
Generalized stable roommates problems

Tamás Fleiner1

Summer School on
Matching Problems, Markets, and Mechanisms

25 June 2013, Budapest

1Budapest University of Technology and Economics

The stable roommates problem

1

1 1

1

1

1

1

1

1

1

1

1

1
2 2 2

2

2

2

2
2

2

3

2 2

3 3

3

3 34

4 4 4
5

4

1
3

1
2 3

3
22

One sided market situation: any two agents can form a partnership.
It might happen that no stable matching exists.
Irving gave an algoritm that finds a stable matching if exists.

This algorithm uses similar proposal and rejection steps,

and certain new kinds of steps.
We shall extend Irving’s algorithm to more general situations.

The stable roommates problem

1

1 1

1

1

1

1

1

1

1

1

1

1
2 2 2

2

2

2

2
2

2

3

2 2

3 3

3

3 34

4 4 4
5

4

1
3

1
2 3

3
22

One sided market situation: any two agents can form a partnership.
It might happen that no stable matching exists.
Irving gave an algoritm that finds a stable matching if exists.
This algorithm uses similar proposal

and rejection steps,

and certain new kinds of steps.
We shall extend Irving’s algorithm to more general situations.

The stable roommates problem

1

1 1

1

1

1

1

1

1

1

1

1

1
2 2 2

2

2

2

2
2

2

3

2 2

3 3

3

3 34

4 4 4
5

4

1
3

1
2 3

3
22

One sided market situation: any two agents can form a partnership.
It might happen that no stable matching exists.
Irving gave an algoritm that finds a stable matching if exists.
This algorithm uses similar proposal and rejection steps,

and certain new kinds of steps.
We shall extend Irving’s algorithm to more general situations.

The stable roommates problem

1

1 1

1

1

1

1

1

1

1

1

1

1
2 2 2

2

2

2

2
2

2

3

2 2

3 3

3

3 34

4 4 4
5

4

1
3

1
2 3

3
22

One sided market situation: any two agents can form a partnership.
It might happen that no stable matching exists.
Irving gave an algoritm that finds a stable matching if exists.
This algorithm uses similar proposal and rejection steps,

and certain new kinds of steps.
We shall extend Irving’s algorithm to more general situations.

The stable roommates problem

1

1 1

1

1

1

1

1

1

1

1

1

1
2 2 2

2

2

2

2
2

2

3

2 2

3 3

3

3 34

4 4 4
5

4

1
3

1
2 3

3
22

One sided market situation: any two agents can form a partnership.
It might happen that no stable matching exists.
Irving gave an algoritm that finds a stable matching if exists.
This algorithm uses similar proposal and rejection steps,
and certain new kinds of steps.

We shall extend Irving’s algorithm to more general situations.

The stable roommates problem

1

1 1

1

1

1

1

1

1

1

1

1

1
2 2 2

2

2

2

2
2

2

3

2 2

3 3

3

3 34

4 4 4
5

4

1
3

1
2 3

3
22

One sided market situation: any two agents can form a partnership.
It might happen that no stable matching exists.
Irving gave an algoritm that finds a stable matching if exists.
This algorithm uses similar proposal and rejection steps,
and certain new kinds of steps.
We shall extend Irving’s algorithm to more general situations.

Finding a stable b-matching

Def: Graph G = (V ,E) and quota function b : V → N is given. A
b-matching is a subset M of e st each vertex v is incident to at
most b(v) edges of M. If we also have linear preferences for the
vertices then b-matching S is stable if it dominates all other
edges: if e = uv ∈ E \ S then either u is incident to b(u) edges of
S that are all preferred to e or similar holds for v .

Natural question: Is it possible to reduce the problem of finding a
stable b-matching to the problem of finding a stable matching?
Idea: Node spitting.
Problem: The same edge may appear more times in a matching.
New idea: This cannot happen if b has the mto (many-to-one)
property: for any edge e = uv of G we have b(u) = 1 or b(v) = 1.
Solution: A simple construction achieves the mto property.

Finding a stable b-matching

Def: Graph G = (V ,E) and quota function b : V → N is given. A
b-matching is a subset M of e st each vertex v is incident to at
most b(v) edges of M. If we also have linear preferences for the
vertices then b-matching S is stable if it dominates all other
edges: if e = uv ∈ E \ S then either u is incident to b(u) edges of
S that are all preferred to e or similar holds for v .
Natural question: Is it possible to reduce the problem of finding a
stable b-matching to the problem of finding a stable matching?

Idea: Node spitting.
Problem: The same edge may appear more times in a matching.
New idea: This cannot happen if b has the mto (many-to-one)
property: for any edge e = uv of G we have b(u) = 1 or b(v) = 1.
Solution: A simple construction achieves the mto property.

Finding a stable b-matching

i
1

2

3

k

j
b = 2

1
i+

i−

3
1

k+

j+

3

2

2

j−

k−

Def: Graph G = (V ,E) and quota function b : V → N is given. A
b-matching is a subset M of e st each vertex v is incident to at
most b(v) edges of M. If we also have linear preferences for the
vertices then b-matching S is stable if it dominates all other
edges: if e = uv ∈ E \ S then either u is incident to b(u) edges of
S that are all preferred to e or similar holds for v .
Natural question: Is it possible to reduce the problem of finding a
stable b-matching to the problem of finding a stable matching?
Idea: Node spitting.

Problem: The same edge may appear more times in a matching.
New idea: This cannot happen if b has the mto (many-to-one)
property: for any edge e = uv of G we have b(u) = 1 or b(v) = 1.
Solution: A simple construction achieves the mto property.

Finding a stable b-matching

i
1

2

3

k

j
b = 2

1
i+

i−

3
1

k+

j+

3

2

2

j−

k−

Def: Graph G = (V ,E) and quota function b : V → N is given. A
b-matching is a subset M of e st each vertex v is incident to at
most b(v) edges of M. If we also have linear preferences for the
vertices then b-matching S is stable if it dominates all other
edges: if e = uv ∈ E \ S then either u is incident to b(u) edges of
S that are all preferred to e or similar holds for v .
Natural question: Is it possible to reduce the problem of finding a
stable b-matching to the problem of finding a stable matching?
Idea: Node spitting.
Problem:

The same edge may appear more times in a matching.
New idea: This cannot happen if b has the mto (many-to-one)
property: for any edge e = uv of G we have b(u) = 1 or b(v) = 1.
Solution: A simple construction achieves the mto property.

Finding a stable b-matching

i
1

2

3

k

j
b = 2

1
i+

i−

3
1

k+

j+

3

2

2

j−

k−

Def: Graph G = (V ,E) and quota function b : V → N is given. A
b-matching is a subset M of e st each vertex v is incident to at
most b(v) edges of M. If we also have linear preferences for the
vertices then b-matching S is stable if it dominates all other
edges: if e = uv ∈ E \ S then either u is incident to b(u) edges of
S that are all preferred to e or similar holds for v .
Natural question: Is it possible to reduce the problem of finding a
stable b-matching to the problem of finding a stable matching?
Idea: Node spitting.
Problem: The same edge may appear more times in a matching.

New idea: This cannot happen if b has the mto (many-to-one)
property: for any edge e = uv of G we have b(u) = 1 or b(v) = 1.
Solution: A simple construction achieves the mto property.

Finding a stable b-matching

i
1

2

3

k

j
b = 2

1
i+

i−

3
1

k+

j+

3

2

2

j−

k−

Def: Graph G = (V ,E) and quota function b : V → N is given. A
b-matching is a subset M of e st each vertex v is incident to at
most b(v) edges of M. If we also have linear preferences for the
vertices then b-matching S is stable if it dominates all other
edges: if e = uv ∈ E \ S then either u is incident to b(u) edges of
S that are all preferred to e or similar holds for v .
Natural question: Is it possible to reduce the problem of finding a
stable b-matching to the problem of finding a stable matching?
Idea: Node spitting.
Problem: The same edge may appear more times in a matching.
New idea: This cannot happen if b has the mto (many-to-one)
property: for any edge e = uv of G we have b(u) = 1 or b(v) = 1.

Solution: A simple construction achieves the mto property.

Finding a stable b-matching

i
1

2

3

k

j
b = 2

1
i+

i−

3
1

k+

j+

3

2

2

j−

k−

i j i j2

2

2

2

1

1

1

1
1

3

3
2

21

Def: Graph G = (V ,E) and quota function b : V → N is given. A
b-matching is a subset M of e st each vertex v is incident to at
most b(v) edges of M. If we also have linear preferences for the
vertices then b-matching S is stable if it dominates all other
edges: if e = uv ∈ E \ S then either u is incident to b(u) edges of
S that are all preferred to e or similar holds for v .
Natural question: Is it possible to reduce the problem of finding a
stable b-matching to the problem of finding a stable matching?
Idea: Node spitting.
Problem: The same edge may appear more times in a matching.
New idea: This cannot happen if b has the mto (many-to-one)
property: for any edge e = uv of G we have b(u) = 1 or b(v) = 1.
Solution: A simple construction achieves the mto property.

Finding a stable matching

i
j

∞

k

1 1

1

In Irving’s algorithm we keep on deleting edges such that
I no new stable matching is created
I not all stable matchings are killed

until a single stable matching remains or we conclude that no
stable matching exists.

Def: Edge e = uv is a 1-arc if e is the first choice of u.
Observation: If v prefers 1-arc e = uv to f then the deletion of f
does not change the set of stable matchings.

Basis of Phase 1 of Irving’s algorithm.

End of Phase 1: If no more GS-type deletion is possible then for
each vertex v , the last choice of v is a 1-arc pointing to v , i.e.
1-arcs form vertex-disjoint oriented cycles.

Finding a stable matching

i
j

∞

k

1 1

1

In Irving’s algorithm we keep on deleting edges such that
I no new stable matching is created
I not all stable matchings are killed

until a single stable matching remains or we conclude that no
stable matching exists.
Def: Edge e = uv is a 1-arc if e is the first choice of u.
Observation: If v prefers 1-arc e = uv to f then the deletion of f
does not change the set of stable matchings.

Basis of Phase 1 of Irving’s algorithm.

End of Phase 1: If no more GS-type deletion is possible then for
each vertex v , the last choice of v is a 1-arc pointing to v , i.e.
1-arcs form vertex-disjoint oriented cycles.

Finding a stable matching

i
j

∞

k

1 1

1

In Irving’s algorithm we keep on deleting edges such that
I no new stable matching is created
I not all stable matchings are killed

until a single stable matching remains or we conclude that no
stable matching exists.
Def: Edge e = uv is a 1-arc if e is the first choice of u.
Observation: If v prefers 1-arc e = uv to f then the deletion of f
does not change the set of stable matchings.

Basis of Phase 1 of Irving’s algorithm.

End of Phase 1: If no more GS-type deletion is possible then for
each vertex v , the last choice of v is a 1-arc pointing to v , i.e.
1-arcs form vertex-disjoint oriented cycles.

Finding a stable matching

i
j

∞

k

1 1

1

In Irving’s algorithm we keep on deleting edges such that
I no new stable matching is created
I not all stable matchings are killed

until a single stable matching remains or we conclude that no
stable matching exists.
Def: Edge e = uv is a 1-arc if e is the first choice of u.
Observation: If v prefers 1-arc e = uv to f then the deletion of f
does not change the set of stable matchings.

Basis of Phase 1 of Irving’s algorithm.

End of Phase 1: If no more GS-type deletion is possible then for
each vertex v , the last choice of v is a 1-arc pointing to v , i.e.
1-arcs form vertex-disjoint oriented cycles.

Phase 2

If no more GS-deletion is possible and all 1-arcs are bidirected then
we are left with a stable b-matching. Otherwise there is a vertex u
incident to at least two edges.
Def: If e = uv is the 2nd choice of v then vu is a 2-arc.

Observation: After Phase 1, each vertex u receives at most one
2-arc. Moreover, if u recives a 2-arc then u sends a unique 1-arc
that is not bidirected.
Corollary: There is a cycle formed alternatingly by 1-arcs and
2-arcs. This is called a rotation.
Two cases are possible: Either a rotation is an odd cycle and each
arc in it is both a 1-arc and a 2 arc
or all the set of 1-arcs and the set of 2 arcs are disjoint.
In the first case, no stable matching exists.
In the second case, we can delete all 1-arcs of the rotation: no new
stable matching is created and not all stable matchings are killed.
After eliminating this rotation, reversed 2-arcs become 1-arcs.
(And we may execute further GS-deletions.)

Phase 2

If no more GS-deletion is possible and all 1-arcs are bidirected then
we are left with a stable b-matching. Otherwise there is a vertex u
incident to at least two edges.
Def: If e = uv is the 2nd choice of v then vu is a 2-arc.
Observation: After Phase 1, each vertex u receives at most one
2-arc. Moreover, if u recives a 2-arc then u sends a unique 1-arc
that is not bidirected.
Corollary: There is a cycle formed alternatingly by 1-arcs and
2-arcs. This is called a rotation.

Two cases are possible: Either a rotation is an odd cycle and each
arc in it is both a 1-arc and a 2 arc
or all the set of 1-arcs and the set of 2 arcs are disjoint.
In the first case, no stable matching exists.
In the second case, we can delete all 1-arcs of the rotation: no new
stable matching is created and not all stable matchings are killed.
After eliminating this rotation, reversed 2-arcs become 1-arcs.
(And we may execute further GS-deletions.)

Phase 2
1

1

11

1
2 =∞

2 =∞
2 =∞

2 =∞

2 =∞

Def: If e = uv is the 2nd choice of v then vu is a 2-arc.
Observation: After Phase 1, each vertex u receives at most one
2-arc. Moreover, if u recives a 2-arc then u sends a unique 1-arc
that is not bidirected.
Corollary: There is a cycle formed alternatingly by 1-arcs and
2-arcs. This is called a rotation.
Two cases are possible: Either a rotation is an odd cycle and each
arc in it is both a 1-arc and a 2 arc

or all the set of 1-arcs and the set of 2 arcs are disjoint.
In the first case, no stable matching exists.
In the second case, we can delete all 1-arcs of the rotation: no new
stable matching is created and not all stable matchings are killed.
After eliminating this rotation, reversed 2-arcs become 1-arcs.
(And we may execute further GS-deletions.)

Phase 2
1

1

11

1
2 =∞

2 =∞
2 =∞

2 =∞

2 =∞

∞

∞ ∞

∞1

1

11

2

2

22

Def: If e = uv is the 2nd choice of v then vu is a 2-arc.
Observation: After Phase 1, each vertex u receives at most one
2-arc. Moreover, if u recives a 2-arc then u sends a unique 1-arc
that is not bidirected.
Corollary: There is a cycle formed alternatingly by 1-arcs and
2-arcs. This is called a rotation.
Two cases are possible: Either a rotation is an odd cycle and each
arc in it is both a 1-arc and a 2 arc
or all the set of 1-arcs and the set of 2 arcs are disjoint.

In the first case, no stable matching exists.
In the second case, we can delete all 1-arcs of the rotation: no new
stable matching is created and not all stable matchings are killed.
After eliminating this rotation, reversed 2-arcs become 1-arcs.
(And we may execute further GS-deletions.)

Phase 2
1

1

11

1
2 =∞

2 =∞
2 =∞

2 =∞

2 =∞

∞

∞ ∞

∞1

1

11

2

2

22

Def: If e = uv is the 2nd choice of v then vu is a 2-arc.
Observation: After Phase 1, each vertex u receives at most one
2-arc. Moreover, if u recives a 2-arc then u sends a unique 1-arc
that is not bidirected.
Corollary: There is a cycle formed alternatingly by 1-arcs and
2-arcs. This is called a rotation.
Two cases are possible: Either a rotation is an odd cycle and each
arc in it is both a 1-arc and a 2 arc
or all the set of 1-arcs and the set of 2 arcs are disjoint.
In the first case, no stable matching exists.

In the second case, we can delete all 1-arcs of the rotation: no new
stable matching is created and not all stable matchings are killed.
After eliminating this rotation, reversed 2-arcs become 1-arcs.
(And we may execute further GS-deletions.)

Phase 2
1

1

11

1
2 =∞

2 =∞
2 =∞

2 =∞

2 =∞

∞

∞ ∞

∞1

1

11

2

2

22

Def: If e = uv is the 2nd choice of v then vu is a 2-arc.
Observation: After Phase 1, each vertex u receives at most one
2-arc. Moreover, if u recives a 2-arc then u sends a unique 1-arc
that is not bidirected.
Corollary: There is a cycle formed alternatingly by 1-arcs and
2-arcs. This is called a rotation.
Two cases are possible: Either a rotation is an odd cycle and each
arc in it is both a 1-arc and a 2 arc
or all the set of 1-arcs and the set of 2 arcs are disjoint.
In the first case, no stable matching exists.
In the second case, we can delete all 1-arcs of the rotation: no new
stable matching is created and not all stable matchings are killed.

After eliminating this rotation, reversed 2-arcs become 1-arcs.
(And we may execute further GS-deletions.)

Phase 2
1

1

11

1
2 =∞

2 =∞
2 =∞

2 =∞

2 =∞

1

1

1

1

Def: If e = uv is the 2nd choice of v then vu is a 2-arc.
Observation: After Phase 1, each vertex u receives at most one
2-arc. Moreover, if u recives a 2-arc then u sends a unique 1-arc
that is not bidirected.
Corollary: There is a cycle formed alternatingly by 1-arcs and
2-arcs. This is called a rotation.
Two cases are possible: Either a rotation is an odd cycle and each
arc in it is both a 1-arc and a 2 arc
or all the set of 1-arcs and the set of 2 arcs are disjoint.
In the first case, no stable matching exists.
In the second case, we can delete all 1-arcs of the rotation: no new
stable matching is created and not all stable matchings are killed.
After eliminating this rotation, reversed 2-arcs become 1-arcs.
(And we may execute further GS-deletions.)

One sided markets with choice functions

v

Vertices of the graph are agents

edges are possible partnerships
(contracts). Each agent v has a choice function Cv : if the set of
available options for agent v is X then v selects subset Cv (X).

Def. Option e is dominated by set of options X

if option e is
ignored when all options in X are available: e 6∈ Cv (X ∪ {e}).

Notation: Dv (X) is the set of options dominated by X .

We assume that agents’ choice functions Cv are substitutable.
This means that dominance functions Dv are monotone:

X ⊆ Y ⇒ Dv (X) ⊆ Dv (Y) .
(Extra choices do not make an ignored option more attractive.)

One sided markets with choice functions

v

Vertices of the graph are agents edges are possible partnerships
(contracts).

Each agent v has a choice function Cv : if the set of
available options for agent v is X then v selects subset Cv (X).

Def. Option e is dominated by set of options X

if option e is
ignored when all options in X are available: e 6∈ Cv (X ∪ {e}).

Notation: Dv (X) is the set of options dominated by X .

We assume that agents’ choice functions Cv are substitutable.
This means that dominance functions Dv are monotone:

X ⊆ Y ⇒ Dv (X) ⊆ Dv (Y) .
(Extra choices do not make an ignored option more attractive.)

One sided markets with choice functions

v

Vertices of the graph are agents edges are possible partnerships
(contracts). Each agent v has a choice function Cv :

if the set of
available options for agent v is X then v selects subset Cv (X).

Def. Option e is dominated by set of options X

if option e is
ignored when all options in X are available: e 6∈ Cv (X ∪ {e}).

Notation: Dv (X) is the set of options dominated by X .

We assume that agents’ choice functions Cv are substitutable.
This means that dominance functions Dv are monotone:

X ⊆ Y ⇒ Dv (X) ⊆ Dv (Y) .
(Extra choices do not make an ignored option more attractive.)

One sided markets with choice functions
X

v

Vertices of the graph are agents edges are possible partnerships
(contracts). Each agent v has a choice function Cv : if the set of
available options for agent v is X

then v selects subset Cv (X).

Def. Option e is dominated by set of options X

if option e is
ignored when all options in X are available: e 6∈ Cv (X ∪ {e}).

Notation: Dv (X) is the set of options dominated by X .

We assume that agents’ choice functions Cv are substitutable.
This means that dominance functions Dv are monotone:

X ⊆ Y ⇒ Dv (X) ⊆ Dv (Y) .
(Extra choices do not make an ignored option more attractive.)

One sided markets with choice functions
X

v Cv (X)

Vertices of the graph are agents edges are possible partnerships
(contracts). Each agent v has a choice function Cv : if the set of
available options for agent v is X then v selects subset Cv (X).

Def. Option e is dominated by set of options X if option e is
ignored when all options in X are available: e 6∈ Cv (X ∪ {e}).

Notation: Dv (X) is the set of options dominated by X .

We assume that agents’ choice functions Cv are substitutable.
This means that dominance functions Dv are monotone:

X ⊆ Y ⇒ Dv (X) ⊆ Dv (Y) .
(Extra choices do not make an ignored option more attractive.)

One sided markets with choice functions
X

v Cv (X)

Vertices of the graph are agents edges are possible partnerships
(contracts). Each agent v has a choice function Cv : if the set of
available options for agent v is X then v selects subset Cv (X).
Def. Option e is dominated by set of options X

if option e is
ignored when all options in X are available: e 6∈ Cv (X ∪ {e}).

Notation: Dv (X) is the set of options dominated by X .

We assume that agents’ choice functions Cv are substitutable.
This means that dominance functions Dv are monotone:

X ⊆ Y ⇒ Dv (X) ⊆ Dv (Y) .
(Extra choices do not make an ignored option more attractive.)

One sided markets with choice functions
X

v Cv (X)

Dominated options

Vertices of the graph are agents edges are possible partnerships
(contracts). Each agent v has a choice function Cv : if the set of
available options for agent v is X then v selects subset Cv (X).
Def. Option e is dominated by set of options X if option e is
ignored when all options in X are available:

e 6∈ Cv (X ∪ {e}).

Notation: Dv (X) is the set of options dominated by X .

We assume that agents’ choice functions Cv are substitutable.
This means that dominance functions Dv are monotone:

X ⊆ Y ⇒ Dv (X) ⊆ Dv (Y) .
(Extra choices do not make an ignored option more attractive.)

One sided markets with choice functions
X

v Cv (X)

Dominated options

Vertices of the graph are agents edges are possible partnerships
(contracts). Each agent v has a choice function Cv : if the set of
available options for agent v is X then v selects subset Cv (X).
Def. Option e is dominated by set of options X if option e is
ignored when all options in X are available: e 6∈ Cv (X ∪ {e}).

Notation: Dv (X) is the set of options dominated by X .
We assume that agents’ choice functions Cv are substitutable.
This means that dominance functions Dv are monotone:

X ⊆ Y ⇒ Dv (X) ⊆ Dv (Y) .
(Extra choices do not make an ignored option more attractive.)

One sided markets with choice functions
X

v Cv (X)

Dominated options

Vertices of the graph are agents edges are possible partnerships
(contracts). Each agent v has a choice function Cv : if the set of
available options for agent v is X then v selects subset Cv (X).
Def. Option e is dominated by set of options X if option e is
ignored when all options in X are available: e 6∈ Cv (X ∪ {e}).
Notation: Dv (X) is the set of options dominated by X .

We assume that agents’ choice functions Cv are substitutable.
This means that dominance functions Dv are monotone:

X ⊆ Y ⇒ Dv (X) ⊆ Dv (Y) .
(Extra choices do not make an ignored option more attractive.)

One sided markets with choice functions
X

v Cv (X)

Dominated options

Vertices of the graph are agents edges are possible partnerships
(contracts). Each agent v has a choice function Cv : if the set of
available options for agent v is X then v selects subset Cv (X).
Def. Option e is dominated by set of options X if option e is
ignored when all options in X are available: e 6∈ Cv (X ∪ {e}).
Notation: Dv (X) is the set of options dominated by X .
We assume that agents’ choice functions Cv are substitutable.
This means that dominance functions Dv are monotone:

X ⊆ Y ⇒ Dv (X) ⊆ Dv (Y) .
(Extra choices do not make an ignored option more attractive.)

Stable matchings with choice functions

So Cv (X) is the best set of options from X , according to the
preference order of v . For the stable b-matching problem, Cv (X)
denotes the best b(v) options of X . We assume that all choice
functions Cv are substitutable.
A stable (b-)matching can be defined as a set S of contracts such
that

I No contract of S is dominated by other contracts of S .

I S dominates each contract outside S (according to some Dv)

The stable partnership problem is given by a graph G and
substitutable choice functions Cv on the stars.

Aim: find a stable
partnership, i.e. a subset S of E (G) with the above two properties.

Fact: for bipartite graphs, the Gale-Shapley algorithm works.

For nonbipartite graphs, we can solve only a special case: we
assume that each choice function Cv is increasing, i.e.

X ⊆ Y ⇒ |Cv (X)| ≤ |Cv (Y)| .
(Greater choice set means more choices selected.)

Stable matchings with choice functions

So Cv (X) is the best set of options from X , according to the
preference order of v . For the stable b-matching problem, Cv (X)
denotes the best b(v) options of X . We assume that all choice
functions Cv are substitutable.
A stable (b-)matching can be defined as a set S of contracts such
that

I No contract of S is dominated by other contracts of S .

I S dominates each contract outside S (according to some Dv)

The stable partnership problem is given by a graph G and
substitutable choice functions Cv on the stars. Aim: find a stable
partnership, i.e. a subset S of E (G) with the above two properties.

Fact: for bipartite graphs, the Gale-Shapley algorithm works.
For nonbipartite graphs, we can solve only a special case: we
assume that each choice function Cv is increasing, i.e.

X ⊆ Y ⇒ |Cv (X)| ≤ |Cv (Y)| .
(Greater choice set means more choices selected.)

Stable matchings with choice functions

So Cv (X) is the best set of options from X , according to the
preference order of v . For the stable b-matching problem, Cv (X)
denotes the best b(v) options of X . We assume that all choice
functions Cv are substitutable.
A stable (b-)matching can be defined as a set S of contracts such
that

I No contract of S is dominated by other contracts of S .

I S dominates each contract outside S (according to some Dv)

The stable partnership problem is given by a graph G and
substitutable choice functions Cv on the stars. Aim: find a stable
partnership, i.e. a subset S of E (G) with the above two properties.
Fact: for bipartite graphs, the Gale-Shapley algorithm works.

For nonbipartite graphs, we can solve only a special case: we
assume that each choice function Cv is increasing, i.e.

X ⊆ Y ⇒ |Cv (X)| ≤ |Cv (Y)| .
(Greater choice set means more choices selected.)

Stable matchings with choice functions

So Cv (X) is the best set of options from X , according to the
preference order of v . For the stable b-matching problem, Cv (X)
denotes the best b(v) options of X . We assume that all choice
functions Cv are substitutable.
A stable (b-)matching can be defined as a set S of contracts such
that

I No contract of S is dominated by other contracts of S .

I S dominates each contract outside S (according to some Dv)

The stable partnership problem is given by a graph G and
substitutable choice functions Cv on the stars. Aim: find a stable
partnership, i.e. a subset S of E (G) with the above two properties.
Fact: for bipartite graphs, the Gale-Shapley algorithm works.
For nonbipartite graphs, we can solve only a special case: we
assume that each choice function Cv is increasing, i.e.

X ⊆ Y ⇒ |Cv (X)| ≤ |Cv (Y)| .
(Greater choice set means more choices selected.)

Finding a stable partnership

Generalization of Irving’s algorithm: we keep on deleting edges
such that

I no new stable partnership is created

I not all stable partnerships are killed

until a single stable partnership remains.
For an ordinary stable roommates problem, the extended algorithm
is doing the same as Irving’s.

1st phase of the algorithm

v

Def. Oriented edge e = vu is a first choice of v and called a
1-arc if e ∈ Cv (E (v)) . (E (v) is the set of edges incident with v .)
Proposal step: Find all 1-arcs.

The set of stable partnerships does not change.

Refusal step: If X is the set of 1-arcs pointing to u, delete Du(X).

The set of stable partnerships does not change.

Execute proposal and refusal steps alternatingly until no further
step is possible. Now 1-arcs form an Eulerian graph.

If all 1-arcs are bidirected then it is the only stable partnership.
Otherwise we move on to the 2nd phase of the algorithm.

1st phase of the algorithm

v

Def. Oriented edge e = vu is a first choice of v and called a
1-arc if e ∈ Cv (E (v)) . (E (v) is the set of edges incident with v .)

Proposal step: Find all 1-arcs.
The set of stable partnerships does not change.

Refusal step: If X is the set of 1-arcs pointing to u, delete Du(X).

The set of stable partnerships does not change.

Execute proposal and refusal steps alternatingly until no further
step is possible. Now 1-arcs form an Eulerian graph.

If all 1-arcs are bidirected then it is the only stable partnership.
Otherwise we move on to the 2nd phase of the algorithm.

1st phase of the algorithm

v

Def. Oriented edge e = vu is a first choice of v and called a
1-arc if e ∈ Cv (E (v)) . (E (v) is the set of edges incident with v .)
Proposal step: Find all 1-arcs.

The set of stable partnerships does not change.

Refusal step: If X is the set of 1-arcs pointing to u, delete Du(X).

The set of stable partnerships does not change.

Execute proposal and refusal steps alternatingly until no further
step is possible. Now 1-arcs form an Eulerian graph.

If all 1-arcs are bidirected then it is the only stable partnership.
Otherwise we move on to the 2nd phase of the algorithm.

1st phase of the algorithm

v

Def. Oriented edge e = vu is a first choice of v and called a
1-arc if e ∈ Cv (E (v)) . (E (v) is the set of edges incident with v .)
Proposal step: Find all 1-arcs.

The set of stable partnerships does not change.

Refusal step: If X is the set of 1-arcs pointing to u, delete Du(X).
The set of stable partnerships does not change.

Execute proposal and refusal steps alternatingly until no further
step is possible. Now 1-arcs form an Eulerian graph.

If all 1-arcs are bidirected then it is the only stable partnership.
Otherwise we move on to the 2nd phase of the algorithm.

1st phase of the algorithm

v

Def. Oriented edge e = vu is a first choice of v and called a
1-arc if e ∈ Cv (E (v)) . (E (v) is the set of edges incident with v .)
Proposal step: Find all 1-arcs.

The set of stable partnerships does not change.

Refusal step: If X is the set of 1-arcs pointing to u, delete Du(X).

The set of stable partnerships does not change.

Execute proposal and refusal steps alternatingly until no further
step is possible. Now 1-arcs form an Eulerian graph.

If all 1-arcs are bidirected then it is the only stable partnership.
Otherwise we move on to the 2nd phase of the algorithm.

1st phase of the algorithm

v

Def. Oriented edge e = vu is a first choice of v and called a
1-arc if e ∈ Cv (E (v)) . (E (v) is the set of edges incident with v .)
Proposal step: Find all 1-arcs.

The set of stable partnerships does not change.

Refusal step: If X is the set of 1-arcs pointing to u, delete Du(X).
The set of stable partnerships does not change.

Execute proposal and refusal steps alternatingly until no further
step is possible. Now 1-arcs form an Eulerian graph.

If all 1-arcs are bidirected then it is the only stable partnership.
Otherwise we move on to the 2nd phase of the algorithm.

1st phase of the algorithm

v

Def. Oriented edge e = vu is a first choice of v and called a
1-arc if e ∈ Cv (E (v)) . (E (v) is the set of edges incident with v .)
Proposal step: Find all 1-arcs.

The set of stable partnerships does not change.

Refusal step: If X is the set of 1-arcs pointing to u, delete Du(X).
The set of stable partnerships does not change.

Execute proposal and refusal steps alternatingly

until no further
step is possible. Now 1-arcs form an Eulerian graph.

If all 1-arcs are bidirected then it is the only stable partnership.
Otherwise we move on to the 2nd phase of the algorithm.

1st phase of the algorithm

v

Def. Oriented edge e = vu is a first choice of v and called a
1-arc if e ∈ Cv (E (v)) . (E (v) is the set of edges incident with v .)
Proposal step: Find all 1-arcs.

The set of stable partnerships does not change.

Refusal step: If X is the set of 1-arcs pointing to u, delete Du(X).
The set of stable partnerships does not change.

Execute proposal and refusal steps alternatingly

until no further
step is possible. Now 1-arcs form an Eulerian graph.

If all 1-arcs are bidirected then it is the only stable partnership.
Otherwise we move on to the 2nd phase of the algorithm.

1st phase of the algorithm

v

Def. Oriented edge e = vu is a first choice of v and called a
1-arc if e ∈ Cv (E (v)) . (E (v) is the set of edges incident with v .)
Proposal step: Find all 1-arcs.

The set of stable partnerships does not change.

Refusal step: If X is the set of 1-arcs pointing to u, delete Du(X).
The set of stable partnerships does not change.

Execute proposal and refusal steps alternatingly

until no further
step is possible. Now 1-arcs form an Eulerian graph.

If all 1-arcs are bidirected then it is the only stable partnership.
Otherwise we move on to the 2nd phase of the algorithm.

1st phase of the algorithm

v

Def. Oriented edge e = vu is a first choice of v and called a
1-arc if e ∈ Cv (E (v)) . (E (v) is the set of edges incident with v .)
Proposal step: Find all 1-arcs.

The set of stable partnerships does not change.

Refusal step: If X is the set of 1-arcs pointing to u, delete Du(X).
The set of stable partnerships does not change.

Execute proposal and refusal steps alternatingly

until no further
step is possible. Now 1-arcs form an Eulerian graph.

If all 1-arcs are bidirected then it is the only stable partnership.
Otherwise we move on to the 2nd phase of the algorithm.

1st phase of the algorithm

v

Def. Oriented edge e = vu is a first choice of v and called a
1-arc if e ∈ Cv (E (v)) . (E (v) is the set of edges incident with v .)
Proposal step: Find all 1-arcs.

The set of stable partnerships does not change.

Refusal step: If X is the set of 1-arcs pointing to u, delete Du(X).
The set of stable partnerships does not change.

Execute proposal and refusal steps alternatingly

until no further
step is possible. Now 1-arcs form an Eulerian graph.

If all 1-arcs are bidirected then it is the only stable partnership.
Otherwise we move on to the 2nd phase of the algorithm.

1st phase of the algorithm

v

Def. Oriented edge e = vu is a first choice of v and called a
1-arc if e ∈ Cv (E (v)) . (E (v) is the set of edges incident with v .)
Proposal step: Find all 1-arcs.

The set of stable partnerships does not change.

Refusal step: If X is the set of 1-arcs pointing to u, delete Du(X).
The set of stable partnerships does not change.

Execute proposal and refusal steps alternatingly

until no further
step is possible. Now 1-arcs form an Eulerian graph.

If all 1-arcs are bidirected then it is the only stable partnership.
Otherwise we move on to the 2nd phase of the algorithm.

1st phase of the algorithm

v

Def. Oriented edge e = vu is a first choice of v and called a
1-arc if e ∈ Cv (E (v)) . (E (v) is the set of edges incident with v .)
Proposal step: Find all 1-arcs.

The set of stable partnerships does not change.

Refusal step: If X is the set of 1-arcs pointing to u, delete Du(X).
The set of stable partnerships does not change.

Execute proposal and refusal steps alternatingly

until no further
step is possible. Now 1-arcs form an Eulerian graph.

If all 1-arcs are bidirected then it is the only stable partnership.
Otherwise we move on to the 2nd phase of the algorithm.

1st phase of the algorithm

v

Def. Oriented edge e = vu is a first choice of v and called a
1-arc if e ∈ Cv (E (v)) . (E (v) is the set of edges incident with v .)
Proposal step: Find all 1-arcs.

The set of stable partnerships does not change.

Refusal step: If X is the set of 1-arcs pointing to u, delete Du(X).
The set of stable partnerships does not change.

Execute proposal and refusal steps alternatingly

until no further
step is possible. Now 1-arcs form an Eulerian graph.

If all 1-arcs are bidirected then it is the only stable partnership.
Otherwise we move on to the 2nd phase of the algorithm.

1st phase of the algorithm

v

Def. Oriented edge e = vu is a first choice of v and called a
1-arc if e ∈ Cv (E (v)) . (E (v) is the set of edges incident with v .)
Proposal step: Find all 1-arcs.

The set of stable partnerships does not change.

Refusal step: If X is the set of 1-arcs pointing to u, delete Du(X).
The set of stable partnerships does not change.

Execute proposal and refusal steps alternatingly until no further
step is possible. Now 1-arcs form an Eulerian graph.

If all 1-arcs are bidirected then it is the only stable partnership.
Otherwise we move on to the 2nd phase of the algorithm.

Finding a rotation from replacements

vu
e

Let e = uv be a 1-arc.

The replacement of e is the contract that u
selects instead of e if e is not available any more, that is,
er = Cu(E (u) \ {e}) \ Cu(E (u)).
Let er = uw and A− be the set of 1-arcs that point to w .
A− ∪ {er} dominates a unique 1-arc er

r .
Alternating sequence

e, er , er
r , (e

r
r)

r , (er
r)

r
r , . . .

of 1-arcs and replacements sooner or later repeats a 1-arc.
Hence we find a rotation R.

Finding a rotation from replacements

vu
e

w

Let e = uv be a 1-arc. The replacement of e is the contract that u
selects instead of e if e is not available any more,

that is,
er = Cu(E (u) \ {e}) \ Cu(E (u)).
Let er = uw and A− be the set of 1-arcs that point to w .
A− ∪ {er} dominates a unique 1-arc er

r .
Alternating sequence

e, er , er
r , (e

r
r)

r , (er
r)

r
r , . . .

of 1-arcs and replacements sooner or later repeats a 1-arc.
Hence we find a rotation R.

Finding a rotation from replacements

vu
e

er

w

Let e = uv be a 1-arc. The replacement of e is the contract that u
selects instead of e if e is not available any more, that is,
er = Cu(E (u) \ {e}) \ Cu(E (u)).

Let er = uw and A− be the set of 1-arcs that point to w .
A− ∪ {er} dominates a unique 1-arc er

r .
Alternating sequence

e, er , er
r , (e

r
r)

r , (er
r)

r
r , . . .

of 1-arcs and replacements sooner or later repeats a 1-arc.
Hence we find a rotation R.

Finding a rotation from replacements

vu
e

er

w

Let e = uv be a 1-arc. The replacement of e is the contract that u
selects instead of e if e is not available any more, that is,
er = Cu(E (u) \ {e}) \ Cu(E (u)).
Let er = uw and A− be the set of 1-arcs that point to w .

A− ∪ {er} dominates a unique 1-arc er
r .

Alternating sequence

e, er , er
r , (e

r
r)

r , (er
r)

r
r , . . .

of 1-arcs and replacements sooner or later repeats a 1-arc.
Hence we find a rotation R.

Finding a rotation from replacements

vu
e

er

w

Let e = uv be a 1-arc. The replacement of e is the contract that u
selects instead of e if e is not available any more, that is,
er = Cu(E (u) \ {e}) \ Cu(E (u)).
Let er = uw and A− be the set of 1-arcs that point to w .
A− ∪ {er} dominates a unique 1-arc er

r .

Alternating sequence

e, er , er
r , (e

r
r)

r , (er
r)

r
r , . . .

of 1-arcs and replacements sooner or later repeats a 1-arc.
Hence we find a rotation R.

Finding a rotation from replacements

vu
e

er
er
r

w

Let e = uv be a 1-arc. The replacement of e is the contract that u
selects instead of e if e is not available any more, that is,
er = Cu(E (u) \ {e}) \ Cu(E (u)).
Let er = uw and A− be the set of 1-arcs that point to w .
A− ∪ {er} dominates a unique 1-arc er

r .

Alternating sequence

e, er , er
r , (e

r
r)

r , (er
r)

r
r , . . .

of 1-arcs and replacements sooner or later repeats a 1-arc.
Hence we find a rotation R.

Finding a rotation from replacements

vu
e

er
er
r

w

Let e = uv be a 1-arc. The replacement of e is the contract that u
selects instead of e if e is not available any more, that is,
er = Cu(E (u) \ {e}) \ Cu(E (u)).
Let er = uw and A− be the set of 1-arcs that point to w .
A− ∪ {er} dominates a unique 1-arc er

r .
Alternating sequence

e, er , er
r , (e

r
r)

r , (er
r)

r
r , . . .

of 1-arcs and replacements

sooner or later repeats a 1-arc.
Hence we find a rotation R.

Finding a rotation from replacements

vu
e

er
er
r

w

Let e = uv be a 1-arc. The replacement of e is the contract that u
selects instead of e if e is not available any more, that is,
er = Cu(E (u) \ {e}) \ Cu(E (u)).
Let er = uw and A− be the set of 1-arcs that point to w .
A− ∪ {er} dominates a unique 1-arc er

r .
Alternating sequence

e, er , er
r , (e

r
r)

r , (er
r)

r
r , . . .

of 1-arcs and replacements sooner or later repeats a 1-arc.

Hence we find a rotation R.

Finding a rotation from replacements

vu
e

er
er
r

R

w

Let e = uv be a 1-arc. The replacement of e is the contract that u
selects instead of e if e is not available any more, that is,
er = Cu(E (u) \ {e}) \ Cu(E (u)).
Let er = uw and A− be the set of 1-arcs that point to w .
A− ∪ {er} dominates a unique 1-arc er

r .
Alternating sequence

e, er , er
r , (e

r
r)

r , (er
r)

r
r , . . .

of 1-arcs and replacements sooner or later repeats a 1-arc.
Hence we find a rotation R.

Rotation elimination

Case 1. 1-arcs and their replacements in R form identical sets.

Rotation R is an odd cycle, and the algorithm stops:

No stable partnership exists.

Case 2. 1-arcs and their replacements in R are distinct.
R is an even alternating cycle.

We eliminate the rotation:

I Delete all 1-arcs of the rotation

I Replacements become 1-arcs.

I Execute a refusal step at each terminal of the new 1-arcs.

Rotation elimination

R

Case 1. 1-arcs and their replacements in R form identical sets.
Rotation R is an odd cycle, and the algorithm stops:

No stable partnership exists.
Case 2. 1-arcs and their replacements in R are distinct.
R is an even alternating cycle.

We eliminate the rotation:

I Delete all 1-arcs of the rotation

I Replacements become 1-arcs.

I Execute a refusal step at each terminal of the new 1-arcs.

Rotation elimination

R

Case 1. 1-arcs and their replacements in R form identical sets.
Rotation R is an odd cycle, and the algorithm stops:

No stable partnership exists.

Case 2. 1-arcs and their replacements in R are distinct.
R is an even alternating cycle.

We eliminate the rotation:

I Delete all 1-arcs of the rotation

I Replacements become 1-arcs.

I Execute a refusal step at each terminal of the new 1-arcs.

Rotation elimination

R

Case 1. 1-arcs and their replacements in R form identical sets.
Rotation R is an odd cycle, and the algorithm stops:

No stable partnership exists.
Case 2. 1-arcs and their replacements in R are distinct.

R is an even alternating cycle.

We eliminate the rotation:

I Delete all 1-arcs of the rotation

I Replacements become 1-arcs.

I Execute a refusal step at each terminal of the new 1-arcs.

Rotation elimination

R R

Case 1. 1-arcs and their replacements in R form identical sets.
Rotation R is an odd cycle, and the algorithm stops:

No stable partnership exists.
Case 2. 1-arcs and their replacements in R are distinct.
R is an even alternating cycle.

We eliminate the rotation:

I Delete all 1-arcs of the rotation

I Replacements become 1-arcs.

I Execute a refusal step at each terminal of the new 1-arcs.

Rotation elimination

R R

Case 1. 1-arcs and their replacements in R form identical sets.
Rotation R is an odd cycle, and the algorithm stops:

No stable partnership exists.
Case 2. 1-arcs and their replacements in R are distinct.
R is an even alternating cycle.
We eliminate the rotation:

I Delete all 1-arcs of the rotation

I Replacements become 1-arcs.

I Execute a refusal step at each terminal of the new 1-arcs.

Rotation elimination

R

Case 1. 1-arcs and their replacements in R form identical sets.
Rotation R is an odd cycle, and the algorithm stops:

No stable partnership exists.
Case 2. 1-arcs and their replacements in R are distinct.
R is an even alternating cycle.
We eliminate the rotation:

I Delete all 1-arcs of the rotation

I Replacements become 1-arcs.

I Execute a refusal step at each terminal of the new 1-arcs.

Rotation elimination

R

Case 1. 1-arcs and their replacements in R form identical sets.
Rotation R is an odd cycle, and the algorithm stops:

No stable partnership exists.
Case 2. 1-arcs and their replacements in R are distinct.
R is an even alternating cycle.
We eliminate the rotation:

I Delete all 1-arcs of the rotation

I Replacements become 1-arcs.

I Execute a refusal step at each terminal of the new 1-arcs.

Rotation elimination

R

Case 1. 1-arcs and their replacements in R form identical sets.
Rotation R is an odd cycle, and the algorithm stops:

No stable partnership exists.
Case 2. 1-arcs and their replacements in R are distinct.
R is an even alternating cycle.
We eliminate the rotation:

I Delete all 1-arcs of the rotation

I Replacements become 1-arcs.

I Execute a refusal step at each terminal of the new 1-arcs.

2nd phase of the algorithm

Theorem
After a rotation elimination, no new stable partnership is created
and not all stable partnerships are killed.

How does the algorithm terminate?

Theorem
If there are no more rotations then all edges are bidirected 1-arcs,
hence the graph itself is a stable partnership.

Complexity?

Theorem
The generalization of Irving’s algorithm needs O(n + m) C-calls
and O(n + m) D-calls.

2nd phase of the algorithm

Theorem
After a rotation elimination, no new stable partnership is created
and not all stable partnerships are killed.

How does the algorithm terminate?

Theorem
If there are no more rotations then all edges are bidirected 1-arcs,
hence the graph itself is a stable partnership.

Complexity?

Theorem
The generalization of Irving’s algorithm needs O(n + m) C-calls
and O(n + m) D-calls.

Thank you for the attention!

	The stable roommates problem
	The stable partnership problem
	Outline of the algorithm
	1st phase
	2nd phase

