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The Hospitals / Residents problem 

and its variants 
 
 
 
 

with applications to Junior Doctor Allocation 
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Primer: computational complexity (1) 
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l Given two functions f and g, we say f(n)=O(g(n)) if there are 
positive constants c and N such that f(n) ≤ c.g(n) for all n≥N 

l An algorithm for a problem has time complexity O(g(n)) if its 
running time f satisfies f(n)=O(g(n)) where n is the input size 

l An algorithm runs in polynomial time if its time complexity is 
O(nc) for some constant c, where n is the input size 

l A decision problem is a problem whose solution is yes or no for 
any input 

l A decision problem belongs to the class P if it has a polynomial-
time algorithm 

l  If a decision problem is NP-complete it has no polynomial-time 
algorithm unless P=NP 



Primer: computational complexity (2) 
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l An optimisation problem is a problem that involves maximising or 
minimising (subject to a suitable measure) over a set of feasible 
solutions for a given instance 

–  e.g., colour a graph using as few colours as possible 

l  If an optimisation problem is NP-hard it has no polynomial-time 
algorithm unless P=NP 

l An approximation algorithm A for an optimisation problem is a 
polynomial-time algorithm that produces a feasible solution A(I) for 
any instance I 

l A has performance guarantee c, for some c>1 if 
–  |A(I)| ≤ c.opt(I) for any instance I (in the case of a minimisation problem) 

–  |A(I)| ≥ (1/c).opt(I) for any instance I (in the case of a maximisation problem) 

where opt(I) is the measure of an optimal solution 



Centralised matching schemes 
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l  Intending junior doctors must undergo training in hospitals 

l Applicants rank hospitals in order of preference 

l Hospitals do likewise with their applicants 

l Centralised matching schemes (clearinghouses) produce a 
matching in several countries 

–  US (National Resident Matching Program) 

–  Canada (Canadian Resident Matching Service) 

–  Japan (Japan Residency Matching Program) 

–  Scotland (Scottish Foundation Allocation Scheme) 

•  typically 700-750 applicants and 50 hospitals 

l Stability is the key property of a matching 
–  [Roth, 1984] 



Tutorial Outline 
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1.1: Classical Hospitals / Residents problem 
 
1.2: Hospitals / Residents problem with Ties 
 
1.3: Hospitals / Residents problem with Couples 
 
1.4: “Almost stable” matchings 
 
1.5: Social Stability 



Tutorial Outline 
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1.1: Classical Hospitals / Residents problem 
 
1.2: Hospitals / Residents problem with Ties 
 
1.3: Hospitals / Residents problem with Couples 
 
1.4: “Almost stable” matchings 
 
1.5: Social Stability 



Hospitals / Residents problem (HR) 
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l Underlying theoretical model: Hospitals / Residents problem (HR) 

l We have n1 residents r1, r2, …, rn1 and n2 hospitals h1, h2, …, hn2 

l Each hospital has a capacity 

l Residents rank hospitals in order of preference, hospitals do 
likewise 

l  r finds h acceptable if h is on r’s preference list, and unacceptable 
otherwise (and vice versa) 

l A matching M is a set of resident-hospital pairs such that: 
1.   (r,h)∈M ⇒ r, h find each other acceptable 
2.   No resident appears in more than one pair 
3.   No hospital appears in more pairs than its capacity 



HR: example instance 
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r1: h2 h1 
r2: h1 h2                 Each hospital has capacity 2 

r3: h1 h3 
r4: h2 h3  h1: r1 r3 r2 r5 r6 
r5: h2 h1  h2: r2 r6 r1 r4 r5 
r6: h1 h2  h3: r4 r3 
 

Resident preferences  Hospital preferences 



HR: example matching 
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r1: h2 h1 
r2: h1 h2                 Each hospital has capacity 2 

r3: h1 h3 
r4: h2 h3  h1: r1 r3 r2 r5 r6 
r5: h2 h1  h2: r2 r6 r1 r4 r5 
r6: h1 h2  h3: r4 r3 
 

Resident preferences  Hospital preferences 

 
M = {(r1, h1), (r2, h2), (r3, h3), (r5, h2), (r6, h1)} (size 5) 



HR: stability 
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l Matching M is stable if M admits no blocking pair 

–  (r,h) is a blocking pair of matching M if: 

1. r, h find each other acceptable 
 

 and 
 

2. either r is unmatched in M 
 or r prefers h to his/her assigned hospital in M 

 

 and 
 

3. either h is undersubscribed in M 
 or h prefers r to its worst resident assigned in M 



HR: blocking pair (1) 
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r1: h2 h1 
r2: h1 h2                 Each hospital has capacity 2 

r3: h1 h3 
r4: h2 h3  h1: r1 r3 r2 r5 r6 
r5: h2 h1  h2: r2 r6 r1 r4 r5 
r6: h1 h2  h3: r4 r3 
 

Resident preferences  Hospital preferences 

 
M = {(r1, h1), (r2, h2), (r3, h3), (r5, h2), (r6, h1)} (size 5) 

 

(r2, h1) is a blocking pair of M 



HR: blocking pair (2) 
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r1: h2 h1 
r2: h1 h2                 Each hospital has capacity 2 

r3: h1 h3 
r4: h2 h3  h1: r1 r3 r2 r5 r6 
r5: h2 h1  h2: r2 r6 r1 r4 r5 
r6: h1 h2  h3: r4 r3 
 

Resident preferences  Hospital preferences 

 
M = {(r1, h1), (r2, h2), (r3, h3), (r5, h2), (r6, h1)} (size 5) 

 

(r4, h2) is a blocking pair of M 



HR: blocking pair (3) 
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r1: h2 h1 
r2: h1 h2                 Each hospital has capacity 2 

r3: h1 h3 
r4: h2 h3  h1: r1 r3 r2 r5 r6 
r5: h2 h1  h2: r2 r6 r1 r4 r5 
r6: h1 h2  h3: r4 r3 
 

Resident preferences  Hospital preferences 

 
M = {(r1, h1), (r2, h2), (r3, h3), (r5, h2), (r6, h1)} (size 5) 

 

(r4, h3) is a blocking pair of M 



HR: stable matching 
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r1: h2 h1 
r2: h1 h2                 Each hospital has capacity 2 

r3: h1 h3 
r4: h2 h3  h1: r1 r3 r2 r5 r6 
r5: h2 h1  h2: r2 r6 r1 r4 r5 
r6: h1 h2  h3: r4 r3 
 

Resident preferences  Hospital preferences 

 
M = {(r1, h2), (r2, h1), (r3, h1), (r4, h3), (r6, h2)} (size 5) 
 

r5 is unmatched 
h3 is undersubscribed 



HR: classical results 
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l A stable matching always exists and can be found in linear time 
[Gale and Shapley, 1962; Gusfield and Irving, 1989] 

l There are resident-optimal and hospital-optimal stable 
matchings 

l Stable matchings form a distributive lattice [Conway, 1976; 
Gusfield and Irving, 1989] 

l  “Rural Hospitals Theorem”: for a given instance of HR: 
1.  the same residents are assigned in all stable matchings; 
2.  each hospital is assigned the same number of residents in all 

stable matchings; 
3.  any hospital that is undersubscribed in one stable matching is 

assigned exactly the same set of residents in all stable matchings. 

–  [Roth, 1984; Gale and Sotomayor, 1985; Roth, 1986] 



Resident-oriented Gale-Shapley algorithm 
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M = ∅; 

while (some resident ri is unmatched and has a non-empty list) 

{  ri applies to the first hospital hj on his list; 

   M = M ∪ {(ri,hj)}; 

   if (hj is over-subscribed) 

   {  rk = worst resident assigned to hj; 

      M = M \ {(rk,hj)}; 

   } 

   if (hj is full) 

   {  rk = worst resident assigned to hj; 

      for (each successor rl of rk on hj’s list) 

      {  delete rl from hj’s list; 

         delete hj from rl’s list;  

      } 

 } 

} 



RGS algorithm: example 
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r1: h2 h1 
r2: h1 h2                 Each hospital has capacity 2 

r3: h1 h3 
r4: h2 h3  h1: r1 r3 r2 r5 r6 
r5: h2 h1  h2: r2 r6 r1 r4 r5 
r6: h1 h2  h3: r4 r3 
 

Resident preferences  Hospital preferences 



RGS algorithm: example 
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r1: h2 h1 
r2: h1 h2                 Each hospital has capacity 2 

r3: h1 h3 
r4: h2 h3  h1: r1 r3 r2 r5 r6 
r5: h2 h1  h2: r2 r6 r1 r4 r5 
r6: h1 h2  h3: r4 r3 
 

Resident preferences  Hospital preferences 

Stable matching: M = {(r1, h2), (r2, h1), (r3, h1), (r4, h3), (r6, h2)}  



Tutorial Outline 
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1.1: Classical Hospitals / Residents problem 
 
1.2: Hospitals / Residents problem with Ties 
 
1.3: Hospitals / Residents problem with Couples 
 
1.4: “Almost stable” matchings 
 
1.5: Social Stability 



Hospitals / Residents problem with Ties 
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l  In practice, residents’ preference lists are short 
l Hospitals’ lists are generally long, so ties may be used – 

Hospitals / Residents problem with Ties (HRT) 
l A hospital may be indifferent among several residents 
l E.g., h1: (r1 r3) r2 (r5 r6 r8) 
l Matching M is stable if there is no pair (r,h) such that: 

1. r, h find each other acceptable 

2. either r is unmatched in M 
 or r prefers h to his/her assigned hospital in M 

3. either h is undersubscribed in M 
 or h prefers r to its worst resident assigned in M 

l A matching M is stable in an HRT instance I if and only if M is 
stable in some instance Iʹ′ of HR obtained from I by breaking the 
ties [M et al, 1999] 



HRT: stable matching (1) 
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r1: h1 h2 
r2: h1 h2                 Each hospital has capacity 2 

r3: h1 h3 
r4: h2 h3  h1: r1 r2 r3 r5 r6 
r5: h2 h1  h2: r2 r1 r6(r4 r5) 
r6: h1 h2  h3: r4 r3 
 

Resident preferences  Hospital preferences 



HRT: stable matching (1) 
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r1: h1 h2 
r2: h1 h2                 Each hospital has capacity 2 

r3: h1 h3 
r4: h2 h3  h1: r1 r2 r3 r5 r6 
r5: h2 h1  h2: r2 r1 r6(r4 r5) 
r6: h1 h2  h3: r4 r3 
 

Resident preferences  Hospital preferences 

 
M = {(r1, h1), (r2, h1), (r3, h3), (r4, h2), (r6, h2)} (size 5) 



HRT: stable matching (2) 
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r1: h1 h2 
r2: h1 h2                 Each hospital has capacity 2 

r3: h1 h3 
r4: h2 h3  h1: r1 r2 r3 r5 r6 
r5: h2 h1  h2: r2 r1 r6(r4 r5) 
r6: h1 h2  h3: r4 r3 
 

Resident preferences  Hospital preferences 

M = {(r1, h1), (r2, h1), (r3, h3), (r4, h3), (r5, h2), (r6, h2)} (size 6) 



Maximum stable matchings 
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l Stable matchings can have different sizes 

l A maximum stable matching can be (at most) twice the size of a 
minimum stable matching 

l Problem of finding a maximum stable matching (MAX HRT) is 
NP-hard [Iwama, M et al, 1999], even if (simultaneously): 

–  each hospital has capacity 1 (Stable Marriage problem with Ties and 
Incomplete Lists) 

–  the ties occur on one side only 
–  each preference list is either strictly ordered or is a single tie 
–  and 

•  either each tie is of length 2 [M et al, 2002] 
•  or each preference list is of length ≤3 [Irving, M, O’Malley, 2009] 

l Minimisation problem is NP-hard too, for similar restrictions!     
[M et al, 2002] 



Master lists 
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l  In practice there may be a common ranking of residents according 
to some objective criteria (e.g., academic ability) – a master list 

l Each hospital’s preference list is then derived from this master list 

l Depending on how fine-grained the scoring system is, ties may 
arise as a result of residents having equal scores 

l MAX HRT is NP-hard even if (simultaneously): 
–  each hospital’s preference list is derived from a master list of residents 
–  each resident’s preference list is derived from a master list of hospitals 
–  each hospital has capacity 1 
–  and 

•  either there is only a single tie that occurs in one of the master lists 
•  or the ties occur in one master list only and are of length 2 

[Irving, M and Scott, 2008] 



MAX HRT: approximability 
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l MAX HRT is not approximable within 33/29 unless P=NP, even if 
each hospital has capacity 1 [Yanagisawa, 2007] 

l MAX HRT is not approximable within 4/3-ε assuming the Unique 
Games Conjecture (UGC) [Yanagisawa, 2007] 

l Trivial 2-approximation algorithm for MAX HRT  

l Succession of papers gave improvements, culminating in: 

l MAX HRT is approximable within 3/2 [McDermid, 2009; Király, 
2012; Paluch 2012] 

l Experimental comparison of approximation algorithms and 
heuristics for MAX HRT [Irving and M, 2009] 



Integer Programming for MAX HRT 
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l  Model developed by Augustine Kwanashie (2012) 
l  Solved using CPLEX IP solver 
l  IP models of HRT instances with tie density of about 85% are the most likely to 

be computationally hard 
l  Figure below shows median computation times for increasing sizes of 10 HRT 

instances each with 85% tie density (all preference lists of length 5) 

l  Real world SFAS datasets were also solved using the IP model. 



Tutorial Outline 
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1.1: Classical Hospitals / Residents problem 
 
1.2: Hospitals / Residents problem with Ties 
 
1.3: Hospitals / Residents problem with Couples 
 
1.4: “Almost stable” matchings 
 
1.5: Social Stability 



Couples in HR 
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l Pairs of residents who wish to be matched to geographically close 
hospitals form couples 

l Each couple (ri,rj) ranks in order of preference a set of pairs of 
hospitals (hp,hq) representing the assignment of ri to hp and rj to hq  

l Stability definition may be extended to this case [Roth, 1984; 
McDermid and M, 2010; Biró et al, 2011] 

l Gives the Hospitals / Residents problem with Couples (HRC) 

l A stable matching need not exist: 

     (r1,r2): (h1,h2)  h1:1: r1 r3 r2 
          r3: (h1 h2   h2:1: r1 r3 r2 
 

 



Couples in HR 
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l Pairs of residents who wish to be matched to geographically close 
hospitals form couples 

l Each couple (ri,rj) ranks in order of preference a set of pairs of 
hospitals (hp,hq) representing the assignment of ri to hp and rj to hq  

l Stability definition may be extended to this case [Roth, 1984; 
McDermid and M, 2010; Biró et al, 2011] 

l Gives the Hospitals / Residents problem with Couples (HRC) 

l A stable matching need not exist: 

     (r1,r2): (h1,h2)  h1:1: r1 r3 r2 
          r3: (h1 h2   h2:1: r1 r3 r2 
 

l Stable matchings can have different sizes 
 



Couples in HR 

33 

l Pairs of residents who wish to be matched to geographically close 
hospitals form couples 

l Each couple (ri,rj) ranks in order of preference a set of pairs of 
hospitals (hp,hq) representing the assignment of ri to hp and rj to hq  

l Stability definition may be extended to this case [Roth, 1984; 
McDermid and M, 2010; Biró et al, 2011] 

l Gives the Hospitals / Residents problem with Couples (HRC) 

l A stable matching need not exist: 

     (r1,r2): (h1,h2)  h1:1: r1 r3 r2 
          r3: (h1 h2   h2:1: r1 r3 r2 
 

l Stable matchings can have different sizes 
 



Couples in HR 
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l The problem of determining whether a stable matching exists in a 
given HRC instance is NP-complete, even if each hospital has 
capacity 1 and: 

–  there are no single residents 
[Ng and Hirschberg, 1988; Ronn, 1990] 

–  there are no single residents, and 
–  each couple has a preference list of length ≤2, and 
–  each hospital has a preference list of length ≤3 
[M and McBride, 2013] 
 
–  the preference list of each single resident, couple and hospital is 

derived from a strictly ordered master list of hospitals, pairs of 
hospitals and residents respectively [Biró et al, 2011], and 

–  each preference list is of length ≤3, and 
–  the instance forms a “dual market” 

[M and McBride, 2013] 

 



Algorithm for HRC 
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l Algorithm C described in [Biró et al, 2011]: 
l A Gale-Shapley like heuristic 
l An agent is a single resident or a couple 
l Agents apply to entries on their preference lists 
l When a member of an assigned couple is rejected their partner 

must withdraw from their assigned hospital 
l This creates a vacancy – so any resident previously rejected by 

the hospital in question may have to be reconsidered 
l The algorithm need not terminate 

–  if it terminates, the matching found is guaranteed to be stable 
–  it cannot terminate if there is no stable matching 
–  it need not terminate even if there is a stable matching 



Algorithm C: example 
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Resident preferences 
    r3  :  h1 h5  

    r7  :  h6 h8  

(r1,r5) : (h1,h2) (h3,h6) 
(r2,r4) : (h4,h5) (h1,h2) (h3,h7) 
(r6,r8) : (h6,h8) 
 

Hospital preferences derived from the following master list: 
r1 r2 r3 r4 r5 r6 r7 r8 
 

Each hospital has capacity 1 

cycle 



Stable matching 
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Resident preferences 
    r3  :  h1 h5  

    r7  :  h6 h8  

(r1,r5) : (h1,h2) (h3,h6) 
(r2,r4) : (h4,h5) (h1,h2) (h3,h7) 
(r6,r8) : (h6,h8) 
 

Hospital preferences 
r1 r2 r3 r4 r5 r6 r7 r8 
 

Each hospital has capacity 1 

Stable matching: M = {(r1, h3), (r2, h1), (r3, h5), (r4, h2), (r5, h6), (r7, h8)} 



Empirical evaluation 
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l Extensive empirical evaluation due to [Biró et al, 2011]: 
l Compared 5 variants of Algorithm C against 10 other algorithms 
l  Instances generated with varying: 
―  sizes 
―  numbers of couples 
―  densities of the “compatibility matrix” 
―  lengths of time given to each instance 

l Measured proportion of instances found to admit a stable 
matching 

l Clear conclusion: 
―  high likelihood of finding a stable matching (with Algorithm C) if 

the number / proportion of couples is low 



Integer Programming for HRC 
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l  Model developed by Iain McBride (2013) 
l  Solved using CPLEX IP solver 
l  Random instances, scalability (preference lists of length between 5 and 10): 

―  5000 residents, 500 hospitals, 500 couples, 5000 posts (x25) 
•  solved in 99.6 seconds on average 

―  10000 residents, 1000 hospitals, 1000 couples, 10000 posts (x1) 
•  solved in 10 minutes 

l  Random instances, solvability / sizes of  
largest stable matchings found: 
―  500 residents, 50 hospitals, 250  

couples, 500 posts (x1000) 
•  around 70% of instances were solvable 
•  Average time taken 75s per instance 

l  SFAS instances: 
―  2012: 710 residents, stable matching of size 681 found in 16s 
―  2011: 736 residents, stable matching of size 688 found in 17s 
―  2010: 734 residents, stable matching of size 681 found in 65s 



Scottish Foundation Allocation Scheme 
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l Set of applicants and programmes (residents and  
hospitals) 

l Up to 2012: each applicant 
–  ranks 10 programmes in strict order of preference 
–  has a score in the range 40..100 

l Two applicants can link their applications 
–  preferences are interleaved in a precise way to form their joint 

preference list 
–  only compatible programmes appear on joint preference list 

l Each programme 
–  has a capacity indicating the number of posts it has 
–  has a preference list derived from the above scoring function 
–  so ties are possible 



The outcome 
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l Round 1 
– 710 applicants 
– 52 programmes with a total of 720 posts 
– 17 linked pairs 
– Stable matching found 
– Solution found matched 683 applicants, including all linked pairs 

l Round 2 
– 27 applicants 
– 37 posts remaining at 10 programmes 
– No linked pairs 
– Applicants ranked all remaining programmes 
– Stable matching found 
– Solution found matched all remaining applicants 



Tutorial Outline 
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1.1: Classical Hospitals / Residents problem 
 
1.2: Hospitals / Residents problem with Ties 
 
1.3: Hospitals / Residents problem with Couples 
 
1.4: “Almost stable” matchings 
 
1.5: Social Stability 



Maximum matchings vs stable matchings 

l Maximum matchings can be twice the size of stable matchings 

l Example (each hospital has capacity 1): 

 

r1: h1 h2     h1: r1 r2 
r2: h1 2      h2: r1 



Maximum matchings vs stable matchings 
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l Maximum matchings can be twice the size of stable matchings 

l Example (each hospital has capacity 1): 

 

r1: h1 h2     h1: r1 r2 
r2: h1  1     h2: r1 

r1 

r2 

h1 

h2 

r1: h1 h2     h1: r1 r2 
r2: h1 2      h2: r1 

r1 

r2 

h1 

h2 

 stable matching  maximum matching 



Maximum matchings vs stable matchings 

l A small number of blocking pairs could be tolerated if it is 
possible to find a larger matching 

l But, different maximum matchings can have different numbers of 
blocking pairs 

l Example: 
(each hospital  
has capacity 1) 

l Every stable matching has size 3 

 

r1: h4 h1 h3       h1: r4 r1 r2 
r2: h2 h1 h4       h2: r3 r2 r4 
r3: h2 h4 h3       h3: r1 r3 
r4: h1 h4 h2       h4: r4 r1 r3 r2 



Maximum matchings vs stable matchings 

l A small number of blocking pairs could be tolerated if it is 
possible to find a larger matching 

l But, different maximum matchings can have different numbers of 
blocking pairs 

l Example: 
(each hospital  
has capacity 1) 

l Maximum matching M1={(r1,h1), (r2,h2), (r3,h3), (r4,h4)} 

l Blocking pairs of M1: (r3,h2), (r4,h1)   (2) 

r1: h4 h1 h3       h1: r4 r1 r2 
r2: h2 h1 h4       h2: r3 r2 r4 
r3: h2 h4 h3       h3: r1 r3 
r4: h1 h4 h2       h4: r4 r1 r3 r2 



Maximum matchings vs stable matchings 

l A small number of blocking pairs could be tolerated if it is possible 
to find a larger matching 

l But, different maximum matchings can have different numbers of 
blocking pairs 

l Example: 
(each hospital  
has capacity 1) 

l Maximum matching M2={(r1,h1), (r2,h4), (r3,h3), (r4,h2)} 

l Blocking pairs of M2: (r1,h4), (r2,h2), (r3,h2), (r3,h4), (r4,h1), (r4,h4)   (6) 

r1: h4 h1 h3       h1: r4 r1 r2 
r2: h2 h1 h4       h2: r3 r2 r4 
r3: h2 h4 h3       h3: r1 r3 
r4: h1 h4 h2       h4: r4 r1 r3 r2 



Maximum matchings vs stable matchings 

l A small number of blocking pairs could be tolerated if it is possible 
to find a larger matching 

l But, different maximum matchings can have different numbers of 
blocking pairs 

l Example: 
(each hospital  
has capacity 1) 

l Maximum matching M3={(r1,h4), (r2,h2), (r3,h3), (r4,h1)} 

l Blocking pairs of M3: (r3,h2)    (1) 

r1: h4 h1 h3       h1: r4 r1 r2 
r2: h2 h1 h4       h2: r3 r2 r4 
r3: h2 h4 h3       h3: r1 r3 
r4: h1 h4 h2       h4: r4 r1 r3 r2 



“Almost stable” matchings 

l Given an instance of HR, the problem is to find a maximum 
matching that is “almost stable”, i.e., admits the minimum number 
of blocking pairs 

l The problem is: 
–   NP-hard 

•  even if every preference list is of length ≤3 
–  not approximable within n1-ε, for any ε > 0, unless P=NP, where 

n is the number of residents 
–  solvable in polynomial time if each resident’s list is of length ≤2 

l  In all cases the result is true if each hospital has capacity 1 

l  [Biro, M and Mittal, 2010] 



Tutorial Outline 

50 

1.1: Classical Hospitals / Residents problem 
 
1.2: Hospitals / Residents problem with Ties 
 
1.3: Hospitals / Residents problem with Couples 
 
1.4: “Almost stable” matchings 
 
1.5: Social Stability 



The Social Network Graph 
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l A blocking pair (r,h) of a matching M may not necessarily lead to 
M being undermined in practice 

–  Especially if r and h are unaware of each other’s preference list 

l Consider an HR instance I augmented by a social network graph 
–  A bipartite graph comprising a subset of the acceptable resident-

hospital pairs that have some social ties 

l A resident-hospital pair is acquainted if  
they form an edge in the social network  
graph, and unacquainted otherwise 

 
l Unacquainted pairs cannot block a matching 

1

2

3

4

5

6

1

2

3

Social network graph G 

Residents Hospitals 



Example 
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l Example: 

r1: h2 h1 
r2: h1 h2                 Each hospital has capacity 2 

r3: h1 h3 
r4: h2 h3  h1: r1 r3 r2 r5 r6 
r5: h2 h1  h2: r2 r6 r1 r4 r5 
r6: h1 h2  h3: r4 r3 
 

Resident preferences  Hospital preferences 
 
l Unacquainted pairs: {(r1,h2), (r3,h1), (r5,h2)} 
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l Example: 

r1: h2 h1 
r2: h1 h2                 Each hospital has capacity 2 

r3: h1 h3 
r4: h2 h3  h1: r1 r3 r2 r5 r6 
r5: h2 h1  h2: r2 r6 r1 r4 r5 
r6: h1 h2  h3: r4 r3 
 

Resident preferences  Hospital preferences 
 
l Unacquainted pairs: {(r1,h2), (r3,h1), (r5,h2)} 

l  (r3,h1) is no longer allowed to block the matching 
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l A pair (r,h) socially blocks a matching M if: 
–  (r,h) blocks M in the classical sense 
–  (r,h) is an acquainted pair 

l M is socially stable if it has no social blocking pair 

l An instance of the Hospitals / Residents problem under Social 
Stability (HRSS) comprises an HR instance I and a social 
network graph G 

l Given an HRSS instance (I,G), any stable matching in I is 
socially stable in (I,G) 
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l Example: 

r1: h2 h1 
r2: h1 h2                 Each hospital has capacity 2 

r3: h1 h3 
r4: h2 h3  h1: r1 r3 r2 r5 r6 
r5: h2 h1  h2: r2 r6 r1 r4 r5 
r6: h1 h2  h3: r4 r3 
 

Resident preferences  Hospital preferences 
 
l Socially stable matching of size 6 
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l Example: 

r1: h2 h1 
r2: h1 h2                 Each hospital has capacity 2 

r3: h1 h3 
r4: h2 h3  h1: r1 r3 r2 r5 r6 
r5: h2 h1  h2: r2 r6 r1 r4 r5 
r6: h1 h2  h3: r4 r3 
 

Resident preferences  Hospital preferences 
 
l Stable matching of size 5 
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l The problem of finding a maximum socially stable matching, 
given an instance of HRSS, is: 

–  NP-hard, even if all preference lists are of length ≤3 and each hospital has 
capacity 1 

–  solvable in polynomial-time if: 

•  each resident’s list is of length ≤2, or 

•  the number of acquainted pairs is constant, or 

•  the number of unacquainted pairs is constant 

–  approximable within 3/2 

–  not approximable better than 3/2 assuming the Unique Games Conjecture 

–  [Askalidis, Immorlica, Kwanashie, M and Pountourakis, 2013] 
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l Approximation algorithm for MAX HRT with performance guarantee 
< 3/2? 
–  consider special cases: 

•  ties on one side only 
•  master lists 

l To cope with the complexity of HRC, try to find a matching that is 
“as stable as possible” 
–  one possibility: find a matching with the minimum number of 

blocking pairs 
– problem is NP-hard 
– approximability is open 

l  Acknowledgement: thanks to Iain McBride and Augustine Kwanashie 
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l  Chapters 3, 5 
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