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Primer: integer programming (1) 
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l Let G=(V,E) be a graph 
l A colouring of G is a function f : V → {1,2,…,k}, for some integer 

k, such that f(u)≠ f(v) whenever {u,v}∈E 
l The problem is to minimise k over all colourings of G 
l Example: 

4 colours: 3 colours: 



Primer: integer programming (2) 
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l  The graph colouring problem is NP-hard 

l  One possibility: solve the problem using integer programming 

l  Integer programming: 

–  min cTx    subject to    Ax≤b 

–  where c=(c1, c2,…, cn) T , x=(x1, x2,…, xn) T , b=(b1, b2,…, bm) T 

A=(aij) (1≤i≤m, 1≤ j≤n), the ci, aij and bj are real-valued known coefficients and 

the xi are integer-valued variables 

l  Linear programming: relaxation in which xi are real-valued 
–  solvable in polynomial time 

l  General integer programming problem is NP-hard 
–  but there are some powerful solvers 

Objective function 

Constraints 

Variables 



Primer: integer programming (3) 
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l  Back to the graph colouring problem 
l  Suppose |V|=n.  No colouring can use more than n colours. 
l  Define the following binary variables: 

l  Define the following integer program: 
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Kidney failure 
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l  Treatment 
–  Dialysis 
–  Transplantation 

l  Need for donors 
–  6325 on active transplant list as of 31 March 2013 
–  Median waiting time: 1168 days (adults), 354 days  

(children) [based on patient registrations during  
1 April 2005 – 31 March 2009] 

–  Deceased donors 
•  1916 transplants from deceased donors between 1 April 2012 and 31 March 2013 

–  Living donors 
•  1068 transplants from living donors between 1 April 2012 and 31 March 2013 
•  36% of all donations from living donors 
•  But: blood type incompatibility (e.g. A →B) 
•  Positive crossmatch (tissue-type incompatibility) 

l  Source of figures: NHS Blood and Transplant (NHSBT) 



Human Tissue Act 

l Prior to 1 September 2006, transplants could only take place 
between those with a genetic or emotional connection 

l Human Tissue Act 2004 and Human Tissue (Scotland) Act 2006: 
–  legal framework created to allow transplants between strangers 

l New possibilities for live-donor transplants: 

– Paired kidney donation: a patient with a willing but incompatible donor can 
swap their donor with that of another similar patient 

– Altruistic (non-directed) donors 
•  they can donate directly to the deceased donor waiting list (DDWL) 
•  they can trigger domino paired donation (DPD) chains 
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Pairwise exchange 

l  Portsmouth / Plymouth 2007 
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Donald 
Planner, 61 

Suzanne 
Wills, 43 

Margaret 
Wearn, 56 

Roger 
Wearn, 56 

Father / daughter 

Incompatible blood type 

Married 

Positive crossmatch 



3-way exchange 

l  4 December 2009 

Andrew 
Mullen 

Andrea 
Mullen 

Married 

Lynsey 
Thakrar 

Teemir 
Thakrar 

Married 

Lisa 
Burton 

Chris 
Brent 

Siblings 
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Kidney exchange programs around the world 

l  US Programs: 
–  New England Program for Kidney Exchange since 2004 
–  Alliance for Paired Donation 
•  [Roth, Sönmez and Ünver, 2004, 2005] 

–  Dec 2010: first exchanges performed as part of a national pilot program by the Organ 
Procurement and Transplantation Network 

–  Mostly involving pairwise and 3-way exchanges, but sometimes even longer              
(a 6-way exchange was performed in April 2008) 

l  Other countries: 
–  The Netherlands 
•  [Keizer, de Klerk, Haase-Kromwijk and Weimar, 2005; Glorie, Wagelmans and van 

de Klundert, 2012] 
–  South Korea 
–  Romania 
–  UK 
•  National Living Donor Kidney Sharing Schemes (NHS Blood and Transplant) 
•  [M and O’Malley, 2012] 

l  Cycles should be as short as possible 
10 



Modelling the problem 

l We consider patient-donor pairs as single vertices of a 
directed graph D=(V,A) 

l  (i,j)∈A if and only if donor i is compatible with patient j 

l 2-cycles and 3-cycles in D correspond to pairwise and 3-way 
exchanges (no cycles of length >3 permitted) 

l Arc weights can likelihood of success of corresponding  
transplants, patient priorities etc. 

11 



Interlude: The Stable Roommates problem 

l  Input: n agents; each agent ranks a subset of the others in 
strict order 

l Output: a stable matching 
 
Definitions 
l A matching is a set of disjoint pairs of acceptable pairs of 

agents 

l A blocking pair of a matching M is an acceptable pair of agents 
{ai,aj}∉M such that: 
–  ai is unmatched or prefers aj to his partner in M, and 
–  aj is unmatched or prefers ai to his partner in M 

  

l A matching is stable if it admits no blocking pair 
12 



Connection with kidney exchange 

l Here agent ai corresponds to donor-patient pair (di, pi) 

l  ai finds aj acceptable if and only if di is compatible with pj 

l Preference lists can reflect varying level of compatibility 

l A matching is then a set of pairwise exchanges 

l Example SR instance I1:  a1: a3  a2  a4 
     a2: a4  a3  a1 
     a3: a2  a1  a4 
     a4: a1  a3  a2 
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Connection with kidney exchange 

l Here agent ai corresponds to donor-patient pair (di, pi) 

l  ai finds aj acceptable if and only if di is compatible with pj 

l Preference lists can reflect varying level of compatibility 
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l The matching is not stable as {a1,a3} blocks 
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Connection with kidney exchange 

l Here agent ai corresponds to donor-patient pair (di, pi) 

l  ai finds aj acceptable if and only if di is compatible with pj 

l Preference lists can reflect varying level of compatibility 
 
l A matching is then a set of pairwise exchanges 

l Example SR instance I1:  a1: a3  a2  a4 
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     a4: a1  a3  a2 

 
l Stable matching 
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Non-existence of a stable matching 

l Example SR instance I2:  a1: a3  a2  a4 
     a2: a1  a3  a4 
     a3: a2  a1  a4 
     a4: a1  a2  a3 
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Non-existence of a stable matching 

l Example SR instance I2:  a1: a3  a2  a4 
     a2: a1  a3  a4 
     a3: a2  a1  a4 
     a4: a1  a2  a3 

l The matching is not stable as {a1,a3} blocks 
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Non-existence of a stable matching 

l Example SR instance I2:  a1: a3  a2  a4 
     a2: a1  a3  a4 
     a3: a2  a1  a4 
     a4: a1  a2  a3 

l The matching is not stable as {a2,a3} blocks 
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Non-existence of a stable matching 

l Example SR instance I2:  a1: a3  a2  a4 
     a2: a1  a3  a4 
     a3: a2  a1  a4 
     a4: a1  a2  a3 

l The matching is not stable as {a1,a2} blocks 
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Non-existence of a stable matching 

l Example SR instance I2:  a1: a3  a2  a4 
     a2: a1  a3  a4 
     a3: a2  a1  a4 
     a4: a1  a2  a3 

l So no stable matching exists 

l  [Irving, 1985]: O(m) algorithm to find a stable matching or 
report that none exists, where m is the total length of the 
preference lists 

l Drawbacks of the model: 
– Ordinal preferences 
– Pairwise exchanges only 
– Potential non-existence of a solution 

20 



NHS Blood and Transplant’s scoring system 

A score ≥0 is given to each arc (i,j): 
 
l  Waiting time 

–  50 × number of previous matching runs that pj has been involved in 
efef 

l  Sensitisation points (0-50) 
– Based on calculated sensitisation (“panel reactive antibody”) test % for pj 

divided by 2 

l  HLA mismatch points (0, 5, 10 or 15) 
– HLA (“Human Leukocyte Antigen”) mismatch levels determine tissue-type 

incompatibility between di and pj  
efef 

l  Donor-donor age difference (0 or 3) 
–  3 points if |age(di) – age(dj )|≤20 years, 0 otherwise 

eef 
l  “Final discriminator” involving actual donor-donor age difference 

21 

(dj, pj) 

(di, pi) 



What to optimise? 
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(d5, p5) 

(d1, p1) (d2, p2) 

(d3, p3) (d4, p4) 



What to optimise? 
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(d5, p5) 

(d5, p5) 

(d1, p1) (d2, p2) 

(d3, p3) (d4, p4) 

3 transplants 

(d1, p1) (d2, p2) 

(d3, p3) (d4, p4) 

5 transplants 

95 

150 

5 

5 
5 

5 

5 

5 

Total weight 250 

Total weight 25 



Some extensions 

l  Patients with multiple donors 
– e.g., both parents (d1 and d2) are willing donors for their child (p1)  

– at most one of d1 and d2 should be used! 

l  Minimising the number of 3-way exchanges 

24 

(d1, p1) 

(d2, p1) 
(d3, p3) 

(d4, p4) 

is less risky than 



3-way exchanges with “back-arcs” 

l A 3-way exchange with a back-arc has an embedded pairwise 
 exchange 

–  If (d1,p1) drops out then the embedded pairwise exchange could still proceed 

– So the pairwise exchange involving (d2,p2) and (d3,p3) could be “extended” to a 
3-way exchange involving (d1,p1) too, with relatively little additional risk 

–  If either (d2,p2) or (d3,p3) drops out then drops out then the pairwise exchange 
would have failed in any case 

(d1, p1) 

(d2, p2) 

(d3, p3) 

25 25 

(d2, p2) 

(d3, p3) 



Domino paired donation chains 

l Altruistic donors can trigger “domino paired donation chains” (DPD 
chains) 

26 26 

d4 

d5 

p4 

p5 

A2 

DDWL 

d3 p3 

A1 

DDWL 
“short 
chain” 

“long chain” 



Domino paired donation chains 

l Altruistic donors can trigger “domino paired donation 
chains” (DPD chains) 
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A1 

(d3, p3) 

A2 

(d4, p4) 

(d5, p5) 

d3 p3 

A1 p1 

d4 

d5 

p4 

p5 

A2 p2 

l  At most one altruistic 
 donor per cycle! 



The optimisation problem 

l A set of exchanges is a permutation π of V into cycles of length 
≤3 such that i≠π(i) implies (i,π(i))∈A(D) 

l A vertex i∈V is covered by π if i≠π(i)  
l A set of exchanges is optimal if 
1.  the number of effective pairwise exchanges (i.e., no. pairwise exchanges 

plus no. 3-way exchanges with a back-arc) is maximised 

2.  subject to (1), the number of vertices covered by π (i.e., the total number of 
transplants) is maximised 

3.  subject to (1)-(2), the number of 3-way exchanges is minimised 

4.  subject to (1)-(3), the number of back-arcs in the 3-way exchanges is 
maximised 

5.  subject to (1)-(4), the overall weight is maximised. 

28 



1: Maximising pairwise exchanges 

l We transform the directed graph D to an undirected graph G 

l A maximum (cardinality) matching in G corresponds to a 
maximum set of pairwise exchanges in D 

l The problem of finding a maximum matching in G can be solved 
in polynomial time by Edmonds’ algorithm 

–  [Micali and Vazirani, 1980] 

l Let N2 be the size of a maximum matching M in G 
29 

(d1, p1) (d2, p2) 

(d3, p3) (d4, p4) (d5, p5) 

(d1, p1) (d2, p2) 

(d3, p3) (d4, p4) (d5, p5) 



2: Maximising overall number of transplants 

l Maximising the overall number of vertices covered by π 

l Finding a maximum cycle cover in  
D involving only 2- and 3-cycles is: 
– NP-hard 
•  [Abraham, Blum and Sandholm, 2007] 

– APX-hard 
•  [Biró, M and Rizzi, 2009] 

l  Heuristics are not acceptable 
– must find an optimal solution 

l  Exponential-time exact algorithm 
– avoid trying out all possibilities 
– use integer programming 
–  [M and O’Malley, 2012] 

30 

(d3, p3) 

(d1, p1) (d2, p2) 

(d4, p4) 

2 transplants 

(d3, p3) 

(d1, p1) (d2, p2) 

(d4, p4) 

3 transplants 



Integer linear program 

 
 
 

l We create an integer program as follows: 

–  list all the possible cycles (exchanges) of lengths 2 and 3 in the directed graph 
as C1, C2, . . . , Cm 

– use binary variables x1, x2, . . . , xm 

– where xi = 1 if and only if Ci belongs to an optimal solution 
– build an n×m matrix A where n = |V| and Ai,j = 1 if and only if vi is incident to Cj 

–  let b be an n×1 vector of 1s 
–  let c be a 1×m vector of values corresponding to the optimisation criterion,    

e.g., cj could be the length of Cj 

– Then solve max cx such that Ax ≤ b, subject to x∈{0,1}m 

–  [Roth, Sönmez and Ünver, 2007] 

31 
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Integer linear program: example 

(d1, p1) (d2, p2) 

(d3, p3) (d4, p4) (d5, p5) 



Integer linear program: example 

33 

(d1, p1) (d2, p2) 

(d3, p3) (d4, p4) (d5, p5) 



Amended ILP 
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l Suppose that, in D: 

–  the 2-cycles are C1, . . . . , Cn2 
 

–  the 3-cycles are Cn2+1, . . . , Cn2+n3
 

–  the 3-cycles with back-arcs are Cn2+1, . . . , Cn2+nb
 (nb ≤ n3) 

l Add the following constraint to the ILP and solve: 

x1+ . . . +xn2+nb 
≥ N2 

l Let N2,3 be the maximum number of vertices covered by π (i.e., 
the number of transplants given by an optimal solution) 

l Add the following constraint to the ILP: 

2x1+… +2xn2
+3xn2+1+… +3xn2+n3 

≥ N2,3 

 



3: Minimising number of 3-way exchanges 
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l  Example 



3: Minimising number of 3-way exchanges 

l  An optimal solution involves 9 transplants 

l  Both solutions have 3 effective pairwise exchanges 
36 

achievable by 3 
three-way exchanges 

or by 3 pairwise and 1 
three-way exchange 



3: Minimising number of 3-way exchanges 

l Let ci =0 (1≤i≤n2), let ci =1 (n2+1≤ i≤n2+n3) and solve the ILP 
(objective is to minimise) 

l Let N3 be the number of 3-way exchanges used in an optimal 
solution 

l Add the following constraint to the ILP: 
 

xn2+1+. . .+xn2+n3 
≤ N3 

37 



4: Maximising number of back-arcs 

l E.g. 

l Let ci =0 (1≤i≤n2) and let ci =ki (n2+1≤ i≤n2+n3) where ki is the 
number of back-arcs in Ci  and solve the ILP (objective is to 
maximise) 

l Let NB be the number of back-arcs in an optimal solution 

l Add the following constraint to the ILP: 

kn2+1 xn2+1+… + kn2+n3 xn2+n3 
≥ NB 
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(d1, p1) 

(d2, p2) 

(d3, p3) 

(d4, p4) 

(d5, p5) 

(d6, p6) 

beats 



5: Maximising overall weight 

l Let ci  be the weight of Ci  (sum of the weights of the arcs in Ci) 

l Solve the ILP (objective is to maximise) 
 

39 



Choosing an IP solver 
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l  Many free and proprietary solvers on the market 

l  Difference in performance can be significant 

l  Cost of many commercial solvers can easily reach >€100k 
 depending on the deployment environment 

l  We opted for COIN-Cbc 
– Open-source solver library written in C++ 



Implementation 

l Software implemented in C++ using the following packages: 
– COIN-Cbc (ILP solver) 
–  LEMON (graph matching library for maximum matching) 
– Ruby on Rails framework for web service 
– Google Test (testing framework) 

l Data formats for input / output: 
– XML or JSON 
– Called via the SOAP or REST protocols 

l Software can be deployed on Windows, Linux or Solaris 

l Demonstration version hosted at kidney.optimalmatching.com 

l Running time under 1 second for all real data sets to date 

41 



The application UI 
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l   http://kidney.optimalmatching.com 



The application results page 

43 



Results from NHSBT matching runs (1) 
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Matching run 2008 2009 2010 
Jul Oct Jan Apr Jul Oct Jan Apr Jun Oct 

Number of pairs 83 123 126 128 141 147 150 158 152 191 
Number of arcs 628 1406 1256 1413 1926 1715 1527 1635 1310 1943 
Number of 2-cycles 2 14 17 20 55 4 17 23 4 20 
Number of 3-cycles 0 116 72 71 166 4 33 77 1 39 

Optimal 
solution 

#2 cycles 1 6 5 5 4 0 3 2 3 3 
#3 cycles 0 3 1 2 7 2 1 6 0 2 
size 2 21 13 16 29 6 9 22 6 12 
weight 6 930 422 618 1168 300 135 782 261 473 

Actual 
transplants 

#pairwise 1 4 5 2 3 0 2 4 0 3 
#3-way 0 0 0 0 2 2 0 3 0 1 
Total 2 8 10 4 12 6 4 17 0 9 

+ 4 pairwise exchanges identified between Apr 07 – Apr 08 



Results from NHSBT matching runs (2) 
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Matching run 2011 
Jan Apr Jun Oct 

Number of pairs 202 176 189 197 
Number of arcs 2366 1701 2130 2007 
Number of 2-cycles 19 9 34 18 
Number of 3-cycles 145 27 101 73 

Optimal 
solution 

#2 cycles 3 0 5 7 
#3 cycles 10 4 4 5 
size 36 12 22 29 
weight 1328 464 794 1094 

Actual 
transplants 

#pairwise 2 0 2 6 
#3-way 5 2 4 3 
Total 19 6 16 21 

l   Altruistic donors were 
introduced into the 
scheme in January 2012 

–  at present they can 
trigger only short chains 
or donate directly to the 
DDWL 

d p 

A 

DDWL 
“short 
chain” 



Results from NHSBT matching runs (3) 
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Matching run 2012 2013 
Jan Apr Jun Oct Jan Apr 

Number of pairs 195 190 187 215 233 223 
Number of altruistic donors 2 3 1 4 9 11 
Number of arcs 2902 2494 2190 3315 3905 3720 
Number of 2-cycles 115 21 22 35 201 218 
Number of 3-cycles 87 46 33 77 46 50 

Optimal 
solution 

#2 cycles 1 0 2 6 4 5 
#short chains 2 2 0 4 6 8 
#3 cycles 6 5 2 5 3 5 
size 24 20 11 35 29 41 
weight 2882 1872 1175 3599 2968 4745 

Actual 
transplants 

#pairwise 1 1 0 6 5 ? 
#short chains 0 1 0 3 3 ? 

#3-way 2 4 1 1 1 ? 
Total 10 18 4 22 25 ? 



Summary of results 
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l  Identified transplants (over 20 matching runs): 
–  Pairwise exchanges: 65 
–  3-way exchanges: 73 
–  Short chains: 22 
–  Unused altruistic donors: 8 
–  Total transplants: 401 

 

l Actual transplants (over 19 matching runs): 
–  Pairwise exchanges: 47 
–  3-way exchanges: 31 
–  Short chains: 7 
–  Unused altruistic  donors: 8 
–  Total transplants: 209 



Data Analysis Toolkit 
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l  Due to its complex nature NHSBT were interested in analysing 
 the effect of each constraint on the optimality criteria 

l  Changing the optimality criteria involved changing code in the 
 C++ library 

l  It would be easier if there was an application that allowed us to 
 specify the constraints on the matching and the order to apply 
 these constraints 

l  Even better would be to allow the dynamic creation of new 
 constraints as well 

l  http://toolkit.optimalmatching.com 



Data Analysis Toolkit UI 
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Data Analysis Toolkit results page 



Incentive compatibility 
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l Hospitals may withhold their easiest-to-match pairs, reporting only 
their hardest-to-match pairs to the matching scheme 

l Patients at other hospitals may lose out on a transplant they may 
otherwise have received 

l Need to incentivise hospitals to behave truthfully 
―  [Ashlagi et al., 2010; Ashlagi and Roth, 2011; Caragiannis et al., 2011; 

Toulis and Parkes, 2011; Ashlagi and Roth, 2012] 

l Not an issue in the UK 
―  no legal framework allowing a hospital to undertake exchanges 

outside of the NLDKSS due to tight regulation by the HTA 



l  NEAD (Non-simultaneous Extended Altruistic Donor) chains 
–  [Rees MA, Kopke JE, Pelletier, R.P. et al., 2009] 

– Chain segments need not be of the same length 

Future Work (1) 
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d1 p1 

A 

d2 p2 

d3 p3 

Bridge donor 

… 

d4 p4 

d3 

d5 p5 

d6 p6 

Bridge donor 

… 

d7 p7 

d6 

d8 p8 

d9 p9 

Bridge donor 

… 



l  Larger size of datasets 
 

l  Further empirical investigation 
– Require artificial dataset generator 

l  Allow “compatible couples” 
– E.g., d1 is a willing and compatible donor for p1, but p1 could obtain a better 

match d2 via a pairwise or 3-way exchange 
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Future Work (2) 
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