(E_{i}\right) \backslash \mathcal{C}_{C}\left(\mathcal{C}_{A}\left(E_{i}\right)\right)\right)$.
If $E_{i}=E_{i+1}$ then $\mathcal{C}_{A}\left(E_{i}\right)$ is the stable solution.

The deferred acceptance algorithm

E_{0}

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
$E_{0}=E \quad$ and $\quad E_{i+1}=E_{i} \backslash\left(\mathcal{C}_{A}\left(E_{i}\right) \backslash \mathcal{C}_{C}\left(\mathcal{C}_{A}\left(E_{i}\right)\right)\right)$.
If $E_{i}=E_{i+1}$ then $\mathcal{C}_{A}\left(E_{i}\right)$ is the stable solution.

The deferred acceptance algorithm

E_{0}

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
$E_{0}=E \quad$ and $\quad E_{i+1}=E_{i} \backslash\left(\mathcal{C}_{A}\left(E_{i}\right) \backslash \mathcal{C}_{C}\left(\mathcal{C}_{A}\left(E_{i}\right)\right)\right)$.
If $E_{i}=E_{i+1}$ then $\mathcal{C}_{A}\left(E_{i}\right)$ is the stable solution.

The deferred acceptance algorithm

E_{0}

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
$E_{0}=E \quad$ and $\quad E_{i+1}=E_{i} \backslash\left(\mathcal{C}_{A}\left(E_{i}\right) \backslash \mathcal{C}_{C}\left(\mathcal{C}_{A}\left(E_{i}\right)\right)\right)$.
If $E_{i}=E_{i+1}$ then $\mathcal{C}_{A}\left(E_{i}\right)$ is the stable solution.

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
$E_{0}=E \quad$ and $\quad E_{i+1}=E_{i} \backslash\left(\mathcal{C}_{A}\left(E_{i}\right) \backslash \mathcal{C}_{C}\left(\mathcal{C}_{A}\left(E_{i}\right)\right)\right)$.
If $E_{i}=E_{i+1}$ then $\mathcal{C}_{A}\left(E_{i}\right)$ is the stable solution.

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
$E_{0}=E \quad$ and $\quad E_{i+1}=E_{i} \backslash\left(\mathcal{C}_{A}\left(E_{i}\right) \backslash \mathcal{C}_{C}\left(\mathcal{C}_{A}\left(E_{i}\right)\right)\right)$.
If $E_{i}=E_{i+1}$ then $\mathcal{C}_{A}\left(E_{i}\right)$ is the stable solution.

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
$E_{0}=E \quad$ and $\quad E_{i+1}=E_{i} \backslash\left(\mathcal{C}_{A}\left(E_{i}\right) \backslash \mathcal{C}_{C}\left(\mathcal{C}_{A}\left(E_{i}\right)\right)\right)$.
If $E_{i}=E_{i+1}$ then $\mathcal{C}_{A}\left(E_{i}\right)$ is the stable solution.

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
$E_{0}=E \quad$ and $\quad E_{i+1}=E_{i} \backslash\left(\mathcal{C}_{A}\left(E_{i}\right) \backslash \mathcal{C}_{C}\left(\mathcal{C}_{A}\left(E_{i}\right)\right)\right)$.
If $E_{i}=E_{i+1}$ then $\mathcal{C}_{A}\left(E_{i}\right)$ is the stable solution.

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
$E_{0}=E \quad$ and $\quad E_{i+1}=E_{i} \backslash\left(\mathcal{C}_{A}\left(E_{i}\right) \backslash \mathcal{C}_{C}\left(\mathcal{C}_{A}\left(E_{i}\right)\right)\right)$.
If $E_{i}=E_{i+1}$ then $\mathcal{C}_{A}\left(E_{i}\right)$ is the stable solution.

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
$E_{0}=E \quad$ and $\quad E_{i+1}=E_{i} \backslash\left(\mathcal{C}_{A}\left(E_{i}\right) \backslash \mathcal{C}_{C}\left(\mathcal{C}_{A}\left(E_{i}\right)\right)\right)$.
If $E_{i}=E_{i+1}$ then $\mathcal{C}_{A}\left(E_{i}\right)$ is the stable solution.

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
$E_{0}=E \quad$ and $\quad E_{i+1}=E_{i} \backslash\left(\mathcal{C}_{A}\left(E_{i}\right) \backslash \mathcal{C}_{C}\left(\mathcal{C}_{A}\left(E_{i}\right)\right)\right)$.
If $E_{i}=E_{i+1}$ then $\mathcal{C}_{A}\left(E_{i}\right)$ is the stable solution.
Kelso-Crawford Theorem: If ch fns \mathcal{C}_{A} and \mathcal{C}_{C} are substitutable and path independent then the above algorithm finds a stable set.

The deferred acceptance algorithm

Gale-Shapley Theorem: There always exists a stable matching. Proof Boys propose, girls reject alternatingly until no rejection.

Generalization for choice functions.
$E_{0}=E \quad$ and $\quad E_{i+1}=E_{i} \backslash\left(\mathcal{C}_{A}\left(E_{i}\right) \backslash \mathcal{C}_{C}\left(\mathcal{C}_{A}\left(E_{i}\right)\right)\right)$.
If $E_{i}=E_{i+1}$ then $\mathcal{C}_{A}\left(E_{i}\right)$ is the stable solution.
Kelso-Crawford Theorem: If ch fns \mathcal{C}_{A} and \mathcal{C}_{C} are substitutable and path independent then the above algorithm finds a stable set. Stupid question: What makes this algorithm work?

Tarski's fixed point theorem

Tarski's fixed point theorem

Def: A set function \mathcal{F} is monotone if $A \subseteq B \Rightarrow \mathcal{F}(A) \subseteq \mathcal{F}(B)$.

Tarski's fixed point theorem

Def: A set function \mathcal{F} is monotone if $A \subseteq B \Rightarrow \mathcal{F}(A) \subseteq \mathcal{F}(B)$. Observation: Define $\overline{\mathcal{C}}(X)=X \backslash \mathcal{C}(X)$.
Now choice function \mathcal{C} is substitutable iff $\overline{\mathcal{C}}$ is monotone.

Tarski's fixed point theorem

Def: A set function \mathcal{F} is monotone if $A \subseteq B \Rightarrow \mathcal{F}(A) \subseteq \mathcal{F}(B)$. Observation: Define $\overline{\mathcal{C}}(X)=X \backslash \mathcal{C}(X)$.
Now choice function \mathcal{C} is substitutable iff $\overline{\mathcal{C}}$ is monotone. Knaster-Tarski fixed point thm: If $\mathcal{F}: 2^{E} \rightarrow 2^{E}$ is monotone then there exists a fixed point: $\mathcal{F}(X)=X$ (for some $X \subseteq E$).

Tarski's fixed point theorem

Def: A set function \mathcal{F} is monotone if $A \subseteq B \Rightarrow \mathcal{F}(A) \subseteq \mathcal{F}(B)$. Observation: Define $\overline{\mathcal{C}}(X)=X \backslash \mathcal{C}(X)$.
Now choice function \mathcal{C} is substitutable iff $\overline{\mathcal{C}}$ is monotone.
Knaster-Tarski fixed point thm: If $\mathcal{F}: 2^{E} \rightarrow 2^{E}$ is monotone then there exists a fixed point: $\mathcal{F}(X)=X$ (for some $X \subseteq E$). Moreover, fixed points form a lattice: if $\mathcal{F}(X)=X$ and $\mathcal{F}(Y)=Y$ then $X \cap Y$ contains a unique inclusionwise maximal fixed point and $X \cup Y$ is contained in a unique inclwise minimal fixed point.

Tarski's fixed point theorem

Def: A set function \mathcal{F} is monotone if $A \subseteq B \Rightarrow \mathcal{F}(A) \subseteq \mathcal{F}(B)$. Observation: Define $\overline{\mathcal{C}}(X)=X \backslash \mathcal{C}(X)$.
Now choice function \mathcal{C} is substitutable iff $\overline{\mathcal{C}}$ is monotone.
Knaster-Tarski fixed point thm: If $\mathcal{F}: 2^{E} \rightarrow 2^{E}$ is monotone then there exists a fixed point: $\mathcal{F}(X)=X$ (for some $X \subseteq E$). Moreover, fixed points form a lattice: if $\mathcal{F}(X)=X$ and $\mathcal{F}(Y)=Y$ then $X \cap Y$ contains a unique inclusionwise maximal fixed point and $X \cup Y$ is contained in a unique inclwise minimal fixed point. Canor-Bernstein thm: If $|A| \leq|B|$ and $|B| \leq|A|$ then $|A|=|B|$.

Tarski's fixed point theorem

Def: A set function \mathcal{F} is monotone if $A \subseteq B \Rightarrow \mathcal{F}(A) \subseteq \mathcal{F}(B)$. Observation: Define $\overline{\mathcal{C}}(X)=X \backslash \mathcal{C}(X)$.
Now choice function \mathcal{C} is substitutable iff $\overline{\mathcal{C}}$ is monotone.
Knaster-Tarski fixed point thm: If $\mathcal{F}: 2^{E} \rightarrow 2^{E}$ is monotone then there exists a fixed point: $\mathcal{F}(X)=X$ (for some $X \subseteq E$). Moreover, fixed points form a lattice: if $\mathcal{F}(X)=X$ and $\mathcal{F}(Y)=Y$ then $X \cap Y$ contains a unique inclusionwise maximal fixed point and $X \cup Y$ is contained in a unique inclwise minimal fixed point. Canor-Bernstein thm: If $|A| \leq|B|$ and $|B| \leq|A|$ then $|A|=|B|$. Algorithm for the finite case $B y \emptyset \subseteq \mathcal{F}(\emptyset)$ and monotonicity, $\mathcal{F}(\emptyset) \subseteq \mathcal{F}(\mathcal{F}(\emptyset))$.

Tarski's fixed point theorem

Def: A set function \mathcal{F} is monotone if $A \subseteq B \Rightarrow \mathcal{F}(A) \subseteq \mathcal{F}(B)$. Observation: Define $\overline{\mathcal{C}}(X)=X \backslash \mathcal{C}(X)$.
Now choice function \mathcal{C} is substitutable iff $\overline{\mathcal{C}}$ is monotone. Knaster-Tarski fixed point thm: If $\mathcal{F}: 2^{E} \rightarrow 2^{E}$ is monotone then there exists a fixed point: $\mathcal{F}(X)=X$ (for some $X \subseteq E$). Moreover, fixed points form a lattice: if $\mathcal{F}(X)=X$ and $\mathcal{F}(Y)=Y$ then $X \cap Y$ contains a unique inclusionwise maximal fixed point and $X \cup Y$ is contained in a unique inclwise minimal fixed point. Canor-Bernstein thm: If $|A| \leq|B|$ and $|B| \leq|A|$ then $|A|=|B|$. Algorithm for the finite case $\mathrm{By} \emptyset \subseteq \mathcal{F}(\emptyset)$ and monotonicity, $\mathcal{F}(\emptyset) \subseteq \mathcal{F}(\mathcal{F}(\emptyset))$. Hence $\mathcal{F}(\emptyset) \subseteq \mathcal{F}(\mathcal{F}(\emptyset)) \subseteq \mathcal{F}(\mathcal{F}(\mathcal{F}(\emptyset))) \subseteq \ldots$ So $\mathcal{F}^{(i)}(\emptyset)=\mathcal{F}^{(i+1)}(\emptyset)=\mathcal{F}\left(\mathcal{F}^{(i)}(\emptyset)\right)$ hold for some i, and $X=\mathcal{F}^{(i)}(\emptyset)$ is a fixed point.

Tarski's fixed point theorem

Def: A set function \mathcal{F} is monotone if $A \subseteq B \Rightarrow \mathcal{F}(A) \subseteq \mathcal{F}(B)$. Observation: Define $\overline{\mathcal{C}}(X)=X \backslash \mathcal{C}(X)$.
Now choice function \mathcal{C} is substitutable iff $\overline{\mathcal{C}}$ is monotone. Knaster-Tarski fixed point thm: If $\mathcal{F}: 2^{E} \rightarrow 2^{E}$ is monotone then there exists a fixed point: $\mathcal{F}(X)=X$ (for some $X \subseteq E$). Moreover, fixed points form a lattice: if $\mathcal{F}(X)=X$ and $\mathcal{F}(Y)=Y$ then $X \cap Y$ contains a unique inclusionwise maximal fixed point and $X \cup Y$ is contained in a unique inclwise minimal fixed point. Canor-Bernstein thm: If $|A| \leq|B|$ and $|B| \leq|A|$ then $|A|=|B|$. Algorithm for the finite case $B y \emptyset \mathcal{F}(\emptyset)$ and monotonicity, $\mathcal{F}(\emptyset) \subseteq \mathcal{F}(\mathcal{F}(\emptyset))$. Hence $\mathcal{F}(\emptyset) \subseteq \mathcal{F}(\mathcal{F}(\emptyset)) \subseteq \mathcal{F}(\mathcal{F}(\mathcal{F}(\emptyset))) \subseteq \ldots$ So $\mathcal{F}^{(i)}(\emptyset)=\mathcal{F}^{(i+1)}(\emptyset)=\mathcal{F}\left(\mathcal{F}^{(i)}(\emptyset)\right)$ hold for some i, and $X=\mathcal{F}^{(i)}(\emptyset)$ is a fixed point.
(Also, decreasing chain $\mathcal{F}(E) \supseteq \mathcal{F}(\mathcal{F}(E)) \supseteq \mathcal{F}(\mathcal{F}(\mathcal{F}(E))) \supseteq \ldots$ ends in a fixed point. $)$

Tarski's fixed point theorem

Def: A set function \mathcal{F} is monotone if $A \subseteq B \Rightarrow \mathcal{F}(A) \subseteq \mathcal{F}(B)$. Observation: Define $\overline{\mathcal{C}}(X)=X \backslash \mathcal{C}(X)$.
Now choice function \mathcal{C} is substitutable iff $\overline{\mathcal{C}}$ is monotone. Knaster-Tarski fixed point thm: If $\mathcal{F}: 2^{E} \rightarrow 2^{E}$ is monotone then there exists a fixed point: $\mathcal{F}(X)=X$ (for some $X \subseteq E$). Moreover, fixed points form a lattice: if $\mathcal{F}(X)=X$ and $\mathcal{F}(Y)=Y$ then $X \cap Y$ contains a unique inclusionwise maximal fixed point and $X \cup Y$ is contained in a unique inclwise minimal fixed point. Canor-Bernstein thm: If $|A| \leq|B|$ and $|B| \leq|A|$ then $|A|=|B|$. Algorithm for the finite case $\mathrm{By} \emptyset \subseteq \mathcal{F}(\emptyset)$ and monotonicity, $\mathcal{F}(\emptyset) \subseteq \mathcal{F}(\mathcal{F}(\emptyset))$. Hence $\mathcal{F}(\emptyset) \subseteq \mathcal{F}(\mathcal{F}(\emptyset)) \subseteq \mathcal{F}(\mathcal{F}(\mathcal{F}(\emptyset))) \subseteq \ldots$ So $\mathcal{F}^{(i)}(\emptyset)=\mathcal{F}^{(i+1)}(\emptyset)=\mathcal{F}\left(\mathcal{F}^{(i)}(\emptyset)\right)$ hold for some i, and $X=\mathcal{F}^{(i)}(\emptyset)$ is a fixed point. (Also, decreasing chain $\mathcal{F}(E) \supseteq \mathcal{F}(\mathcal{F}(E)) \supseteq \mathcal{F}(\mathcal{F}(\mathcal{F}(E))) \supseteq \ldots$ ends in a fixed point.) Observation: The Gale-Shapely algorithm is an iteration of a monotone function. By definition, $\quad E_{i+1}=\mathcal{F}\left(E_{i}\right)$, where $\mathcal{F}(X)=X \backslash\left(\mathcal{C}_{A}(X) \backslash \mathcal{C}_{C}\left(\mathcal{C}_{A}(X)\right)=(\right.$ by PI$)=E \backslash \overline{\mathcal{C}}_{C}\left(E \backslash \overline{\mathcal{C}}_{A}(X)\right)$

Corollaries and applications

Key observation: Stable solutions $=$ fixed points (\ldots)

Corollaries and applications

Key observation: Stable solutions $=$ fixed points (\ldots)
Man- and woman-optimality: The deferred acceptance algorithm finds the solution that (among stable solutions) is best for each man and worse for each woman. (Fixed point at the end of chain $\mathcal{F}(E) \supseteq \mathcal{F}(\mathcal{F}(E)) \supseteq \mathcal{F}(\mathcal{F}(\mathcal{F}(E))) \supseteq \ldots$ is inclusionwise maximal.) Polarization of interests: best for men $=$ worse for women.

Corollaries and applications

Key observation: Stable solutions $=$ fixed points (\ldots)
Man- and woman-optimality: The deferred acceptance algorithm finds the solution that (among stable solutions) is best for each man and worse for each woman. (Fixed point at the end of chain $\mathcal{F}(E) \supseteq \mathcal{F}(\mathcal{F}(E)) \supseteq \mathcal{F}(\mathcal{F}(\mathcal{F}(E))) \supseteq \ldots$ is inclusionwise maximal.) Polarization of interests: best for men $=$ worse for women.
Def: Stable solution S is A-better than S^{\prime} (i.e. $S \preceq_{A} S^{\prime}$) if $\mathcal{C}_{A}\left(S \cup S^{\prime}\right)=S$.
Fact: If \mathcal{C}_{A} is substitutable and PI then \preceq_{A} is a partial order.

Corollaries and applications

Key observation: Stable solutions $=$ fixed points (\ldots)
Man- and woman-optimality: The deferred acceptance algorithm finds the solution that (among stable solutions) is best for each man and worse for each woman. (Fixed point at the end of chain $\mathcal{F}(E) \supseteq \mathcal{F}(\mathcal{F}(E)) \supseteq \mathcal{F}(\mathcal{F}(\mathcal{F}(E))) \supseteq \ldots$ is inclusionwise maximal.)
Polarization of interests: best for men $=$ worse for women.
Def: Stable solution S is A-better than S^{\prime} (i.e. $S \preceq_{A} S^{\prime}$) if $\mathcal{C}_{A}\left(S \cup S^{\prime}\right)=S$.
Fact: If \mathcal{C}_{A} is substitutable and PI then \preceq_{A} is a partial order.
Blair's thm: If both \mathcal{C}_{A} and \mathcal{C}_{C} are path independent and substituable then stable solutions form a lattice for \preceq_{A}.

Corollaries and applications

Key observation: Stable solutions $=$ fixed points (\ldots)
Man- and woman-optimality: The deferred acceptance algorithm finds the solution that (among stable solutions) is best for each man and worse for each woman. (Fixed point at the end of chain $\mathcal{F}(E) \supseteq \mathcal{F}(\mathcal{F}(E)) \supseteq \mathcal{F}(\mathcal{F}(\mathcal{F}(E))) \supseteq \ldots$ is inclusionwise maximal.)
Polarization of interests: best for men $=$ worse for women.
Def: Stable solution S is A-better than S^{\prime} (i.e. $S \preceq_{A} S^{\prime}$) if $\mathcal{C}_{A}\left(S \cup S^{\prime}\right)=S$.
Fact: If \mathcal{C}_{A} is substitutable and PI then \preceq_{A} is a partial order.
Blair's thm: If both \mathcal{C}_{A} and \mathcal{C}_{C} are path independent and substituable then stable solutions form a lattice for \preceq_{A}. That is, if S_{1} and S_{2} are stable solutions then there is a stable solution $S=S_{1} \wedge S_{2}$ such that $S \preceq_{A} S_{1}, S \preceq_{A} S_{2}$ and if $S^{\prime} \preceq_{A} S_{1}$, $S^{\prime} \preceq_{A} S_{2}$ holds for stable solution S^{\prime} then $S^{\prime} \preceq_{A} S$.

Corollaries and applications

Key observation: Stable solutions $=$ fixed points (\ldots)
Man- and woman-optimality: The deferred acceptance algorithm finds the solution that (among stable solutions) is best for each man and worse for each woman. (Fixed point at the end of chain $\mathcal{F}(E) \supseteq \mathcal{F}(\mathcal{F}(E)) \supseteq \mathcal{F}(\mathcal{F}(\mathcal{F}(E))) \supseteq \ldots$ is inclusionwise maximal.)
Polarization of interests: best for men $=$ worse for women.
Def: Stable solution S is A-better than S^{\prime} (i.e. $S \preceq_{A} S^{\prime}$) if $\mathcal{C}_{A}\left(S \cup S^{\prime}\right)=S$.
Fact: If \mathcal{C}_{A} is substitutable and PI then \preceq_{A} is a partial order.
Blair's thm: If both \mathcal{C}_{A} and \mathcal{C}_{C} are path independent and substituable then stable solutions form a lattice for \preceq_{A}. That is, if S_{1} and S_{2} are stable solutions then there is a stable solution $S=S_{1} \wedge S_{2}$ such that $S \preceq_{A} S_{1}, S \preceq_{A} S_{2}$ and if $S^{\prime} \preceq_{A} S_{1}$, $S^{\prime} \preceq_{A} S_{2}$ holds for stable solution S^{\prime} then $S^{\prime} \preceq_{A} S$.
Stronger lattice property: If both \mathcal{C}_{A} and \mathcal{C}_{C} are increasing and substitutable then lattice operations in Blair's thm are

$$
S_{1} \wedge S_{2}=\mathcal{C}_{A}\left(S_{1} \cup S_{2}\right) \text { and } S_{1} \vee S_{2}=\mathcal{C}_{C}\left(S_{1} \cup S_{2}\right)
$$

Example: an "alternative" marriage model

Women estimate the strength and the wealth of each man.

Example: an "alternative" marriage model

Women estimate the strength and the wealth of each man. Men rank the look of women and the food they cook.

Example: an "alternative" marriage model

Women estimate the strength and the wealth of each man.
Men rank the look of women and the food they cook.
Everyone strives to have (at most) two partners:

- women look for a strong and a wealthy husband and
- man dream about a pretty wife and one that cooks best.

Example: an "alternative" marriage model

Women estimate the strength and the wealth of each man. Men rank the look of women and the food they cook.
Everyone strives to have (at most) two partners:

- women look for a strong and a wealthy husband and
- man dream about a pretty wife and one that cooks best.

In a marriage scheme, everyone has at most two partners.

Example: an "alternative" marriage model

Women estimate the strength and the wealth of each man.
Men rank the look of women and the food they cook.
Everyone strives to have (at most) two partners:

- women look for a strong and a wealthy husband and
- man dream about a pretty wife and one that cooks best.

In a marriage scheme, everyone has at most two partners.
Such a scheme is stable if whenever m and w are not married then

Example: an "alternative" marriage model

Women estimate the strength and the wealth of each man.
Men rank the look of women and the food they cook.
Everyone strives to have (at most) two partners:

- women look for a strong and a wealthy husband and
- man dream about a pretty wife and one that cooks best.

In a marriage scheme, everyone has at most two partners.
Such a scheme is stable if whenever m and w are not married then

- m has both a better looking and better cooking wife than w

Example: an "alternative" marriage model

Women estimate the strength and the wealth of each man.
Men rank the look of women and the food they cook.
Everyone strives to have (at most) two partners:

- women look for a strong and a wealthy husband and
- man dream about a pretty wife and one that cooks best.

In a marriage scheme, everyone has at most two partners.
Such a scheme is stable if whenever m and w are not married then

- m has both a better looking and better cooking wife than w
- or w has both a stronger and a wealthier husband than m.

Example: an "alternative" marriage model

Women estimate the strength and the wealth of each man.
Men rank the look of women and the food they cook.
Everyone strives to have (at most) two partners:

- women look for a strong and a wealthy husband and
- man dream about a pretty wife and one that cooks best.

In a marriage scheme, everyone has at most two partners.
Such a scheme is stable if whenever m and w are not married then

- m has both a better looking and better cooking wife than w
- or w has both a stronger and a wealthier husband than m.

Corollary: There exists a stable marriage scheme in this model.

Example: an "alternative" marriage model

Women estimate the strength and the wealth of each man.
Men rank the look of women and the food they cook.
Everyone strives to have (at most) two partners:

- women look for a strong and a wealthy husband and
- man dream about a pretty wife and one that cooks best.

In a marriage scheme, everyone has at most two partners.
Such a scheme is stable if whenever m and w are not married then

- m has both a better looking and better cooking wife than w
- or w has both a stronger and a wealthier husband than m.

Corollary: There exists a stable marriage scheme in this model.
Proof: We need to find substitutable path independent choice functions on contracts.

Example: an "alternative" marriage model

Women estimate the strength and the wealth of each man. Men rank the look of women and the food they cook. Everyone strives to have (at most) two partners:

- women look for a strong and a wealthy husband and
- man dream about a pretty wife and one that cooks best.

In a marriage scheme, everyone has at most two partners.
Such a scheme is stable if whenever m and w are not married then

- m has both a better looking and better cooking wife than w
- or w has both a stronger and a wealthier husband than m.

Corollary: There exists a stable marriage scheme in this model.
Proof: We need to find substitutable path independent choice functions on contracts. Naturally, from any set F of contracts, $\mathcal{C}_{W}(F)$ consists of the strongest and wealthiest partners in F for each woman and $\mathcal{C}_{M}(F)$ contains the best looking and best cooking partners for each man.

Example: an "alternative" marriage model

Women estimate the strength and the wealth of each man. Men rank the look of women and the food they cook. Everyone strives to have (at most) two partners:

- women look for a strong and a wealthy husband and
- man dream about a pretty wife and one that cooks best. In a marriage scheme, everyone has at most two partners.
Such a scheme is stable if whenever m and w are not married then
- m has both a better looking and better cooking wife than w
- or w has both a stronger and a wealthier husband than m.

Corollary: There exists a stable marriage scheme in this model.
Proof: We need to find substitutable path independent choice functions on contracts. Naturally, from any set F of contracts, $\mathcal{C}_{W}(F)$ consists of the strongest and wealthiest partners in F for each woman and $\mathcal{C}_{M}(F)$ contains the best looking and best cooking partners for each man.
Both \mathcal{C}_{W} and \mathcal{C}_{M} are substitutable and PI. So GS works.

A special case

A special case

Rows $=$ men, columns $=$ women,

A special case

Rows=men, columns=women, dots=possible contracts.

A special case

Rows=men, columns=women, dots=possible contracts.
Left=prettier, right=better cooking, up=stronger, down=wealthier

A special case

Rows=men, columns=women, dots=possible contracts.
Left=prettier, right=better cooking, up=stronger, down=wealthier Follow the GS algorithm.

A special case

Rows=men, columns=women, dots=possible contracts.
Left=prettier, right=better cooking, up=stronger, down=wealthier Follow the GS algorithm.

A special case

Rows=men, columns=women, dots=possible contracts.
Left=prettier, right=better cooking, up=stronger, down=wealthier Follow the GS algorithm.

A special case

Rows=men, columns=women, dots=possible contracts.
Left=prettier, right=better cooking, up=stronger, down=wealthier Follow the GS algorithm.

A special case

Rows=men, columns=women, dots=possible contracts.
Left=prettier, right=better cooking, up=stronger, down=wealthier Follow the GS algorithm.

A special case

Rows=men, columns=women, dots=possible contracts.
Left=prettier, right=better cooking, up=stronger, down=wealthier Follow the GS algorithm.

A special case

Rows=men, columns=women, dots=possible contracts.
Left=prettier, right=better cooking, up=stronger, down=wealthier Follow the GS algorithm.

A special case

Rows=men, columns=women, dots=possible contracts.
Left=prettier, right=better cooking, up=stronger, down=wealthier Follow the GS algorithm.

A special case

Rows=men, columns=women, dots=possible contracts.
Left=prettier, right=better cooking, up=stronger, down=wealthier Follow the GS algorithm.

A special case

Rows=men, columns=women, dots=possible contracts.
Left=prettier, right=better cooking, up=stronger, down=wealthier Follow the GS algorithm.

A special case

Rows=men, columns=women, dots=possible contracts.
Left=prettier, right=better cooking, up=stronger, down=wealthier Follow the GS algorithm.

A special case

Rows=men, columns=women, dots=possible contracts.
Left=prettier, right=better cooking, up=stronger, down=wealthier Follow the GS algorithm.

A special case

Rows=men, columns=women, dots=possible contracts.
Left=prettier, right=better cooking, up=stronger, down=wealthier Follow the GS algorithm.

A special case

Rows=men, columns=women, dots=possible contracts.
Left $=$ prettier, right=better cooking, up=stronger, down=wealthier Follow the GS algorithm.
The man-oriented GS algorithm finds the man-optimal stable solution: the "widest" set of gridpoints. The woman-optimal solution would be the "tallest" such set.

Choice functions from partial orders

Def: $\mathcal{C}_{\preceq}(U)$: the set of \preceq-minima of U for partial order \preceq on V.

Choice functions from partial orders

Def: $\mathcal{C}_{\preceq}(U)$: the set of \preceq-minima of U for partial order \preceq on V. Fact: \mathcal{C}_{\preceq} is substitutable and path independent.

Choice functions from partial orders

Def: $\mathcal{C}_{\preceq}(U)$: the set of \preceq-minima of U for partial order \preceq on V. Fact: \mathcal{C}_{\preceq} is substitutable and path independent.
Corollary: If \preceq and \preceq^{\prime} are partial orders on V then there is a subset S of V such that no two elements of S are comparable in \preceq or in \preceq^{\prime} and for any element $x \in V \backslash S$ there is an element s of S such that $s \preceq x$ or $s \preceq^{\prime} \times$ holds.

Choice functions from partial orders

Def: $\mathcal{C}_{\preceq}(U)$: the set of \preceq-minima of U for partial order \preceq on V. Fact: \mathcal{C}_{\preceq} is substitutable and path independent.
Corollary: If \preceq and \preceq^{\prime} are partial orders on V then there is a subset S of V such that no two elements of S are comparable in \preceq or in \preceq^{\prime} and for any element $x \in V \backslash S$ there is an element s of S such that $s \preceq x$ or $s \preceq^{\prime} x$ holds.
Special case: If both G_{1} and G_{2} are acyclic directed graphs on V st for any $u, v \in V$ there exists a directed path connecting them in G_{1} or in G_{2} then

Choice functions from partial orders

Def: $\mathcal{C}_{\preceq}(U)$: the set of \preceq-minima of U for partial order \preceq on V. Fact: \mathcal{C}_{\preceq} is substitutable and path independent.
Corollary: If \preceq and \preceq^{\prime} are partial orders on V then there is a subset S of V such that no two elements of S are comparable in \preceq or in \preceq^{\prime} and for any element $x \in V \backslash S$ there is an element s of S such that $s \preceq x$ or $s \preceq^{\prime} x$ holds.
Special case: If both G_{1} and G_{2} are acyclic directed graphs on V st for any $u, v \in V$ there exists a directed path connecting them in G_{1} or in G_{2} then there is a vertex v such that from any other vertex u, there is a directed $u v$ path of G_{1} or a directed $u v$ path of G_{2}.

Choice functions from partial orders

Def: $\mathcal{C}_{\preceq}(U)$: the set of \preceq-minima of U for partial order \preceq on V. Fact: \mathcal{C}_{\preceq} is substitutable and path independent.
Corollary: If \preceq and \preceq^{\prime} are partial orders on V then there is a subset S of V such that no two elements of S are comparable in \preceq or in \preceq^{\prime} and for any element $x \in V \backslash S$ there is an element s of S such that $s \preceq x$ or $s \preceq^{\prime} x$ holds.
Special case: If both G_{1} and G_{2} are acyclic directed graphs on V st for any $u, v \in V$ there exists a directed path connecting them in G_{1} or in G_{2} then there is a vertex v such that from any other vertex u, there is a directed $u v$ path of G_{1} or a directed $u v$ path of G_{2}.

Corollaries from the lattice property

Stronger lattice property: If both \mathcal{C}_{A} and \mathcal{C}_{C} are increasing and substitutable then lattice operations in Blair's thm are $S_{1} \wedge S_{2}=\mathcal{C}_{A}\left(S_{1} \cup S_{2}\right)$ and $S_{1} \vee S_{2}=\mathcal{C}_{C}\left(S_{1} \cup S_{2}\right)$.

Corollaries from the lattice property

Stronger lattice property: If both \mathcal{C}_{A} and \mathcal{C}_{C} are increasing and substitutable then lattice operations in Blair's thm are $S_{1} \wedge S_{2}=\mathcal{C}_{A}\left(S_{1} \cup S_{2}\right)$ and $S_{1} \vee S_{2}=\mathcal{C}_{C}\left(S_{1} \cup S_{2}\right)$.
Corollary (Comparability theorem of Roth and Sotomayor):
In the college admission problem, for any two stable assignments
S_{1} and S_{2} and college $c, \mathcal{C}_{c}\left(S_{1} \cup S_{2}\right) \in\left\{S_{1}, S_{2}\right\}$.

Corollaries from the lattice property

Stronger lattice property: If both \mathcal{C}_{A} and \mathcal{C}_{C} are increasing and substitutable then lattice operations in Blair's thm are $S_{1} \wedge S_{2}=\mathcal{C}_{A}\left(S_{1} \cup S_{2}\right)$ and $S_{1} \vee S_{2}=\mathcal{C}_{C}\left(S_{1} \cup S_{2}\right)$.
Corollary (Comparability theorem of Roth and Sotomayor):
In the college admission problem, for any two stable assignments
S_{1} and S_{2} and college $c, \mathcal{C}_{c}\left(S_{1} \cup S_{2}\right) \in\left\{S_{1}, S_{2}\right\}$. Hence, any college has a linear preference order on any set S_{1}, \ldots, S_{k} of stable assignments.

Corollaries from the lattice property

Stronger lattice property: If both \mathcal{C}_{A} and \mathcal{C}_{C} are increasing and substitutable then lattice operations in Blair's thm are $S_{1} \wedge S_{2}=\mathcal{C}_{A}\left(S_{1} \cup S_{2}\right)$ and $S_{1} \vee S_{2}=\mathcal{C}_{C}\left(S_{1} \cup S_{2}\right)$.
Corollary (Comparability theorem of Roth and Sotomayor):
In the college admission problem, for any two stable assignments
S_{1} and S_{2} and college $c, \mathcal{C}_{c}\left(S_{1} \cup S_{2}\right) \in\left\{S_{1}, S_{2}\right\}$. Hence, any college has a linear preference order on any set S_{1}, \ldots, S_{k} of stable assignments.
Corollary (Teo and Sethuraman): Let S_{1}, \ldots, S_{k} be stable assignments. If each college chooses its m th choice then a stable assignment is created where each applicants gets her $(k-m+1)$ st place.

Corollaries from the lattice property

Stronger lattice property: If both \mathcal{C}_{A} and \mathcal{C}_{C} are increasing and substitutable then lattice operations in Blair's thm are
$S_{1} \wedge S_{2}=\mathcal{C}_{A}\left(S_{1} \cup S_{2}\right)$ and $S_{1} \vee S_{2}=\mathcal{C}_{C}\left(S_{1} \cup S_{2}\right)$.
Corollary (Comparability theorem of Roth and Sotomayor):
In the college admission problem, for any two stable assignments
S_{1} and S_{2} and college $c, \mathcal{C}_{c}\left(S_{1} \cup S_{2}\right) \in\left\{S_{1}, S_{2}\right\}$. Hence, any college has a linear preference order on any set S_{1}, \ldots, S_{k} of stable assignments.
Corollary (Teo and Sethuraman): Let S_{1}, \ldots, S_{k} be stable assignments. If each college chooses its m th choice then a stable assignment is created where each applicants gets her $(k-m+1)$ st place.
Proof: Let S_{c}^{i} be the i th choice of college c out of S_{1}, \ldots, S_{k}. By the lattice property, $S:=\quad \bigwedge_{i=1}^{m} S_{c}^{i}$ is a stable assignment

Corollaries from the lattice property

Stronger lattice property: If both \mathcal{C}_{A} and \mathcal{C}_{C} are increasing and substitutable then lattice operations in Blair's thm are
$S_{1} \wedge S_{2}=\mathcal{C}_{A}\left(S_{1} \cup S_{2}\right)$ and $S_{1} \vee S_{2}=\mathcal{C}_{C}\left(S_{1} \cup S_{2}\right)$.
Corollary (Comparability theorem of Roth and Sotomayor):
In the college admission problem, for any two stable assignments
S_{1} and S_{2} and college $c, \mathcal{C}_{c}\left(S_{1} \cup S_{2}\right) \in\left\{S_{1}, S_{2}\right\}$. Hence, any college has a linear preference order on any set S_{1}, \ldots, S_{k} of stable assignments.
Corollary (Teo and Sethuraman): Let S_{1}, \ldots, S_{k} be stable assignments. If each college chooses its m th choice then a stable assignment is created where each applicants gets her $(k-m+1)$ st place.
Proof: Let S_{c}^{i} be the i th choice of college c out of S_{1}, \ldots, S_{k}. By the lattice property, $S:=\bigvee_{c \in C} \bigwedge_{i=1}^{m} S_{c}^{i}$ is a stable assignment

Corollaries from the lattice property

Stronger lattice property: If both \mathcal{C}_{A} and \mathcal{C}_{C} are increasing and substitutable then lattice operations in Blair's thm are
$S_{1} \wedge S_{2}=\mathcal{C}_{A}\left(S_{1} \cup S_{2}\right)$ and $S_{1} \vee S_{2}=\mathcal{C}_{C}\left(S_{1} \cup S_{2}\right)$.
Corollary (Comparability theorem of Roth and Sotomayor):
In the college admission problem, for any two stable assignments
S_{1} and S_{2} and college $c, \mathcal{C}_{c}\left(S_{1} \cup S_{2}\right) \in\left\{S_{1}, S_{2}\right\}$. Hence, any college has a linear preference order on any set S_{1}, \ldots, S_{k} of stable assignments.
Corollary (Teo and Sethuraman): Let S_{1}, \ldots, S_{k} be stable assignments. If each college chooses its m th choice then a stable assignment is created where each applicants gets her $(k-m+1)$ st place.
Proof: Let S_{c}^{i} be the i th choice of college c out of S_{1}, \ldots, S_{k}. By the lattice property, $S:=\bigvee_{c \in C} \bigwedge_{i=1}^{m} S_{c}^{i}$ is a stable assignment, moreover each college receives its m th choice and consequently, each applicant gets her $(k-m+1)$ st place.

Stable assignments on many-to-one markets

Gale-Shapley: in the college admissions model (strict preferences and college-quotas) there always exists a stable assignment.
(DA, college and student-optimality and lattice property.) Hamada-Miyazaki-Iwama: if colleges have lower quotas as well then the number of blocking edges is inapproximable. Biró-F-Irving-Manlove: many-to-one market, colleges have lower quotas but a college can be closed if it cannot reach that (so blocking is by a pair or by a coalition) then deciding existence of stable assignment is NP-complete.

Stable assignments on many-to-one markets

Gale-Shapley: in the college admissions model (strict preferences and college-quotas) there always exists a stable assignment.
(DA, college and student-optimality and lattice property.)
Hamada-Miyazaki-Iwama: if colleges have lower quotas as well then the number of blocking edges is inapproximable.
Biró-F-Irving-Manlove: many-to-one market, colleges have lower quotas but a college can be closed if it cannot reach that (so blocking is by a pair or by a coalition) then deciding existence of stable assignment is NP-complete.
NP-completeness: an efficient algorithm for the problem would imply an efficient algorithm for many truly difficult problems.

Stable assignments on many-to-one markets

Hamada-Miyazaki-Iwama: if colleges have lower quotas as well then the number of blocking edges is inapproximable. Biró-F-Irving-Manlove: many-to-one market, colleges have lower quotas but a college can be closed if it cannot reach that (so blocking is by a pair or by a coalition) then deciding existence of stable assignment is NP-complete.

Stable assignments on many-to-one markets

Hamada-Miyazaki-Iwama: if colleges have lower quotas as well then the number of blocking edges is inapproximable. Biró-F-Irving-Manlove: many-to-one market, colleges have lower quotas but a college can be closed if it cannot reach that (so blocking is by a pair or by a coalition) then deciding existence of stable assignment is NP-complete.
Further, if no lower quotas, but common quotas for sets of colleges, then again, the problem is NP-complete.

Stable assignments on many-to-one markets

Hamada-Miyazaki-Iwama: if colleges have lower quotas as well then the number of blocking edges is inapproximable. Biró-F-Irving-Manlove: many-to-one market, colleges have lower quotas but a college can be closed if it cannot reach that (so blocking is by a pair or by a coalition) then deciding existence of stable assignment is NP-complete.
Lesson learnt:

Stable assignments on many-to-one markets

Hamada-Miyazaki-Iwama: if colleges have lower quotas as well then the number of blocking edges is inapproximable. Biró-F-Irving-Manlove: many-to-one market, colleges have lower quotas but a college can be closed if it cannot reach that (so blocking is by a pair or by a coalition) then deciding existence of stable assignment is NP-complete.

Stable assignments on many-to-one markets

Hamada-Miyazaki-Iwama: if colleges have lower quotas as well then the number of blocking edges is inapproximable. Biró-F-Irving-Manlove: many-to-one market, colleges have lower quotas but a college can be closed if it cannot reach that (so blocking is by a pair or by a coalition) then deciding existence of stable assignment is NP-complete.
Lesson learnt: lower quotas are difficult.
Surprise: Huang's "Classified stable matching" model. There are quota sets with an upper and a lower quota on each.

Stable assignments on many-to-one markets

Hamada-Miyazaki-Iwama: if colleges have lower quotas as well then the number of blocking edges is inapproximable. Biró-F-Irving-Manlove: many-to-one market, colleges have lower quotas but a college can be closed if it cannot reach that (so blocking is by a pair or by a coalition) then deciding existence of stable assignment is NP-complete.
Lesson learnt: lower quotas are difficult.
Surprise: Huang's "Classified stable matching" model. There are quota sets with an upper and a lower quota on each.
Result: if quota sets are nested then the problem is tractable.

Stable assignments on many-to-one markets

Hamada-Miyazaki-Iwama: if colleges have lower quotas as well then the number of blocking edges is inapproximable. Biró-F-Irving-Manlove: many-to-one market, colleges have lower quotas but a college can be closed if it cannot reach that (so blocking is by a pair or by a coalition) then deciding existence of stable assignment is NP-complete.
Lesson learnt: lower quotas are difficult.
Surprise: Huang's "Classified stable matching" model. There are quota sets with an upper and a lower quota on each.
Result: if quota sets are nested then the problem is tractable.

Stable assignments on many-to-one markets

Hamada-Miyazaki-Iwama: if colleges have lower quotas as well then the number of blocking edges is inapproximable.
Biró-F-Irving-Manlove: many-to-one market, colleges have lower quotas but a college can be closed if it cannot reach that (so blocking is by a pair or by a coalition) then deciding existence of stable assignment is NP-complete.
Lesson learnt: lower quotas are difficult.
Surprise: Huang's "Classified stable matching" model. There are quota sets with an upper and a lower quota on each.
Result: if quota sets are nested then the problem is tractable.

Explanation: An applicant might be refused if her admission would imply the violation of some (seemingly independent) lower quota.

Stable assignments on many-to-one markets

Hamada-Miyazaki-Iwama: if colleges have lower quotas as well then the number of blocking edges is inapproximable.
Biró-F-Irving-Manlove: many-to-one market, colleges have lower quotas but a college can be closed if it cannot reach that (so blocking is by a pair or by a coalition) then deciding existence of stable assignment is NP-complete.
Lesson learnt: lower quotas are difficult.
Surprise: Huang's "Classified stable matching" model. There are quota sets with an upper and a lower quota on each.
Result: if quota sets are nested then the problem is tractable.

Explanation: An applicant might be refused if her admission would imply the violation of some (seemingly independent) lower quota. Next goal: generalization of Huang's framework.

Stable assignments on many-to-one markets

Hamada-Miyazaki-Iwama: if colleges have lower quotas as well then the number of blocking edges is inapproximable.
Biró-F-Irving-Manlove: many-to-one market, colleges have lower quotas but a college can be closed if it cannot reach that (so blocking is by a pair or by a coalition) then deciding existence of stable assignment is NP-complete.
Lesson learnt: lower quotas are difficult.
Surprise: Huang's "Classified stable matching" model. There are quota sets with an upper and a lower quota on each.
Result: if quota sets are nested then the problem is tractable.
???

Explanation: An applicant might be refused if her admission would imply the violation of some (seemingly independent) lower quota. Next goal: generalization of Huang's framework. Main tool: matroid-based choice functions.

A crash course on matroids

Matroid: $\mathcal{M}=(E, \mathcal{I})$ st (1) $\emptyset \in \mathcal{I}$, (2) $A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$, (3) $A, B \in \mathcal{I},|A|<|B| \Rightarrow \exists b \in B \backslash A: A \cup\{b\} \in \mathcal{I}$.

Examples: (1) Linear matroid (vectors with linear independence)
(2) Graphic matroid (edges of a graph with no cycles)
(3) Trivial matroid $\left(\mathcal{I}=2^{E}\right)$
(4) Uniform matroid truncation of a trivial matroid
(5) Partition matroid $\left(E=E_{1} \cup E_{2} \cup \ldots \cup E_{k}\right.$ is a partition. $I \in \mathcal{I}$ iff $\left.\left|I \cap E_{i}\right| \leq 1\right)$.
(6) Direct sum of uniform matroids $\left(E=E_{1} \cup E_{2} \cup \ldots \cup E_{k}\right.$ is a partition, $b_{1}, b_{2}, \ldots, b_{k}$ given. $I \in \mathcal{I}$ iff $\left.\left|I \cap E_{i}\right| \leq b_{i} \forall i\right)$.
Basis: maximal independent set of E (same cardinality)
Rank fn: $r k(A)=\max \left\{\left|A^{\prime}\right|: A^{\prime} \subseteq A\right.$ independent $\}$.
Span: $\operatorname{sp}(A):=\{e \in E: r k(A \cup\{e\})=r k(A)$.
Greedy prop: maxweight indep set can be constructed greedily deciding on the elements one by one in the order of decr weights. Fact: The matroid greedy alg is a substitutable increasing ch fn .

Matroids and stable assignments

Fact: The matroid greedy alg is a substitutable increasing ch fn .

Matroids and stable assignments

Fact: The matroid greedy alg is a substitutable increasing ch fn . Cor: If both \mathcal{C}_{C} and \mathcal{C}_{A} are greedy choice fn's then stable assignments always exist, can be found by a natural generalization of the Gale-Shapley algorithm, and lattice operations are natural.

Matroids and stable assignments

Fact: The matroid greedy alg is a substitutable increasing ch fn . Cor: If both \mathcal{C}_{C} and \mathcal{C}_{A} are greedy choice fn's then stable assignments always exist, can be found by a natural generalization of the Gale-Shapley algorithm, and lattice operations are natural. Examples: (1) Stable marriages $\mathcal{C}_{M}, \mathcal{C}_{W}$ from partition matroids.

Matroids and stable assignments

Fact: The matroid greedy alg is a substitutable increasing ch fn . Cor: If both \mathcal{C}_{C} and \mathcal{C}_{A} are greedy choice fn's then stable assignments always exist, can be found by a natural generalization of the Gale-Shapley algorithm, and lattice operations are natural. Examples: (1) Stable marriages $\mathcal{C}_{M}, \mathcal{C}_{W}$ from partition matroids.
(2) College admissions
\mathcal{C}_{A} : partition matroid, \mathcal{C}_{C} : direct sum of uniform matroids.

Matroids and stable assignments

Fact: The matroid greedy alg is a substitutable increasing ch fn . Cor: If both \mathcal{C}_{C} and \mathcal{C}_{A} are greedy choice fn's then stable assignments always exist, can be found by a natural generalization of the Gale-Shapley algorithm, and lattice operations are natural. Examples: (1) Stable marriages $\mathcal{C}_{M}, \mathcal{C}_{W}$ from partition matroids.
(2) College admissions
\mathcal{C}_{A} : partition matroid, \mathcal{C}_{C} : direct sum of uniform matroids.
(3) Many-to-many markets with quotas
$\mathcal{C}_{1}, \mathcal{C}_{2}$: direct sum of uniform matroids.

Matroids and stable assignments

Fact: The matroid greedy alg is a substitutable increasing ch fn . Cor: If both \mathcal{C}_{C} and \mathcal{C}_{A} are greedy choice fn's then stable assignments always exist, can be found by a natural generalization of the Gale-Shapley algorithm, and lattice operations are natural. Examples: (1) Stable marriages $\mathcal{C}_{M}, \mathcal{C}_{W}$ from partition matroids.
(2) College admissions
\mathcal{C}_{A} : partition matroid, \mathcal{C}_{C} : direct sum of uniform matroids.
(3) Many-to-many markets with quotas
$\mathcal{C}_{1}, \mathcal{C}_{2}$: direct sum of uniform matroids.
(4) College admissions with nested quota sets
\mathcal{C}_{A} : partition matroid,
\mathcal{C}_{C} : repeated direct sum and truncation of trivial matroids.

Matroids and stable assignments

Fact: The matroid greedy alg is a substitutable increasing ch fn .
Cor: If both \mathcal{C}_{C} and \mathcal{C}_{A} are greedy choice fn's then stable assignments always exist, can be found by a natural generalization of the Gale-Shapley algorithm, and lattice operations are natural. Examples: (1) Stable marriages $\mathcal{C}_{M}, \mathcal{C}_{W}$ from partition matroids.
(2) College admissions
\mathcal{C}_{A} : partition matroid, \mathcal{C}_{C} : direct sum of uniform matroids.
(3) Many-to-many markets with quotas
$\mathcal{C}_{1}, \mathcal{C}_{2}$: direct sum of uniform matroids.
(4) College admissions with nested quota sets
\mathcal{C}_{A} : partition matroid,
\mathcal{C}_{C} : repeated direct sum and truncation of trivial matroids.
(Indep sets in the k-truncation are indep sets of size $\leq k$.
Direct sum: matroids on disjoint ground sets put together.)

Matroids and stable assignments

Fact: The matroid greedy alg is a substitutable increasing ch fn . Cor: If both \mathcal{C}_{C} and \mathcal{C}_{A} are greedy choice fn's then stable assignments always exist, can be found by a natural generalization of the Gale-Shapley algorithm, and lattice operations are natural. Examples: (1) Stable marriages $\mathcal{C}_{M}, \mathcal{C}_{W}$ from partition matroids.
(2) College admissions
\mathcal{C}_{A} : partition matroid, \mathcal{C}_{C} : direct sum of uniform matroids.
(3) Many-to-many markets with quotas
$\mathcal{C}_{1}, \mathcal{C}_{2}$: direct sum of uniform matroids.
(4) College admissions with nested quota sets
\mathcal{C}_{A} : partition matroid,
\mathcal{C}_{C} : repeated direct sum and truncation of trivial matroids.
(Indep sets in the k-truncation are indep sets of size $\leq k$.
Direct sum: matroids on disjoint ground sets put together.)
"Rural hospitals" Thm: If both \mathcal{C}_{C} and \mathcal{C}_{A} are greedy choice fn's then stable assignments have the same span.

The classified stable matching problem

Problem input: Two-sided market between C and A with set E of possible contracts, nested systems $\mathcal{Q}_{C}, \mathcal{Q}_{A} \subseteq 2^{E}$ of common quota sets, I, $u: \mathcal{Q}_{A} \cup \mathcal{Q}_{A} \rightarrow \mathbb{N}_{+}$lower and upper quotas and preferences \prec_{C} and \prec_{A} st any common quota set is linearly ordered.

The classified stable matching problem

Problem input: Two-sided market between C and A with set E of possible contracts, nested systems $\mathcal{Q}_{C}, \mathcal{Q}_{A} \subseteq 2^{E}$ of common quota sets, I, u: $\mathcal{Q}_{A} \cup \mathcal{Q}_{A} \rightarrow \mathbb{N}_{+}$lower and upper quotas and preferences \prec_{C} and \prec_{A} st any common quota set is linearly ordered.
Assignment: Subset F of contracts st all common quotas are observed: $\quad I(Q) \leq|F \cap Q| \leq u(Q) \quad \forall Q \in \mathcal{Q}_{C} \cup \mathcal{Q}_{A}$.

The classified stable matching problem

Problem input: Two-sided market between C and A with set E of possible contracts, nested systems $\mathcal{Q}_{C}, \mathcal{Q}_{A} \subseteq 2^{E}$ of common quota sets, $I, u: \mathcal{Q}_{A} \cup \mathcal{Q}_{A} \rightarrow \mathbb{N}_{+}$lower and upper quotas and preferences \prec_{C} and \prec_{A} st any common quota set is linearly ordered.
Assignment: Subset F of contracts st all common quotas are observed: $\quad I(Q) \leq|F \cap Q| \leq u(Q) \quad \forall Q \in \mathcal{Q}_{C} \cup \mathcal{Q}_{A}$. Assignment F is blocked by contract $F \not \supset e=c a$ is if

- $F \cup\{e\}$ observes all quotas of \mathcal{Q}_{C} or there is a contract $e \prec c f \in F$ st $F \cup\{e\} \backslash\{f\}$ obeys all quotas of \mathcal{Q}_{C} and
- the "same" holds for \mathcal{Q}_{A} and \prec_{A}.

Stable assignment: unblocked assignment.

The classified stable matching problem

Problem input: Two-sided market between C and A with set E of possible contracts, nested systems $\mathcal{Q}_{C}, \mathcal{Q}_{A} \subseteq 2^{E}$ of common quota sets, I, u: $\mathcal{Q}_{A} \cup \mathcal{Q}_{A} \rightarrow \mathbb{N}_{+}$lower and upper quotas and preferences \prec_{C} and \prec_{A} st any common quota set is linearly ordered.
Assignment: Subset F of contracts st all common quotas are observed: $\quad I(Q) \leq|F \cap Q| \leq u(Q) \quad \forall Q \in \mathcal{Q}_{C} \cup \mathcal{Q}_{A}$. Assignment F is blocked by contract $F \not \supset e=c a$ is if

- $F \cup\{e\}$ observes all quotas of \mathcal{Q}_{C} or there is a contract $e \prec c f \in F$ st $F \cup\{e\} \backslash\{f\}$ obeys all quotas of \mathcal{Q}_{C} and
- the "same" holds for \mathcal{Q}_{A} and \prec_{A}.

Stable assignment: unblocked assignment.
Solution: Application of the choice function framework.
Key question: how do colleges decide on accepted contracts if contracts are coming in the order of preference.

Colleges' choice function

Colleges' choice function

Obs: Dashed quota sets are "implicitely" saturated, no new contract is possible.

Colleges' choice function

Obs: Dashed quota sets are "implicitely" saturated, no new contract is possible.
Recursive definition: For $F \subseteq E$, if Q is an inclwise min member of \mathcal{Q}_{C} then

$$
d(Q, F):=\max \{|F \cap Q|, I(Q)\} .
$$

If $Q \in \mathcal{Q}_{C}$ has maximal children $Q_{1}, \ldots Q_{k}$ then

$$
d(Q, F):=\max \left\{d\left(Q_{1}, F\right)+\ldots d\left(Q_{k}, F\right), l(Q)\right\}
$$

Colleges' choice function

Obs: Dashed quota sets are "implicitely" saturated, no new contract is possible.
Recursive definition: For $F \subseteq E$, if Q is an inclwise min member of \mathcal{Q}_{C} then
$d(Q, F):=\max \{|F \cap Q|, I(Q)\}$.
If $Q \in \mathcal{Q}_{C}$ has maximal children $Q_{1}, \ldots Q_{k}$ then

$$
d(Q, F):=\max \left\{d\left(Q_{1}, F\right)+\ldots d\left(Q_{k}, F\right), l(Q)\right\}
$$

Key thm: Family $\mathcal{I}_{C}:=\left\{F \subseteq E: d(Q, F) \leq u(Q) \quad \forall Q \in \mathcal{Q}_{C}\right\}$ forms the independent sets of a matroid.

Colleges' choice function

Obs: Dashed quota sets are "implicitely" saturated, no new contract is possible.
Recursive definition: For $F \subseteq E$, if Q is an inclwise min member of \mathcal{Q}_{C} then $d(Q, F):=\max \{|F \cap Q|, I(Q)\}$.
If $Q \in \mathcal{Q}_{C}$ has maximal children $Q_{1}, \ldots Q_{k}$ then

$$
d(Q, F):=\max \left\{d\left(Q_{1}, F\right)+\ldots d\left(Q_{k}, F\right), l(Q)\right\}
$$

Key thm: Family $\mathcal{I}_{C}:=\left\{F \subseteq E: d(Q, F) \leq u(Q) \quad \forall Q \in \mathcal{Q}_{C}\right\}$ forms the independent sets of a matroid.
Cor: Stable assignment for ch fns \mathcal{C}_{C} and \mathcal{C}_{A} always exists.

Colleges' choice function

100 upper quota
current situation
lower quota

Obs: Dashed quota sets are "implicitely" saturated, no new contract is possible.
Recursive definition: For $F \subseteq E$, if Q is an inclwise min member of \mathcal{Q}_{C} then $d(Q, F):=\max \{|F \cap Q|, I(Q)\}$. If $Q \in \mathcal{Q}_{C}$ has maximal children $Q_{1}, \ldots Q_{k}$ then

$$
d(Q, F):=\max \left\{d\left(Q_{1}, F\right)+\ldots d\left(Q_{k}, F\right), /(Q)\right\}
$$

Key thm: Family $\mathcal{I}_{C}:=\left\{F \subseteq E: d(Q, F) \leq u(Q) \quad \forall Q \in \mathcal{Q}_{C}\right\}$ forms the independent sets of a matroid.
Cor: Stable assignment for ch fns \mathcal{C}_{C} and \mathcal{C}_{A} always exists.
Trick: As span is always the same, either all $\mathcal{C}_{C} \mathcal{C}_{A}$-stable solutions obey the lower quotas or none of them does. So if Gale-Shapley solution violates a lower quota then no stable assignment exists whatsoever. Otherwise GS outputs a solution.

Conclusion

- Introduction of choice functions on 2-sided markets provides a flexible model.

Conclusion

- Introduction of choice functions on 2-sided markets provides a flexible model.
- Tarski's fixed point theorem helps us to prove generalizations: existence of a stable solution, optimality, lattice-results, etc.

Conclusion

- Introduction of choice functions on 2-sided markets provides a flexible model.
- Tarski's fixed point theorem helps us to prove generalizations: existence of a stable solution, optimality, lattice-results, etc.
- A known but fairly abstract matroid-framework allowed us a fast proof of interesting results on a natural college admission model. This seems to be hopeless by a "direct" approach.

Conclusion

- Introduction of choice functions on 2-sided markets provides a flexible model.
- Tarski's fixed point theorem helps us to prove generalizations: existence of a stable solution, optimality, lattice-results, etc.
- A known but fairly abstract matroid-framework allowed us a fast proof of interesting results on a natural college admission model. This seems to be hopeless by a "direct" approach.
- Lesson for Economists:
a fairly abstract approach can be useful in practical models.

Conclusion

- Introduction of choice functions on 2-sided markets provides a flexible model.
- Tarski's fixed point theorem helps us to prove generalizations: existence of a stable solution, optimality, lattice-results, etc.
- A known but fairly abstract matroid-framework allowed us a fast proof of interesting results on a natural college admission model. This seems to be hopeless by a "direct" approach.
- Lesson for Economists:
a fairly abstract approach can be useful in practical models.
- Lesson for Mathematicians:
a practical model might motivate a class of interesting matroids

Thank you for the attention!

