

University
of Glasgow
Outline

1. The Hospitals / Residents problem and its variants

2. The House Allocation problem
3. Kidney exchange

Kidney exchange

- Let $G=(V, E)$ be a graph
- A colouring of G is a function $f: V \rightarrow\{1,2, \ldots, k\}$, for some integer k, such that $f(u) \neq f(v)$ whenever $\{u, v\} \in E$
- The problem is to minimise k over all colourings of G
- Example:
- The graph colouring problem is NP-hard
- One possibility: solve the problem using integer programming
- Integer programming:

Objective function
$-\min \mathbf{c}^{\mathrm{T}} \mathbf{x}$ subject to $A \mathbf{x} \leq \mathbf{b}$

- where $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)^{\mathrm{T}}, \mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}, \mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{m}\right)^{\mathrm{T}}$
$A=\left(a_{i j}\right)(1 \leq i \leq m, 1 \leq j \leq n)$, the $c_{i}, a_{i j}$ and b_{j} are real-valued known coefficients and the x_{i} are integer-valued variables
- Linear programming: relaxation in which x_{i} are real-valued
- solvable in polynomial time
- General integer programming problem is NP-hard
- but there are some powerful solvers
- Back to the graph colouring problem
- Suppose $|\boldsymbol{V}|=n$. No colouring can use more than n colours.
- Define the following binary variables:

$$
\begin{aligned}
& x_{v, c}=\left\{\begin{array}{ll}
1 & \text { if vertex } v \text { has colour } c \\
0 & \text { otherwise }
\end{array} \quad \forall v \in V, \forall c(1 \leq c \leq n)\right. \\
& y_{c}=\left\{\begin{array}{ll}
1 & \text { if colour } c \text { is used } \\
0 & \text { otherwise }
\end{array} \forall c(1 \leq c \leq n)\right.
\end{aligned}
$$

- Define the following integer program:

Minimise number of colours

$$
x_{u, c}+x_{v, c} \leq 1 \curvearrowright \forall c(1 \leq c \leq n) \quad \forall\{u, v\} \in E
$$

$$
\text { If colour } c \text { is used then } y_{c}=1 \quad n y_{c} \geq \sum_{v \in V} x_{v, c} \quad \forall c(1 \leq c \leq n)
$$

$$
x_{v, c} \in\{0,1\} \quad \forall v \in V, \forall c(1 \leq c \leq n) \quad y_{c} \in\{0,1\} \quad \forall c(1 \leq c \leq n)
$$

- Treatment
- Dialysis
- Transplantation
- Need for donors
- 6325 on active transplant list as of 31 March 2013
- Median waiting time: 1168 days (adults), 354 days (children) [based on patient registrations during
 1 April 2005-31 March 2009]
- Deceased donors
- 1916 transplants from deceased donors between 1 April 2012 and 31 March 2013
- Living donors
- 1068 transplants from living donors between 1 April 2012 and 31 March 2013
- 36% of all donations from living donors,
- But: blood type incompatibility (e.g. A \rightarrow B)
- Positive crossmatch (tissue-type incompatibility)
- Source of figures: NHS Blood and Transplant (NHSBT)
- Prior to 1 September 2006, transplants could only take place between those with a genetic or emotional connection
- Human Tissue Act 2004 and Human Tissue (Scotland) Act 2006:
- legal framework created to allow transplants between strangers
- New possibilities for live-donor transplants:
- Paired kidney donation: a patient with a willing but incompatible donor can swap their donor with that of another similar patient
- Altruistic (non-directed) donors
- they can donate directly to the deceased donor waiting list (DDWL)
- they can trigger domino paired donation (DPD) chains

University
of Glasgow

- Portsmouth / Plymouth 2007

- 4 December 2009

Kidney exchange programs around the world

- US Programs:
- New England Program for Kidney Exchange since 2004
- Alliance for Paired Donation
- [Roth, Sönmez and Ünver, 2004, 2005]
- Dec 2010: first exchanges performed as part of a national pilot program by the Organ Procurement and Transplantation Network
- Mostly involving pairwise and 3-way exchanges, but sometimes even longer (a 6-way exchange was performed in April 2008)
- Other countries:
- The Netherlands
- [Keizer, de Klerk, Haase-Kromwijk and Weimar, 2005; Glorie, Wagelmans and van de Klundert, 2012]
- South Korea
- Romania
- UK
- National Living Donor Kidney Sharing Schemes (NHS Blood and Transplant)
- [M and O'Malley, 2012]
- Cycles should be as short as possible
- We consider patient-donor pairs as single vertices of a directed graph $D=(\boldsymbol{V}, \boldsymbol{A})$

- $(i, j) \in A$ if and only if donor i is compatible with patient j
- 2-cycles and 3-cycles in D correspond to pairwise and 3-way exchanges (no cycles of length >3 permitted)
- Arc weights can likelihood of success of corresponding transplants, patient priorities etc.
- Input: n agents; each agent ranks a subset of the others in strict order
- Output: a stable matching

Definitions

- A matching is a set of disjoint pairs of acceptable pairs of agents
- A blocking pair of a matching M is an acceptable pair of agents $\left\{a_{i}, a_{j}\right\} \notin M$ such that:
- a_{i} is unmatched or prefers a_{j} to his partner in M, and
- a_{j} is unmatched or prefers a_{i} to his partner in M
- A matching is stable if it admits no blocking pair

University of Glasgow

Connection with kidney exchange

- Here agent a_{i} corresponds to donor-patient pair $\left(d_{i}, p_{i}\right)$
- a_{i} finds a_{j} acceptable if and only if d_{i} is compatible with p_{j}
- Preference lists can reflect varying level of compatibility
- A matching is then a set of pairwise exchanges
- Example SR instance \boldsymbol{I}_{1} :

$$
\begin{aligned}
& a_{1}: a_{3} \\
& a_{2}: a_{2} \\
& a_{4} \\
& a_{3} \\
& a_{3}
\end{aligned} a_{3} a_{1} a_{1} a_{1} a_{4},
$$

Connection with kidney exchange

- Here agent a_{i} corresponds to donor-patient pair $\left(d_{i}, p_{i}\right)$
- a_{i} finds a_{j} acceptable if and only if d_{i} is compatible with p_{j}
- Preference lists can reflect varying level of compatibility
- A matching is then a set of pairwise exchanges
- Example SR instance I_{1} :

- The matching is not stable as $\left\{a_{1}, a_{3}\right\}$ blocks

Connection with kidney exchange

- Here agent a_{i} corresponds to donor-patient pair $\left(d_{i}, p_{i}\right)$
- a_{i} finds a_{j} acceptable if and only if d_{i} is compatible with p_{j}
- Preference lists can reflect varying level of compatibility
- A matching is then a set of pairwise exchanges
- Example SR instance \boldsymbol{I}_{1} :

$$
\begin{array}{lll}
a_{1}: & a_{3} & a_{2} \\
a_{2}: & a_{4} \\
a_{2}: a_{4} & a_{3} & a_{1} \\
a_{3}: & a_{2} & a_{1} \\
a_{4} & a_{4} \\
a_{4}: a_{1} & a_{3} & a_{2}
\end{array}
$$

- Stable matching
- Example SR instance I_{2} :

$$
\begin{array}{ll}
a_{1}: a_{3} & a_{2} \\
a_{2}: a_{4} \\
a_{1} & a_{3} \\
a_{3}: a_{4} & a_{1} \\
a_{4}: a_{4} & a_{1} \\
a_{2} & a_{3}
\end{array}
$$

- Example SR instance I_{2} :

- The matching is not stable as $\left\{a_{1}, a_{3}\right\}$ blocks
- Example SR instance I_{2} :

- The matching is not stable as $\left\{a_{2}, a_{3}\right\}$ blocks

University of Glasgow

- Example SR instance I_{2} :

- The matching is not stable as $\left\{a_{1}, a_{2}\right\}$ blocks
- Example SR instance I_{2} :

$$
\begin{array}{ll}
a_{1}: a_{3} & a_{2} \\
a_{2}: a_{4} \\
a_{3} & a_{3} \\
a_{3} & a_{2} \\
a_{4} & a_{1} \\
a_{4}: a_{1} & a_{2}
\end{array} a_{3}
$$

- So no stable matching exists
- [Irving, 1985]: $\mathbf{O}(m)$ algorithm to find a stable matching or report that none exists, where m is the total length of the preference lists
- Drawbacks of the model:
- Ordinal preferences
- Pairwise exchanges only
- Potential non-existence of a solution

NHS Blood and Transplant’s scoring system

A score ≥ 0 is given to each arc (i, j) :

- Waiting time
- $\mathbf{5 0 \times} \times$ number of previous matching runs that p_{j} has been involved in
- Sensitisation points (0-50)
- Based on calculated sensitisation ("panel reactive antibody") test \% for p_{j} divided by 2
- HLA mismatch points (0,5,10 or 15)
- HLA ("Human Leukocyte Antigen") mismatch levels determine tissue-type incompatibility between d_{i} and p_{j}
- Donor-donor age difference (0 or 3)
-3 points if $\left|\operatorname{age}\left(d_{i}\right)-\operatorname{age}\left(d_{j}\right)\right| \leq 20$ years, 0 otherwise
- "Final discriminator" involving actual donor-donor age difference

- Patients with multiple donors
- e.g., both parents (d_{1} and d_{2}) are willing donors for their child $\left(p_{1}\right)$

- at most one of d_{1} and d_{2} should be used!
- Minimising the number of 3-way exchanges

is less risky than

- A 3-way exchange with a back-arc has an embedded pairwise exchange

- If $\left(d_{1}, p_{1}\right)$ drops out then the embedded pairwise exchange could still proceed
- So the pairwise exchange involving (d_{2}, p_{2}) and $\left(d_{3}, p_{3}\right)$ could be "extended" to a 3-way exchange involving $\left(d_{1}, p_{1}\right)$ too, with relatively little additional risk
- If either $\left(d_{2}, p_{2}\right)$ or $\left(d_{3}, p_{3}\right)$ drops out then drops out then the pairwise exchange would have failed in any case

Domino paired donation chains

- Altruistic donors can trigger "domino paired donation chains" (DPD chains)

- Altruistic donors can trigger "domino paired donation chains" (DPD chains)

- At most one altruistic donor per cycle!
- A set of exchanges is a permutation π of V into cycles of length ≤ 3 such that $i \neq \pi(i)$ implies $(i, \pi(i)) \in A(D)$
- A vertex $i \in V$ is covered by π if $i \neq \pi(i)$
- A set of exchanges is optimal if

1. the number of effective pairwise exchanges (i.e., no. pairwise exchanges plus no. 3-way exchanges with a back-arc) is maximised
2. subject to (1), the number of vertices covered by π (i.e., the total number of transplants) is maximised
3. subject to (1)-(2), the number of 3-way exchanges is minimised
4. subject to (1)-(3), the number of back-arcs in the 3-way exchanges is maximised
5. subject to (1)-(4), the overall weight is maximised.

1: Maximising pairwise exchanges

- We transform the directed graph D to an undirected graph G

- A maximum (cardinality) matching in G corresponds to a maximum set of pairwise exchanges in D
- The problem of finding a maximum matching in G can be solved in polynomial time by Edmonds' algorithm
- [Micali and Vazirani, 1980]
- Let N_{2} be the size of a maximum matching M in G

2: Maximising overall number of transplants

- Maximising the overall number of vertices covered by π
- Finding a maximum cycle cover in D involving only 2 - and 3-cycles is:
- NP-hard
- [Abraham, Blum and Sandholm, 2007]
- APX-hard
- [Biró, M and Rizzi, 2009]

- Heuristics are not acceptable
- must find an optimal solution
- Exponential-time exact algorithm
- avoid trying out all possibilities
- use integer programming
- [M and O'Malley, 2012]

- We create an integer program as follows:
- list all the possible cycles (exchanges) of lengths 2 and 3 in the directed graph as $C_{1}, C_{2}, \ldots, C_{m}$
- use binary variables $x_{1}, x_{2}, \ldots, x_{m}$
- where $x_{i}=1$ if and only if C_{i} belongs to an optimal solution
- build an $n \times m$ matrix A where $n=|V|$ and $A_{i, j}=1$ if and only if v_{i} is incident to C_{j}
- let b be an $n \times 1$ vector of 1 s
- let c be a $1 \times m$ vector of values corresponding to the optimisation criterion, e.g., c_{j} could be the length of C_{j}
- Then solve max $c x$ such that $A x \leq b$, subject to $x \in\{0,1\}^{m}$
- [Roth, Sönmez and Ünver, 2007]
$\max c x$
s.t. $A x \leq b$ and $x_{i} \in\{0,1\}$
where

$$
\begin{aligned}
& A=\left[\begin{array}{llll|lll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right], \quad x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right] \text { and } \\
& c_{s}=\left[\begin{array}{llll|lll}
2 & 2 & 2 & 2 & 3 & 3 & 3
\end{array}\right]
\end{aligned}
$$

$\max c x$
s.t. $A x \leq b$
and $x_{i} \in\{0,1\}$
where

$$
\begin{aligned}
& A=\left[\begin{array}{llll|lll}
1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right] \quad x=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right] \text { and } \\
& c_{s}=\left[\begin{array}{llll|lll}
2 & 2 & 2 & 2 & 3 & 3 & 3
\end{array}\right] \quad \max c_{s} x=5
\end{aligned}
$$

- Suppose that, in D :
- the 2-cycles are $C_{1}, \ldots, C_{n_{2}}$
- the 3-cycles are $C_{n_{2}+1}, \ldots, C_{n_{2}+n_{3}}$
- the 3-cycles with back-arcs are $C_{n_{2}+1}, \ldots, C_{n_{2}+n_{b}}\left(n_{b} \leq n_{3}\right)$
- Add the following constraint to the ILP and solve:

$$
x_{1}+\ldots+x_{n_{2}+n_{b}} \geq N_{2}
$$

- Let $N_{2,3}$ be the maximum number of vertices covered by π (i.e., the number of transplants given by an optimal solution)
- Add the following constraint to the ILP:

$$
2 x_{1}+\ldots+2 x_{n_{2}}+3 x_{n_{2}+1}+\ldots+3 x_{n_{2}+n_{3}} \geq N_{2,3}
$$

- Example

3: Minimising number of 3-way exchanges

- An optimal solution involves 9 transplants

achievable by 3 three-way exchanges

or by 3 pairwise and 1 three-way exchange

- Both solutions have 3 effective pairwise exchanges

3: Minimising number of 3-way exchanges

- Let $c_{i}=0\left(1 \leq i \leq n_{2}\right)$, let $c_{i}=1\left(n_{2}+1 \leq i \leq n_{2}+n_{3}\right)$ and solve the ILP (objective is to minimise)
- Let N_{3} be the number of 3-way exchanges used in an optimal solution
- Add the following constraint to the ILP:

$$
x_{n_{2}+1}+\ldots+x_{n_{2}+n_{3}} \leq N_{3}
$$

4: Maximising number of back-arcs

- E.g.

- Let $c_{i}=0\left(1 \leq i \leq n_{2}\right)$ and let $c_{i}=k_{i}\left(n_{2}+1 \leq i \leq n_{2}+n_{3}\right)$ where k_{i} is the number of back-arcs in C_{i} and solve the ILP (objective is to maximise)
- Let N_{B} be the number of back-arcs in an optimal solution
- Add the following constraint to the ILP:

$$
k_{n_{2}+1} x_{n_{2}+1}+\ldots+k_{n_{2}+n_{3}} x_{n_{2}+n_{3}} \geq N_{B}
$$

- Let c_{i} be the weight of C_{i} (sum of the weights of the arcs in C_{i})
- Solve the ILP (objective is to maximise)
- Many free and proprietary solvers on the market
- Difference in performance can be significant

- Cost of many commercial solvers can easily reach >€100k depending on the deployment environment
- We opted for COIN-Cbc
- Open-source solver library written in C++

- Software implemented in C++ using the following packages:
- COIN-Cbc (ILP solver)
- LEMON (graph matching library for maximum matching)
- Ruby on Rails framework for web service
- Google Test (testing framework)
- Data formats for input / output:
- XML or JSON
- Called via the SOAP or REST protocols
- Software can be deployed on Windows, Linux or Solaris
- Demonstration version hosted at kidney.optimalmatching.com
- Running time under 1 second for all real data sets to date
- http://kidney.optimalmatching.com

KIDNEY EXCHANGE ALLOCATOR

Home

Find Allocation:

Summary

Operation: optimal	Time taken: 0.282417 s	Total number of 2-cycles: 113
Total number of 3-cycles: 26		

Detailed output

anges	
(COIN) Optimal set of exchanges	
Exchanges:	```[124,53] [122, 28] [125, 115] [123, 104] [121,97] [6, 61] [10,31] [90, 26] [66,40] [72, 79] [32,13] [39,55] [1, 30, 14] [17,93,49] [2, 114,33] [22,5, 25] [7, 94, 18] [102,45, 3] [16,44,20] [27,60,46] [48, 82, 117] [63,58,120]```
Weight:	2301.62
Total Transplants:	54
Three-Ways:	10
Two-Ways:	12 (15)

[^0]| Matching run | | 2008 | | 2009 | | | | 2010 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Jul | Oct | Jan | Apr | Jul | Oct | Jan | Apr | Jun | Oct |
| Number of pairs | | 83 | 123 | 126 | 128 | 141 | 147 | 150 | 158 | 152 | 191 |
| Number of arcs | | 628 | 1406 | 1256 | 1413 | 1926 | 1715 | 1527 | 1635 | 1310 | 1943 |
| Number of 2-cycles | | 2 | 14 | 17 | 20 | 55 | 4 | 17 | 23 | 4 | 20 |
| Number of 3-cycles | | 0 | 116 | 72 | 71 | 166 | 4 | 33 | 77 | 1 | 39 |
| Optimal solution | \#2 cycles | 1 | 6 | 5 | 5 | 4 | 0 | 3 | 2 | 3 | 3 |
| | \#3 cycles | 0 | 3 | 1 | 2 | 7 | 2 | 1 | 6 | 0 | 2 |
| | size | 2 | 21 | 13 | 16 | 29 | 6 | 9 | 22 | 6 | 12 |
| | weight | 6 | 930 | 422 | 618 | 1168 | 300 | 135 | 782 | 261 | 473 |
| Actual transplants | \#pairwise | 1 | 4 | 5 | 2 | 3 | 0 | 2 | 4 | 0 | 3 |
| | \#3-way | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 3 | 0 | 1 |
| | Total | 2 | 8 | 10 | 4 | 12 | 6 | 4 | 17 | 0 | 9 |

+ 4 pairwise exchanges identified between Apr 07 - Apr 08

Matching run		2011			
		Jan	Apr	Jun	Oct
Number of pairs		202	176	189	197
Number of arcs		2366	1701	2130	2007
Number of 2-cycles		19	9	34	18
Number of 3-cycles		145	27	101	73
Optimal solution	\#2 cycles	3	0	5	7
	\#3 cycles	10	4	4	5
	size	36	12	22	29
	weight	1328	464	794	1094
Actual transplants	\#pairwise	2	0	2	6
	\#3-way	5	2	4	3
	Total	19	6	16	21

- Altruistic donors were introduced into the scheme in January 2012
- at present they can trigger only short chains or donate directly to the DDWL

"short"

Results from NHSBT matching runs (3)

Matching run		2012				2013	
		Jan	Apr	Jun	Oct	Jan	Apr
Number of pairs		195	190	187	215	233	223
Number of altruistic donors		2	3	1	4	9	11
Number of arcs		2902	2494	2190	3315	3905	3720
Number of 2-cycles		115	21	22	35	201	218
Number of 3-cycles		87	46	33	77	46	50
Optimal solution	\#2 cycles	1	0	2	6	4	5
	\#short chains	2	2	0	4	6	8
	\#3 cycles	6	5	2	5	3	5
	size	24	20	11	35	29	41
	weight	2882	1872	1175	3599	2968	4745
Actual transplants	\#pairwise	1	1	0	6	5	?
	\#short chains	0	1	0	3	3	?
	\#3-way	2	4	1	1	1	?
	Total	10	18	4	22	25	?

- Identified transplants (over 20 matching runs):
- Pairwise exchanges: 65
- 3-way exchanges: 73
- Short chains: 22
- Unused altruistic donors: 8
- Total transplants: 401
- Actual transplants (over 19 matching runs):
- Pairwise exchanges: 47
- 3-way exchanges: 31
- Short chains: 7
- Unused altruistic donors: 8
- Total transplants: 209

University of Glasgow

Data Analysis Toolkit

- Due to its complex nature NHSBT were interested in analysing the effect of each constraint on the optimality criteria
- Changing the optimality criteria involved changing code in the C++ library
- It would be easier if there was an application that allowed us to specify the constraints on the matching and the order to apply these constraints
- Even better would be to allow the dynamic creation of new constraints as well
- http://toolkit.optimalmatching.com

Data Analysis Toolkit results page

Results

SAUE TO DISK

<<Back

Run number	Total transplants	Total paired transplants	Total transplants from altruistic donor chains	Number of unused altruistic donors	Number of 2ways	Number of 3ways	Number of 3 -ways with embedded	Number of $4-$ ways	Number of short ADCs	Number of long ADCs	Effective pairwise	Effectiv 3-way
1	25	20	o	5	10	o	o	o	o	o	10	o
2	46	41	o	5	10	7	0	0	o	0	10	7
3	49	44	0	5	7	10	3	o	0	0	10	10

- Hospitals may withhold their easiest-to-match pairs, reporting only their hardest-to-match pairs to the matching scheme
- Patients at other hospitals may lose out on a transplant they may otherwise have received
- Need to incentivise hospitals to behave truthfully
- [Ashlagi et al., 2010; Ashlagi and Roth, 2011; Caragiannis et al., 2011; Toulis and Parkes, 2011; Ashlagi and Roth, 2012]
- Not an issue in the UK
- no legal framework allowing a hospital to undertake exchanges outside of the NLDKSS due to tight regulation by the HTA
- NEAD (Non-simultaneous Extended Altruistic Donor) chains
- [Rees MA, Kopke JE, Pelletier, R.P. et al., 2009]

- Chain segments need not be of the same length
- Larger size of datasets
- Further empirical investigation
- Require artificial dataset generator
- Allow "compatible couples"
- E.g., d_{1} is a willing and compatible donor for p_{1}, but p_{1} could obtain a better match d_{2} via a pairwise or 3-way exchange
- Acknowledgements
- collaborators at the University of Glasgow:
- Péter Biró
- Gregg O'Malley
- collaborators at NHS Blood and Transplant:
- Rachel Johnson (Head of Organ Donation and Transplantation Studies)
- lain Harrison (Clinical Business Analyst)
- Joanne Allen (Senior Statistician)

Abraham, D.J., Blum, A. and Sandholm, T. (2007). Clearing algorithms for barter exchange markets: enabling nationwide kidney exchanges, in Proceedings of EC ' 07 : the 8th ACM Conference on Electronic Commerce (ACM), pp. 295-304

Abraham, D.J., Cechlárová, K., Manlove, D.F. and Mehlhorn, K. (2004). Pareto optimality in house allocation problems, in Proceedings of ISAAC ' 04: the 15th Annual International Symposium on Algorithms and Computation, Lecture Notes in Computer Science, Vol. 3341 (Springer), pp. 3-15

Abraham, D.J., Chen, N., Kumar, V. and Mirrokni, V.S. (2006). Assignment problems in rental markets, in Proceedings of WINE '06: the 2nd International Workshop on Internet and Network Economics, Lecture Notes in Computer Science, Vol. 4286 (Springer), pp. 198-213

Abraham, D.J., Irving, R.W., Kavitha, T. and Mehlhorn, K. (2005). Popular matchings, in Proceedings of SODA ' 05: the 16th ACM-SIAM Symposium on Discrete Algorithms (ACM-SIAM), pp. 424-432

Ashlagi, I., Fischer, F., Kash, I. and Procaccia, A. D. (2010). Mix and match, in Proceedings of EC ' 10: the 11th ACM Conference on Electronic Commerce (ACM), pp. 305-314

References

Ashlagi, I. and Roth, A. (2011). Individual rationality and participation in large scale, multi-hospital kidney exchange, in Proceedings of EC ' 11: the 12th ACM Conference on Electronic Commerce (ACM), pp. 321-322

Ashlagi, I. and Roth, A. (2012). New challenges in multihospital kidney exchange, American Economic Review 102, 3, pp. 354-359

Askalidis, G., Immorlica, I., Kwanashie, A., Manlove, D.F., Pountourakis, E. (2013). Socially Stable matchings in the Hospitals / Residents problem. To appear in Proceedings of WADS 2013: the 13th Algorithms and Data Structures Symposium, Lecture Notes in Computer Science, Springer, 2013

Biró, P., Irving, R.W. and Schlotter, I. (2011). Stable matching with couples: an empirical study, ACM Journal of Experimental Algorithmics 16, section 1, article 2, 27 pages

Biró, P., Manlove, D.F. and Mittal, S. (2010). Size versus stability in the Marriage problem. Theoretical Computer Science 411, pp. 1828-1841

Biró, P., Manlove, D.F. and Rizzi, R (2009). Maximum weight cycle packing in directed graphs, with application to kidney exchange, Discrete Mathematics, Algorithms and Applications 1, 4, pp. 499-517

Caragiannis, I., Filos-Ratsikas, A. and Procaccia, A. (2011). An improved 2-agent kidney exchange mechanism, in Proceedings of WINE ' 11: the 7th International Workshop on Internet and Network Economics, Lecture Notes in Computer Science Series, vol. 7090 (Springer), pp. 37-48

Chen, Y. and Sönmez, T. (2002). Improving efficiency of on-campus housing: An experimental study, American Economic Review 92, 5, pp. 1669-1686

Conway, J.H. (1976). Personal communication, reported in Knuth, D.E. (1976). Mariages Stables (Les Presses de L’Université de Montréal). English translation in Stable Marriage and its Relation to Other Combinatorial Problems, volume 10 of CRM Proceedings and Lecture Notes, American Mathematical Society, 1997

Dubins, L.E. and Freedman, D.A. (1981). Machiavelli and the Gale-Shapley algorithm, American Mathematical Monthly 88, 7, pp. 485-494

Gabow, H.N. and Tarjan, R.E. (1989). Faster scaling algorithms for network problems, SIAM Journal on Computing 18, pp. 1013-1036

Gale, D. and Shapley, L.S. (1962). College admissions and the stability of marriage, American Mathematical Monthly 69, pp. 9-15

Gale, D. and Sotomayor, M. (1985). Ms. Machiavelli and the stable matching problem, American Mathematical Monthly 92, 4, pp. 261-268

Gale, D. and Sotomayor, M. (1985). Some remarks on the stable matching problem, Discrete Applied Mathematics 11, pp. 223-232

Gärdenfors, P (1975). Match making: assignments based on bilateral preferences, Behavioural Science 20, pp. 166-173

Garg, N., Kavitha, T., Kumar, A., Mehlhorn, K. and Mestre, J. (2010). Assigning papers to referees, Algorithmica 58, 1, pp. 119-136

Glorie, K.M., Klundert, J.J. van de and Wagelmans, A. (2013). Iterative branch-andprice for hierarchical multi-criteria kidney exchange. Econometric Institute Research Paper El 2012-11, Erasmus University Rotterdam

Gusfield, D. and Irving, R.W. (1989). The Stable Marriage Problem: Structure and Algorithms (MIT Press)

Huang, C.-C. (2006). Cheating by men in the Gale-Shapley stable matching algorithm, in Proceedings of ESA ' 06: the 14th Annual European Symposium on Algorithms, Lecture Notes in Computer Science, Vol. 4168 (Springer), pp. 418-431

References

Huang, C.-C. and Kavitha, T. (2012). Weight-maximal matchings, in Proceedings of MATCH-UP ' 12: the 2nd International Workshop on Matching Under Preferences, pp. 87-98

Immorlica, N. and Mahdian, M. (2005). Marriage, honesty and stability, in Proceedings of SODA ' 05: the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (ACMSIAM), pp. 53-62

Irving, R.W. (1985). An efficient algorithm for the "stable roommates" problem, Journal of Algorithms, 6, pp. 577-595

Irving, R.W. (2007). Greedy and generous matchings via a variant of the Bellman-Ford algorithm, Unpublished manuscript

Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D. and Paluch, K. (2004). Rank-maximal matchings, in Proceedings of SODA ' 04: the 15th ACM-SIAM Symposium on Discrete Algorithms (ACM-SIAM), pp. 68-75

Irving, R.W. and Manlove, D.F. (2009). Finding large stable matchings, ACM Journal of Experimental Algorithmics 14, section 1, article 2, 30 pages

Irving, R.W., Manlove, D.F. and O’ Malley, G. (2009). Stable marriage with ties and bounded length preference lists, Journal of Discrete Algorithms 7, 2, pp. 213-219

Irving, R.W., Manlove, D.F. and Scott, S. (2008). The stable marriage problem with master preference lists, Discrete Applied Mathematics 156, 15, pp. 2959-2977

Iwama, K., Manlove, D., Miyazaki, S. and Morita, Y. (1999). Stable marriage with incomplete lists and ties, in Proceedings of ICALP ' 99: the 26th International Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science, Vol. 1644 (Springer), pp. 443-452

Keizer, K.M. , de Klerk, M., Haase-Kromwijk, B.J.J.M., and Weimar, W. (2005). The Dutch algorithm for allocation in living donor kidney exchange. Transplantation Proceedings, 37, pp. 589-591

Király, Z. (2012). Linear time local approximation algorithm for maximum stable marriage, in Proceedings of MATCH-UP ' 12: the 2nd International Workshop on Matching Under Preferences, pp. 99-110

Kobayashi, H. and Matsui, T. (2010). Cheating strategies for the Gale-Shapley algorithm with complete preference lists, Algorithmica 58, 1, pp. 151-169

Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S. and Morita, Y. (1999). Hard variants of stable marriage, Tech. Rep. TR-1999-43, University of Glasgow, School of Computing Science

Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S. and Morita, Y. (2002). Hard variants of stable marriage, Theoretical Computer Science 276, 1-2, pp. 261-279

Manlove, D.F. and McBride, I. (2013). The Hospitals / Residents problem with Couples, Unpublished manuscript

Manlove, D.F. and O' Malley, G. (2012). Paired and Altruistic Kidney Donation in the UK. In Proceedings of SEA 2012: the 11th International Symposium on Experimental Algorithms, Lecture Notes in Computer Science, Vol. 7276 (Springer), pp. 271-282

McDermid, E. (2009). A $3 / 2$ approximation algorithm for general stable marriage, in Proceedings of ICALP ' 09: the 36th International Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science, Vol. 5555 (Springer), pp. 689-700

McDermid, E.J. and Manlove, D.F. (2010). Keeping partners together: Algorithmic results for the hospitals / residents problem with couples, Journal of Combinatorial Optimization 19, 3, pp. 279-303

Micali, S. and Vazirani, V.V. (1980). An $\mathrm{O}(\sqrt{ }|\mathrm{V}| \cdot|\mathrm{E}|)$ algorithm for finding maximum matching in general graphs, in Proceedings of FOCS ' 80: the 21st Annual IEEE Symposium on Foundations of Computer Science (IEEE Computer Society), pp. 17-27.

Ng, C. and Hirschberg, D.S. (1988). Complexity of the stable marriage and stable roommate problems in three dimensions, Tech. Rep. UCI-ICS 88-28, Department of Information and Computer Science, University of California, Irvine

Paluch, K. (2012). Faster and simpler approximation of stable matchings, in Proceedings of WAOA' 11: 9th Workshop on Approximation and Online Algorithms, Lecture Notes in Computer Science, Vol. 7164 (Springer), pp. 176-187

Perach, N., Polak, J. and Rothblum, U.G. (2008). A stable matching model with an entrance criterion applied to the assignment of students to dormitories at the Technion, International Journal of Game Theory 36, 3-4, pp. 519-535

Pini, M.S., Rossi, F., Venable, K.B. and Walsh, T. (2011). Manipulation complexity and gender neutrality in stable marriage procedures, Autonomous Agents and Multi-Agent Systems 22, 1, pp. 183-199

Rees, M.A., Kopke, J.E., Pelletier, R.P. et al. (2009). A nonsimultaneous, extended, altruistic-donor chain, New England Journal of Medicine, 360, pp. 1096-1101

Ronn, E. (1990). NP-complete stable matching problems, Journal of Algorithms 11, pp. 285-304

Roth, A.E. (1982). The economics of matching: Stability and incentives, Mathematics of Operations Research 7, 4, pp. 617-628

Roth, A.E. (1982a). Incentive compatibility in a market with indivisible goods, Economics Letters 9, pp. 127-132

Roth, A.E. (1984). The evolution of the labor market for medical interns and residents: a case study in game theory, Journal of Political Economy 92, 6, pp. 991-1016

Roth, A.E. (1986). On the allocation of residents to rural hospitals: a general property of two-sided matching markets, Econometrica 54, pp. 425-427

Roth, A.E. and Postlewaite, A. (1977). Weak versus strong domination in a market with indivisible goods, Journal of Mathematical Economics 4, pp. 131-137

Roth, A.E., Sönmez, T. and Ünver M.U. (2004). Kidney exchange. Quarterly Journal of Economics, 119, 2, pp. 457-488

Roth, A.E., Sönmez, T. and Ünver., M.U. (2005). Pairwise kidney exchange. Journal of Economic Theory, 125, pp. 151-188

Roth, A.E., Sönmez, T. and Ünver., M.U. (2007). Efficient kidney exchange:
Coincidence of wants in a market with compatibility-based preferences. American Economic Review, 97, 3, 828-851

Teo, C.-P., Sethuraman, J. and Tan, W.-P. (1999). Gale-Shapley stable marriage problem revisited: strategic issues and applications, Management Science 47, 9, pp. 1252-1267

Toulis, P. and Parkes, D. (2011). A random graph model of kidney exchanges: efficiency, individual rationality and incentives, in Proceedings of the 12th ACM conference on Electronic commerce (ACM), pp. 323-332

Yanagisawa, H. (2007). Approximation Algorithms for Stable Marriage Problems, Ph.D. thesis, Kyoto University, School of Informatics

Yuan, Y. (1996). Residence exchange wanted: a stable residence exchange problem, European Journal of Operational Research 90, pp. 536-546

[^0]: All Cycles
 2 Cycles
 $[122,1][124,28][124,7][124,25][124,102][124,3][124,44][124,87][124,49][124,15][124,21]$ $[124,72][124,109][124,13][124,46][124,62][124,53][124,56][124,85][124,78][124,89][124$, 88] $[124,107][124,91][124,99][124,119][122,28][122,24][122,4][122,114][122,33][122,49]$ $[122,15][122,32][122,54][122,83][122,58][122,81][122,117][125,11][125,24][125,31][125$, $102][125,26][125,35][[125,18][[125,40][125,62][125,105][125,112][125,106][125,99][125,108]$ $[125,115][125,119][123,24][123,6][123,17][123,10][123,31][123,2][123,94][123,90][123,20]$ $[123,66][123,49][123,41][123,12][123,111][123,21][123,39][123,43][123,75][123,62][123$,

