
Stable allocations and flows

Tamás Fleiner1

Summer School on
Matching Problems, Markets, and Mechanisms

26 June 2013, Budapest

1Budapest University of Technology and Economics



Stable matchings

Model:

Boys and girls with possible marriages are given.
Marriage scheme: matching.

Preferences on possible partners.
Instability may occur along blocking edges.

A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

Model: Boys

and girls with possible marriages are given.
Marriage scheme: matching.

Preferences on possible partners.
Instability may occur along blocking edges.

A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

Model: Boys and girls

with possible marriages are given.
Marriage scheme: matching.

Preferences on possible partners.
Instability may occur along blocking edges.

A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

Model: Boys and girls with possible marriages are given.

Marriage scheme: matching.

Preferences on possible partners.
Instability may occur along blocking edges.

A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching.

Preferences on possible partners.
Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.

Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.

A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.

A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.

The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:

Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:

Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners,

girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.

We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate:

rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose

and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.

When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.

When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.

When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.

When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes

then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.

Man-optimality: each boy gets the best stable partner.



Stable matchings

2

1 3

1

2
1

3

3

1
2

3

3

11

2

1 2
1

1

2 12
2

12

3

2
1

4
5

5
2

1
3

12

2

1

1

4 4

232

3

Model: Boys and girls with possible marriages are given.
Marriage scheme: matching. Preferences on possible partners.
Instability may occur along blocking edges.
A matching is stable if no blocking edge exists.
The proposal algorithm of Gale and Shapley always finds one:
Boys propose to best partners, girls reject boys with no chance.
We iterate: rejected boys propose and girls reject alternatingly.
When no boy proposes then we got a stable matching.
Man-optimality: each boy gets the best stable partner.



Stable allocations and properties

Extension of the model: capacities for vxs and edges (partnerships).

An allocation an assignment of intensities to edges st capacities of
edges and vxs are observed. An edge is blocking the allocation if
both end vertices prefer to increase the intensity of the partnership.
An allocation is stable if no blocking edge occurs.
Thm (Bäıou-Balinski) A stable allocation always exists.
Extended GS algorithm finds a “man optimal” stable allocation.
Lattice property: if boys freely select from two stable alloc’s then a
stable alloc is created where girls get their worse choice.
If someone is left with free capacity in some stable alloc then each
stable alloc is the same for him/her.



Stable allocations and properties

1

3 2

1

3
2

1

2
1

3

3

5
1

4
2 4

5
2

31
2 1

3

1

2

1

2 2

3
1 2

1
1

2

2
1212

3

1

1
2

4

3

22 3

2

2

2

2 3

2

Extension of the model: capacities for vxs and edges (partnerships).

An allocation an assignment of intensities to edges st capacities of
edges and vxs are observed. An edge is blocking the allocation if
both end vertices prefer to increase the intensity of the partnership.
An allocation is stable if no blocking edge occurs.
Thm (Bäıou-Balinski) A stable allocation always exists.
Extended GS algorithm finds a “man optimal” stable allocation.
Lattice property: if boys freely select from two stable alloc’s then a
stable alloc is created where girls get their worse choice.
If someone is left with free capacity in some stable alloc then each
stable alloc is the same for him/her.



Stable allocations and properties

2
1

1

1

1

1
1/3

1/3

1/3

1

3 2

1

3
2

1

2
1

3

3

5
1

4
2 4

5
2

31
2 1

3

1

2

1

2 2

3
1 2

1
1

2

2
1212

3

1

1
2

4

3

22 3

2

2

2

2 3

2

Extension of the model: capacities for vxs and edges (partnerships).
An allocation an assignment of intensities to edges st capacities of
edges and vxs are observed.

An edge is blocking the allocation if
both end vertices prefer to increase the intensity of the partnership.
An allocation is stable if no blocking edge occurs.
Thm (Bäıou-Balinski) A stable allocation always exists.
Extended GS algorithm finds a “man optimal” stable allocation.
Lattice property: if boys freely select from two stable alloc’s then a
stable alloc is created where girls get their worse choice.
If someone is left with free capacity in some stable alloc then each
stable alloc is the same for him/her.



Stable allocations and properties

2
1

1

1

1

1
1/3

1/3

1/3

1

3 2

1

3
2

1

2
1

3

3

5
1

4
2 4

5
2

31
2 1

3

1

2

1

2 2

3
1 2

1
1

2

2
1212

3

1

1
2

4

3

22 3

2

2

2

2 3

2

Extension of the model: capacities for vxs and edges (partnerships).
An allocation an assignment of intensities to edges st capacities of
edges and vxs are observed. An edge is blocking the allocation if
both end vertices prefer to increase the intensity of the partnership.

An allocation is stable if no blocking edge occurs.
Thm (Bäıou-Balinski) A stable allocation always exists.
Extended GS algorithm finds a “man optimal” stable allocation.
Lattice property: if boys freely select from two stable alloc’s then a
stable alloc is created where girls get their worse choice.
If someone is left with free capacity in some stable alloc then each
stable alloc is the same for him/her.



Stable allocations and properties

1 2

1

1
1

11

1

3 2

1

3
2

1

2
1

3

3

5
1

4
2 4

5
2

31
2 1

3

1

2

1

2 2

3
1 2

1
1

2

2
1212

3

1

1
2

4

3

22 3

2

2

2

2 3

2

Extension of the model: capacities for vxs and edges (partnerships).
An allocation an assignment of intensities to edges st capacities of
edges and vxs are observed. An edge is blocking the allocation if
both end vertices prefer to increase the intensity of the partnership.
An allocation is stable if no blocking edge occurs.

Thm (Bäıou-Balinski) A stable allocation always exists.
Extended GS algorithm finds a “man optimal” stable allocation.
Lattice property: if boys freely select from two stable alloc’s then a
stable alloc is created where girls get their worse choice.
If someone is left with free capacity in some stable alloc then each
stable alloc is the same for him/her.



Stable allocations and properties

1 2

1

1
1

11

1

3 2

1

3
2

1

2
1

3

3

5
1

4
2 4

5
2

31
2 1

3

1

2

1

2 2

3
1 2

1
1

2

2
1212

3

1

1
2

4

3

22 3

2

2

2

2 3

2

Extension of the model: capacities for vxs and edges (partnerships).
An allocation an assignment of intensities to edges st capacities of
edges and vxs are observed. An edge is blocking the allocation if
both end vertices prefer to increase the intensity of the partnership.
An allocation is stable if no blocking edge occurs.
Thm (Bäıou-Balinski) A stable allocation always exists.

Extended GS algorithm finds a “man optimal” stable allocation.
Lattice property: if boys freely select from two stable alloc’s then a
stable alloc is created where girls get their worse choice.
If someone is left with free capacity in some stable alloc then each
stable alloc is the same for him/her.



Stable allocations and properties

1 2

1

1
1

11

1

3 2

1

3
2

1

2
1

3

3

5
1

4
2 4

5
2

31
2 1

3

1

2

1

2 2

3
1 2

1
1

2

2
1212

3

1

1
2

4

3

22 3

2

2

2

2 3

2

Extension of the model: capacities for vxs and edges (partnerships).
An allocation an assignment of intensities to edges st capacities of
edges and vxs are observed. An edge is blocking the allocation if
both end vertices prefer to increase the intensity of the partnership.
An allocation is stable if no blocking edge occurs.
Thm (Bäıou-Balinski) A stable allocation always exists.
Extended GS algorithm finds a “man optimal” stable allocation.

Lattice property: if boys freely select from two stable alloc’s then a
stable alloc is created where girls get their worse choice.
If someone is left with free capacity in some stable alloc then each
stable alloc is the same for him/her.



Stable allocations and properties

1 2

1

1
1

11

1

3 2

1

3
2

1

2
1

3

3

5
1

4
2 4

5
2

31
2 1

3

1

2

1

2 2

3
1 2

1
1

2

2
1212

3

1

1
2

4

3

22 3

2

2

2

2 3

2

Extension of the model: capacities for vxs and edges (partnerships).
An allocation an assignment of intensities to edges st capacities of
edges and vxs are observed. An edge is blocking the allocation if
both end vertices prefer to increase the intensity of the partnership.
An allocation is stable if no blocking edge occurs.
Thm (Bäıou-Balinski) A stable allocation always exists.
Extended GS algorithm finds a “man optimal” stable allocation.
Lattice property: if boys freely select from two stable alloc’s then a
stable alloc is created where girls get their worse choice.

If someone is left with free capacity in some stable alloc then each
stable alloc is the same for him/her.



Stable allocations and properties

1 2

1

1
1

11

1

3 2

1

3
2

1

2
1

3

3

5
1

4
2 4

5
2

31
2 1

3

1

2

1

2 2

3
1 2

1
1

2

2
1212

3

1

1
2

4

3

22 3

2

2

2

2 3

2

Extension of the model: capacities for vxs and edges (partnerships).
An allocation an assignment of intensities to edges st capacities of
edges and vxs are observed. An edge is blocking the allocation if
both end vertices prefer to increase the intensity of the partnership.
An allocation is stable if no blocking edge occurs.
Thm (Bäıou-Balinski) A stable allocation always exists.
Extended GS algorithm finds a “man optimal” stable allocation.
Lattice property: if boys freely select from two stable alloc’s then a
stable alloc is created where girls get their worse choice.
If someone is left with free capacity in some stable alloc then each
stable alloc is the same for him/her.



Stable flows

Network flows: generalization of bipartite matching.

Model: Digraph, terminals s, t, capacities on the arcs and
preferences on the arcs of the nonterminals. A flow is a function
on the arcs obeying the capacity constraints and the Kirchhoff rule.
Vxs are trading and each strives to achieve a best trading position.
Instability: (1) some vx can increase its throughput or
(2) a vx can move some flow from a one arc to a better one.
Formally: a flow is stable if no blocking walk exists, i.e. a directed
walk on unsaturated arcs such that both ends of the walk is either
a terminal or can improve its position by moving some flow from a
worse arc onto the walk. Thm A stable flow always exists.



Stable flows

Network flows: generalization of bipartite matching.
Allocation model: (nonintegral) stable matching with capacities.

Model: Digraph, terminals s, t, capacities on the arcs and
preferences on the arcs of the nonterminals. A flow is a function
on the arcs obeying the capacity constraints and the Kirchhoff rule.
Vxs are trading and each strives to achieve a best trading position.
Instability: (1) some vx can increase its throughput or
(2) a vx can move some flow from a one arc to a better one.
Formally: a flow is stable if no blocking walk exists, i.e. a directed
walk on unsaturated arcs such that both ends of the walk is either
a terminal or can improve its position by moving some flow from a
worse arc onto the walk. Thm A stable flow always exists.



Stable flows

Network flows: generalization of bipartite matching.
Allocation model: (nonintegral) stable matching with capacities.
Stability for network flows??

Model: Digraph, terminals s, t, capacities on the arcs and
preferences on the arcs of the nonterminals. A flow is a function
on the arcs obeying the capacity constraints and the Kirchhoff rule.
Vxs are trading and each strives to achieve a best trading position.
Instability: (1) some vx can increase its throughput or
(2) a vx can move some flow from a one arc to a better one.
Formally: a flow is stable if no blocking walk exists, i.e. a directed
walk on unsaturated arcs such that both ends of the walk is either
a terminal or can improve its position by moving some flow from a
worse arc onto the walk. Thm A stable flow always exists.



Stable flows

Model:

Digraph, terminals s, t, capacities on the arcs and
preferences on the arcs of the nonterminals. A flow is a function
on the arcs obeying the capacity constraints and the Kirchhoff rule.
Vxs are trading and each strives to achieve a best trading position.
Instability: (1) some vx can increase its throughput or
(2) a vx can move some flow from a one arc to a better one.
Formally: a flow is stable if no blocking walk exists, i.e. a directed
walk on unsaturated arcs such that both ends of the walk is either
a terminal or can improve its position by moving some flow from a
worse arc onto the walk. Thm A stable flow always exists.



Stable flows

Model: Digraph

, terminals s, t, capacities on the arcs and
preferences on the arcs of the nonterminals. A flow is a function
on the arcs obeying the capacity constraints and the Kirchhoff rule.
Vxs are trading and each strives to achieve a best trading position.
Instability: (1) some vx can increase its throughput or
(2) a vx can move some flow from a one arc to a better one.
Formally: a flow is stable if no blocking walk exists, i.e. a directed
walk on unsaturated arcs such that both ends of the walk is either
a terminal or can improve its position by moving some flow from a
worse arc onto the walk. Thm A stable flow always exists.



Stable flows
s

t

Model: Digraph, terminals s, t

, capacities on the arcs and
preferences on the arcs of the nonterminals. A flow is a function
on the arcs obeying the capacity constraints and the Kirchhoff rule.
Vxs are trading and each strives to achieve a best trading position.
Instability: (1) some vx can increase its throughput or
(2) a vx can move some flow from a one arc to a better one.
Formally: a flow is stable if no blocking walk exists, i.e. a directed
walk on unsaturated arcs such that both ends of the walk is either
a terminal or can improve its position by moving some flow from a
worse arc onto the walk. Thm A stable flow always exists.



Stable flows
s

t

5

5

3

3

33

2
2

3

1

1

3 3

3

55
2

2

2

2

2
2

2 2

2
2

2

22

Model: Digraph, terminals s, t, capacities on the arcs

and
preferences on the arcs of the nonterminals. A flow is a function
on the arcs obeying the capacity constraints and the Kirchhoff rule.
Vxs are trading and each strives to achieve a best trading position.
Instability: (1) some vx can increase its throughput or
(2) a vx can move some flow from a one arc to a better one.
Formally: a flow is stable if no blocking walk exists, i.e. a directed
walk on unsaturated arcs such that both ends of the walk is either
a terminal or can improve its position by moving some flow from a
worse arc onto the walk. Thm A stable flow always exists.



Stable flows
s

t

1

1 1

1

1
1

1

1

1

11

1
1

2 2
2 2

2
2

2

2

2

2

2
2

3 3

3
3

3

3

3

3

3
3

3

4 4

4

4

4
4

42

4

4

3

5

5

6

7

8

5

5

3

3

33

2
2

3

1

1

3 3

3

55
2

2

2

2

2
2

2 2

2
2

2

22

Model: Digraph, terminals s, t, capacities on the arcs and
preferences on the arcs of the nonterminals.

A flow is a function
on the arcs obeying the capacity constraints and the Kirchhoff rule.
Vxs are trading and each strives to achieve a best trading position.
Instability: (1) some vx can increase its throughput or
(2) a vx can move some flow from a one arc to a better one.
Formally: a flow is stable if no blocking walk exists, i.e. a directed
walk on unsaturated arcs such that both ends of the walk is either
a terminal or can improve its position by moving some flow from a
worse arc onto the walk. Thm A stable flow always exists.



Stable flows
s

t

1

1 1

1

1
1

1

1

1

11

1
1

2 2
2 2

2
2

2

2

2

2

2
2

3 3

3
3

3

3

3

3

3
3

3

4 4

4

4

4
4

42

4

4

3

5

5

6

7

8

5
2 3

3

1 1

2

2
2

2

3

3 2

2

1

5

5

3

3

33

2
2

3

1

1

3 3

3

55
2

2

2

2

2
2

2

2
2

2

2 2

2

Model: Digraph, terminals s, t, capacities on the arcs and
preferences on the arcs of the nonterminals. A flow is a function
on the arcs obeying the capacity constraints and the Kirchhoff rule.

Vxs are trading and each strives to achieve a best trading position.
Instability: (1) some vx can increase its throughput or
(2) a vx can move some flow from a one arc to a better one.
Formally: a flow is stable if no blocking walk exists, i.e. a directed
walk on unsaturated arcs such that both ends of the walk is either
a terminal or can improve its position by moving some flow from a
worse arc onto the walk. Thm A stable flow always exists.



Stable flows
s

t

1

1 1

1

1
1

1

1

1

11

1
1

2 2
2 2

2
2

2

2

2

2

2
2

3 3

3
3

3

3

3

3

3
3

3

4 4

4

4

4
4

42

4

4

3

5

5

6

7

8

5
2 3

3

1 1

2

2
2

2

3

3 2

2

1

5

5

3

3

33

2
2

3

1

1

3 3

3

55
2

2

2

2

2
2

2

2
2

2

2 2

2

Model: Digraph, terminals s, t, capacities on the arcs and
preferences on the arcs of the nonterminals. A flow is a function
on the arcs obeying the capacity constraints and the Kirchhoff rule.
Vxs are trading and each strives to achieve a best trading position.

Instability: (1) some vx can increase its throughput or
(2) a vx can move some flow from a one arc to a better one.
Formally: a flow is stable if no blocking walk exists, i.e. a directed
walk on unsaturated arcs such that both ends of the walk is either
a terminal or can improve its position by moving some flow from a
worse arc onto the walk. Thm A stable flow always exists.



Stable flows
s

t

1

1 1

1

1
1

1

1

1

11

1
1

2 2
2 2

2
2

2

2

2

2

2
2

3 3

3
3

3

3

3

3

3
3

3

4 4

4

4

4
4

42

4

4

3

5

5

6

7

8

5
2 3

3

1 1

2

2
2

2

3

3 2

2

1

5

5

3

3

33

2
2

3

1

1

3 3

3

55
2

2

2

2

2
2

2

2
2

2

2 2

2

Model: Digraph, terminals s, t, capacities on the arcs and
preferences on the arcs of the nonterminals. A flow is a function
on the arcs obeying the capacity constraints and the Kirchhoff rule.
Vxs are trading and each strives to achieve a best trading position.
Instability: (1) some vx can increase its throughput or

(2) a vx can move some flow from a one arc to a better one.
Formally: a flow is stable if no blocking walk exists, i.e. a directed
walk on unsaturated arcs such that both ends of the walk is either
a terminal or can improve its position by moving some flow from a
worse arc onto the walk. Thm A stable flow always exists.



Stable flows
s

t

1

1 1

1

1
1

1

1

1

11

1
1

2 2
2 2

2
2

2

2

2

2

2
2

3 3

3
3

3

3

3

3

3
3

3

4 4

4

4

4
4

42

4

4

3

5

5

6

7

8

5
2 3

3

1 1

2

2
2

2

3

3 2

2

1

5

5

3

3

33

2
2

3

1

1

3 3

3

55
2

2

2

2

2
2

2

2
2

2

2 2

2

Model: Digraph, terminals s, t, capacities on the arcs and
preferences on the arcs of the nonterminals. A flow is a function
on the arcs obeying the capacity constraints and the Kirchhoff rule.
Vxs are trading and each strives to achieve a best trading position.
Instability: (1) some vx can increase its throughput or
(2) a vx can move some flow from a one arc to a better one.

Formally: a flow is stable if no blocking walk exists, i.e. a directed
walk on unsaturated arcs such that both ends of the walk is either
a terminal or can improve its position by moving some flow from a
worse arc onto the walk. Thm A stable flow always exists.



Stable flows
s

t

1

1 1

1

1
1

1

1

1

11

1
1

2 2
2 2

2
2

2

2

2

2

2
2

3 3

3
3

3

3

3

3

3
3

3

4 4

4

4

4
4

42

4

4

3

5

5

6

7

8

5
2 3

3

1 1

2

2
2

2

3

3 2

2

1

5

5

3

3

33

2
2

3

1

1

3 3

3

55
2

2

2

2

2
2

2

2
2

2

2 2

2

Model: Digraph, terminals s, t, capacities on the arcs and
preferences on the arcs of the nonterminals. A flow is a function
on the arcs obeying the capacity constraints and the Kirchhoff rule.
Vxs are trading and each strives to achieve a best trading position.
Instability: (1) some vx can increase its throughput or
(2) a vx can move some flow from a one arc to a better one.
Formally: a flow is stable if no blocking walk exists, i.e. a directed
walk on unsaturated arcs such that both ends of the walk is either
a terminal or can improve its position by moving some flow from a
worse arc onto the walk.

Thm A stable flow always exists.



Stable flows
s

t

1

1 1

1

1
1

1

1

1

11

1
1

2 2
2 2

2
2

2

2

2

2

2
2

3 3

3
3

3

3

3

3

3
3

3

4 4

4

4

4
4

42

4

4

3

5

5

6

7

8

5
2 3

3

1 1

2

2
2

2

3

3 2

2

1

5

5

3

3

33

2
2

3

1

1

3 3

3

55
2

2

2

2

2
2

2

2
2

2

2 2

2

Model: Digraph, terminals s, t, capacities on the arcs and
preferences on the arcs of the nonterminals. A flow is a function
on the arcs obeying the capacity constraints and the Kirchhoff rule.
Vxs are trading and each strives to achieve a best trading position.
Instability: (1) some vx can increase its throughput or
(2) a vx can move some flow from a one arc to a better one.
Formally: a flow is stable if no blocking walk exists, i.e. a directed
walk on unsaturated arcs such that both ends of the walk is either
a terminal or can improve its position by moving some flow from a
worse arc onto the walk. Thm A stable flow always exists.



Stable allocations as stable flows

2 1
2

1 1 2 1 2

1 1 2 1 2 1 2 2 1

3 2 2 2
11

11
1 1

1

3

The stable allocation problem is a special case of the stable flow
problem.

Introduce new terminals s and t and high capacity arcs from s to
one color class, and to t from the other color class. Orient all edges
from one color class to the other one and keep preferences. (...)
This way any stable allocation can be naturally transformed into a
stable flow and any stable flow induces a stable allocation on the
original instance.



Stable allocations as stable flows

2 1
2

1 1 2 1 2

1 1 2 1 2 1 2 2 1

3 2 2 2
11

11
1 1

1

3

3 2 2 2
11

11
1 1

1

2 1

3 2
1 1 2 1 2

122121211

The stable allocation problem is a special case of the stable flow
problem.
Introduce new terminals s and t and high capacity arcs from s to
one color class, and to t from the other color class. Orient all edges
from one color class to the other one and keep preferences. (...)
This way any stable allocation can be naturally transformed into a
stable flow and any stable flow induces a stable allocation on the
original instance.



An example

1 1

1

2

2
3

1

1

1

1 1

12

2

2
2

2 1 2

2
2

3 4
s t

a

d

g

h

c

b

f

e

i
j

What is a stable allocation here? (All capacities are 1.)

Directed cycle abc cannot carry any flow as otherwise sa would be
a blocking path.
Directed cycle def can carry any flow between 0 and 1.
Directed cycle hij must carry unit flow as otherwise closed walk hij
would be blocking.
Def: A stable flow is fully stable if no cycle is unsaturated.
A fully stable flow might not exist.
Theorem: Deciding the existence of a fully stable flow is
NP-complete.



An example

1 1

1

2

2
3

1

1

1

1 1

12

2

2
2

2 1 2

2
2

3 4
s t

a

d

g

h

c

b

f

e

i
j

0

0 0

0

1 1
1

1

1

1

0.7

0.7
0.7

What is a stable allocation here? (All capacities are 1.)

Directed cycle abc cannot carry any flow as otherwise sa would be
a blocking path.
Directed cycle def can carry any flow between 0 and 1.
Directed cycle hij must carry unit flow as otherwise closed walk hij
would be blocking.
Def: A stable flow is fully stable if no cycle is unsaturated.
A fully stable flow might not exist.
Theorem: Deciding the existence of a fully stable flow is
NP-complete.



An example

1 1

1

2

2
3

1

1

1

1 1

12

2

2
2

2 1 2

2
2

3 4
s t

a

d

g

h

c

b

f

e

i
j

0

0 0

0

1 1
1

1

1

1

0.7

0.7
0.7

What is a stable allocation here? (All capacities are 1.)
Directed cycle abc cannot carry any flow as otherwise sa would be
a blocking path.
Directed cycle def can carry any flow between 0 and 1.
Directed cycle hij must carry unit flow as otherwise closed walk hij
would be blocking.

Def: A stable flow is fully stable if no cycle is unsaturated.
A fully stable flow might not exist.
Theorem: Deciding the existence of a fully stable flow is
NP-complete.



An example

1 1

1

2

2
3

1

1

1

1 1

12

2

2
2

2 1 2

2
2

3 4
s t

a

d

g

h

c

b

f

e

i
j

0

0 0

0

1 1
1

1

1

1

0.7

0.7
0.7

What is a stable allocation here? (All capacities are 1.)
Directed cycle abc cannot carry any flow as otherwise sa would be
a blocking path.
Directed cycle def can carry any flow between 0 and 1.
Directed cycle hij must carry unit flow as otherwise closed walk hij
would be blocking.
Def: A stable flow is fully stable if no cycle is unsaturated.

A fully stable flow might not exist.
Theorem: Deciding the existence of a fully stable flow is
NP-complete.



An example

1 1

1

2

2
3

1

1

1

1 1

12

2

2
2

2 1 2

2
2

3 4
s t

a

d

g

h

c

b

f

e

i
j

0

0 0

0

1 1
1

1

1

1

0.7

0.7
0.7

What is a stable allocation here? (All capacities are 1.)
Directed cycle abc cannot carry any flow as otherwise sa would be
a blocking path.
Directed cycle def can carry any flow between 0 and 1.
Directed cycle hij must carry unit flow as otherwise closed walk hij
would be blocking.
Def: A stable flow is fully stable if no cycle is unsaturated.
A fully stable flow might not exist.

Theorem: Deciding the existence of a fully stable flow is
NP-complete.



An example

1 1

1

2

2
3

1

1

1

1 1

12

2

2
2

2 1 2

2
2

3 4
s t

a

d

g

h

c

b

f

e

i
j

0

0 0

0

1 1
1

1

1

1

0.7

0.7
0.7

What is a stable allocation here? (All capacities are 1.)
Directed cycle abc cannot carry any flow as otherwise sa would be
a blocking path.
Directed cycle def can carry any flow between 0 and 1.
Directed cycle hij must carry unit flow as otherwise closed walk hij
would be blocking.
Def: A stable flow is fully stable if no cycle is unsaturated.
A fully stable flow might not exist.
Theorem: Deciding the existence of a fully stable flow is
NP-complete.



Stable flows and stable allocations

Possible proof: extension of the Gale-Shapley algorithm.

But...
We deduce the thm from its special case: the Bäıou-Balinski result.
Proof: Split each nonterminal vertex into a receiver and a
transmitter with “high” capacity and introduce new edges with
“high” capacities and “first-last” ranks. We get a bipartite graph
with edge and vertex capacities and inherited preferences. So there
is a stable allocation. The “restriction” of any stable allocation is a
stable flow, and each stable flow can be extended to a “canonical”
stable allocation. �
Facts: (1) Any two stable flows have the same value.
(2) Each arc incident with s or t has the same flow in a stable flow.
(3) The lattice structure of stable allocations can be generalized.



Stable flows and stable allocations

Possible proof: extension of the Gale-Shapley algorithm. But...

We deduce the thm from its special case: the Bäıou-Balinski result.
Proof: Split each nonterminal vertex into a receiver and a
transmitter with “high” capacity and introduce new edges with
“high” capacities and “first-last” ranks. We get a bipartite graph
with edge and vertex capacities and inherited preferences. So there
is a stable allocation. The “restriction” of any stable allocation is a
stable flow, and each stable flow can be extended to a “canonical”
stable allocation. �
Facts: (1) Any two stable flows have the same value.
(2) Each arc incident with s or t has the same flow in a stable flow.
(3) The lattice structure of stable allocations can be generalized.



Stable flows and stable allocations

Possible proof: extension of the Gale-Shapley algorithm. But...
We deduce the thm from its special case: the Bäıou-Balinski result.

Proof: Split each nonterminal vertex into a receiver and a
transmitter with “high” capacity and introduce new edges with
“high” capacities and “first-last” ranks. We get a bipartite graph
with edge and vertex capacities and inherited preferences. So there
is a stable allocation. The “restriction” of any stable allocation is a
stable flow, and each stable flow can be extended to a “canonical”
stable allocation. �
Facts: (1) Any two stable flows have the same value.
(2) Each arc incident with s or t has the same flow in a stable flow.
(3) The lattice structure of stable allocations can be generalized.



Stable flows and stable allocations

5

100

100

2

0

6
0

100

5

5

3
12 3

3

∞ 4

100∞
5

6

5

5

3

4
12

3

5

3

2

5

Possible proof: extension of the Gale-Shapley algorithm. But...
We deduce the thm from its special case: the Bäıou-Balinski result.
Proof: Split each nonterminal vertex into a receiver and a
transmitter with “high” capacity and introduce new edges with
“high” capacities and “first-last” ranks.

We get a bipartite graph
with edge and vertex capacities and inherited preferences. So there
is a stable allocation. The “restriction” of any stable allocation is a
stable flow, and each stable flow can be extended to a “canonical”
stable allocation. �
Facts: (1) Any two stable flows have the same value.
(2) Each arc incident with s or t has the same flow in a stable flow.
(3) The lattice structure of stable allocations can be generalized.



Stable flows and stable allocations

5

100

100

2

0

6
0

100

5

5

3
12 3

3

∞ 4

100∞
5

6

5

5

3

4
12

3

5

3

2

5

Possible proof: extension of the Gale-Shapley algorithm. But...
We deduce the thm from its special case: the Bäıou-Balinski result.
Proof: Split each nonterminal vertex into a receiver and a
transmitter with “high” capacity and introduce new edges with
“high” capacities and “first-last” ranks. We get a bipartite graph
with edge and vertex capacities and inherited preferences.

So there
is a stable allocation. The “restriction” of any stable allocation is a
stable flow, and each stable flow can be extended to a “canonical”
stable allocation. �
Facts: (1) Any two stable flows have the same value.
(2) Each arc incident with s or t has the same flow in a stable flow.
(3) The lattice structure of stable allocations can be generalized.



Stable flows and stable allocations

5

100

100

2

0

6
0

100

5

5

3
12 3

3

∞ 4

100∞
5

6

5

5

3

4
12

3

5

3

2

5

Possible proof: extension of the Gale-Shapley algorithm. But...
We deduce the thm from its special case: the Bäıou-Balinski result.
Proof: Split each nonterminal vertex into a receiver and a
transmitter with “high” capacity and introduce new edges with
“high” capacities and “first-last” ranks. We get a bipartite graph
with edge and vertex capacities and inherited preferences. So there
is a stable allocation.

The “restriction” of any stable allocation is a
stable flow, and each stable flow can be extended to a “canonical”
stable allocation. �
Facts: (1) Any two stable flows have the same value.
(2) Each arc incident with s or t has the same flow in a stable flow.
(3) The lattice structure of stable allocations can be generalized.



Stable flows and stable allocations

5

100

100

2

0

6
0

100

5

5

3
12 3

3

∞ 4

100∞
5

6

5

5

3

4
12

3

5

3

2

5

Possible proof: extension of the Gale-Shapley algorithm. But...
We deduce the thm from its special case: the Bäıou-Balinski result.
Proof: Split each nonterminal vertex into a receiver and a
transmitter with “high” capacity and introduce new edges with
“high” capacities and “first-last” ranks. We get a bipartite graph
with edge and vertex capacities and inherited preferences. So there
is a stable allocation. The “restriction” of any stable allocation is a
stable flow

, and each stable flow can be extended to a “canonical”
stable allocation. �
Facts: (1) Any two stable flows have the same value.
(2) Each arc incident with s or t has the same flow in a stable flow.
(3) The lattice structure of stable allocations can be generalized.



Stable flows and stable allocations

5

100

100

2

0

6
0

100

5

5

3
12 3

3

∞ 4

100∞
5

6

5

5

3

4
12

3

5

3

2

5

Possible proof: extension of the Gale-Shapley algorithm. But...
We deduce the thm from its special case: the Bäıou-Balinski result.
Proof: Split each nonterminal vertex into a receiver and a
transmitter with “high” capacity and introduce new edges with
“high” capacities and “first-last” ranks. We get a bipartite graph
with edge and vertex capacities and inherited preferences. So there
is a stable allocation. The “restriction” of any stable allocation is a
stable flow, and each stable flow can be extended to a “canonical”
stable allocation. �

Facts: (1) Any two stable flows have the same value.
(2) Each arc incident with s or t has the same flow in a stable flow.
(3) The lattice structure of stable allocations can be generalized.



Stable flows and stable allocations

5

100

100

2

0

6
0

100

5

5

3
12 3

3

∞ 4

100∞
5

6

5

5

3

4
12

3

5

3

2

5

Possible proof: extension of the Gale-Shapley algorithm. But...
We deduce the thm from its special case: the Bäıou-Balinski result.
Proof: Split each nonterminal vertex into a receiver and a
transmitter with “high” capacity and introduce new edges with
“high” capacities and “first-last” ranks. We get a bipartite graph
with edge and vertex capacities and inherited preferences. So there
is a stable allocation. The “restriction” of any stable allocation is a
stable flow, and each stable flow can be extended to a “canonical”
stable allocation. �
Facts: (1) Any two stable flows have the same value.

(2) Each arc incident with s or t has the same flow in a stable flow.
(3) The lattice structure of stable allocations can be generalized.



Stable flows and stable allocations

5

100

100

2

0

6
0

100

5

5

3
12 3

3

∞ 4

100∞
5

6

5

5

3

4
12

3

5

3

2

5

Possible proof: extension of the Gale-Shapley algorithm. But...
We deduce the thm from its special case: the Bäıou-Balinski result.
Proof: Split each nonterminal vertex into a receiver and a
transmitter with “high” capacity and introduce new edges with
“high” capacities and “first-last” ranks. We get a bipartite graph
with edge and vertex capacities and inherited preferences. So there
is a stable allocation. The “restriction” of any stable allocation is a
stable flow, and each stable flow can be extended to a “canonical”
stable allocation. �
Facts: (1) Any two stable flows have the same value.
(2) Each arc incident with s or t has the same flow in a stable flow.

(3) The lattice structure of stable allocations can be generalized.



Stable flows and stable allocations

5

100

100

2

0

6
0

100

5

5

3
12 3

3

∞ 4

100∞
5

6

5

5

3

4
12

3

5

3

2

5

Possible proof: extension of the Gale-Shapley algorithm. But...
We deduce the thm from its special case: the Bäıou-Balinski result.
Proof: Split each nonterminal vertex into a receiver and a
transmitter with “high” capacity and introduce new edges with
“high” capacities and “first-last” ranks. We get a bipartite graph
with edge and vertex capacities and inherited preferences. So there
is a stable allocation. The “restriction” of any stable allocation is a
stable flow, and each stable flow can be extended to a “canonical”
stable allocation. �
Facts: (1) Any two stable flows have the same value.
(2) Each arc incident with s or t has the same flow in a stable flow.
(3) The lattice structure of stable allocations can be generalized.



Lattice structure of stable flows

5

100

100

2

0

6
0

100

5

5

3
12 3

3

∞ 4

100∞
5

6

5

5

3

4
12

3

5

3

2

5

If f is a stable flow, then each nonterminal vertex is either a
“customer” or a “vendor” determined by the canonical stable
allocation of f .

Nonterminals have preferences on stable flows.
A customer position is better than a vendor position.
A vendor prefers to transmit more flow.
A customer prefers to transmit less flow.
Otherwise the better selling (worst buying) position is preferred.
Lattice property of stable flows: If two stable flows are given
and each nonterminal picks the better (worse) position from the
two flows then another stable flow is constructed.



Lattice structure of stable flows

5

100

100

2

0

6
0

100

5

5

3
12 3

3

∞ 4

100∞
5

6

5

5

3

4
12

3

5

3

2

5

If f is a stable flow, then each nonterminal vertex is either a
“customer” or a “vendor” determined by the canonical stable
allocation of f . Nonterminals have preferences on stable flows.

A customer position is better than a vendor position.
A vendor prefers to transmit more flow.
A customer prefers to transmit less flow.
Otherwise the better selling (worst buying) position is preferred.
Lattice property of stable flows: If two stable flows are given
and each nonterminal picks the better (worse) position from the
two flows then another stable flow is constructed.



Lattice structure of stable flows

5

100

100

2

0

6
0

100

5

5

3
12 3

3

∞ 4

100∞
5

6

5

5

3

4
12

3

5

3

2

5

If f is a stable flow, then each nonterminal vertex is either a
“customer” or a “vendor” determined by the canonical stable
allocation of f . Nonterminals have preferences on stable flows.
A customer position is better than a vendor position.

A vendor prefers to transmit more flow.
A customer prefers to transmit less flow.
Otherwise the better selling (worst buying) position is preferred.
Lattice property of stable flows: If two stable flows are given
and each nonterminal picks the better (worse) position from the
two flows then another stable flow is constructed.



Lattice structure of stable flows

5

100

100

2

0

6
0

100

5

5

3
12 3

3

∞ 4

100∞
5

6

5

5

3

4
12

3

5

3

2

5

If f is a stable flow, then each nonterminal vertex is either a
“customer” or a “vendor” determined by the canonical stable
allocation of f . Nonterminals have preferences on stable flows.
A customer position is better than a vendor position.
A vendor prefers to transmit more flow.

A customer prefers to transmit less flow.
Otherwise the better selling (worst buying) position is preferred.
Lattice property of stable flows: If two stable flows are given
and each nonterminal picks the better (worse) position from the
two flows then another stable flow is constructed.



Lattice structure of stable flows

5

100

100

2

0

6
0

100

5

5

3
12 3

3

∞ 4

100∞
5

6

5

5

3

4
12

3

5

3

2

5

If f is a stable flow, then each nonterminal vertex is either a
“customer” or a “vendor” determined by the canonical stable
allocation of f . Nonterminals have preferences on stable flows.
A customer position is better than a vendor position.
A vendor prefers to transmit more flow.
A customer prefers to transmit less flow.

Otherwise the better selling (worst buying) position is preferred.
Lattice property of stable flows: If two stable flows are given
and each nonterminal picks the better (worse) position from the
two flows then another stable flow is constructed.



Lattice structure of stable flows

5

100

100

2

0

6
0

100

5

5

3
12 3

3

∞ 4

100∞
5

6

5

5

3

4
12

3

5

3

2

5

If f is a stable flow, then each nonterminal vertex is either a
“customer” or a “vendor” determined by the canonical stable
allocation of f . Nonterminals have preferences on stable flows.
A customer position is better than a vendor position.
A vendor prefers to transmit more flow.
A customer prefers to transmit less flow.
Otherwise the better selling (worst buying) position is preferred.

Lattice property of stable flows: If two stable flows are given
and each nonterminal picks the better (worse) position from the
two flows then another stable flow is constructed.



Lattice structure of stable flows

5

100

100

2

0

6
0

100

5

5

3
12 3

3

∞ 4

100∞
5

6

5

5

3

4
12

3

5

3

2

5

If f is a stable flow, then each nonterminal vertex is either a
“customer” or a “vendor” determined by the canonical stable
allocation of f . Nonterminals have preferences on stable flows.
A customer position is better than a vendor position.
A vendor prefers to transmit more flow.
A customer prefers to transmit less flow.
Otherwise the better selling (worst buying) position is preferred.
Lattice property of stable flows: If two stable flows are given
and each nonterminal picks the better (worse) position from the
two flows then another stable flow is constructed.



Conclusion

Closely related: Ostrovsky has an earlier result on supply chains.
On one hand, he assumed that the network is acyclic.
On the other hand, he could considerably relax the Kirchhoff rule
to so called same side substitutability and cross side
complementarity. His requirement is that each “agent” transmits
goods in a certain monotone manner: buying more means selling
more and vice versa.

Natural question: Common generalization?
Ongoing work with Akihisa Tamura and Zsuzsi Jankó.

Thank you



Conclusion

Closely related: Ostrovsky has an earlier result on supply chains.
On one hand, he assumed that the network is acyclic.
On the other hand, he could considerably relax the Kirchhoff rule
to so called same side substitutability and cross side
complementarity. His requirement is that each “agent” transmits
goods in a certain monotone manner: buying more means selling
more and vice versa.
Natural question: Common generalization?

Ongoing work with Akihisa Tamura and Zsuzsi Jankó.

Thank you



Conclusion

Closely related: Ostrovsky has an earlier result on supply chains.
On one hand, he assumed that the network is acyclic.
On the other hand, he could considerably relax the Kirchhoff rule
to so called same side substitutability and cross side
complementarity. His requirement is that each “agent” transmits
goods in a certain monotone manner: buying more means selling
more and vice versa.
Natural question: Common generalization?

Ongoing work with Akihisa Tamura and Zsuzsi Jankó.

Thank you



Conclusion

Closely related: Ostrovsky has an earlier result on supply chains.
On one hand, he assumed that the network is acyclic.
On the other hand, he could considerably relax the Kirchhoff rule
to so called same side substitutability and cross side
complementarity. His requirement is that each “agent” transmits
goods in a certain monotone manner: buying more means selling
more and vice versa.
Natural question: Common generalization?

Ongoing work with Akihisa Tamura and Zsuzsi Jankó.

Thank you


