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Coalitional TU games

A coalitional game with transferable utility is (N, v), where

N = {1, 2, . . . , n} is the set of players and

v : 2N −→ R
S 7→ v(S)

is the characteristic function.

An imputation is a payoff vector x = (x1, x2, . . . , xn) ∈ RN that is

Efficient:
∑

i∈N xi = v(N)

Individually rational: xi ≥ v(i) for all i ∈ N.

Let I (v) be the set of imputations of (N, v) and I ∗(v) be the set
of preimputations (efficient payoff vectors).



The core

Let it be (N, v) and x , y ∈ I ∗(v):

y dominates x via coalition S 6= ∅ (y domv
Sx) ⇔ xi < yi for all

i ∈ S and
∑

i∈S yi ≤ v(S).

y dominates x (y domv x) if y domv
Sx for some S ⊆ N.

Definition (Gillies, 1959)

The core C (v) of (N, v) is the set of preimputations undominated
by another preimputation.

If C (v) 6= ∅, then it coincides with the set of imputations
undominated by another imputation.

Equivalently,
C (v) = {x ∈ I (v) |

∑
i∈S xi ≥ v(S), for all S ⊆ N}.



The assignment game (Shapley and Shubik, 1972)

The assignment game is a cooperative model for a two-sided
market (Shapley and Shubik, 1972).
A good is traded in indivisible units.
Side payments are allowed and utility is identified with money.
Each buyer in M = {1, 2, . . . ,m} demands one unit and each
seller in M ′ = {1, 2, . . . ,m′} supplies one unit.
Each seller j ∈ M ′ has a reservation value cj ≥ 0 for his object.
Each buyer i ∈ M valuates differently, hij ≥ 0, the object of
each seller j .
Buyer i and seller j , whenever they trade, make a join profit of
(hij − p) + (p − cj). Hence, aij = max{0, hij − cj}.

All these data is summarized in the assignment matrix A:
a11 a12 . . . a1m′

a21 a22 . . . a2m′

· · · · · · · · · · · ·
am1 am2 · · · amm′





The assignment game

Cooperation means we look at this market as a centralized market
where a matching of buyers to sellers and a distribution of the
profit of this matching is proposed: (u, v) ∈ RM × RM′

.
X A matching µ is a subset of M ×M ′ where each agent appears
in at most one pair. Let M(M,M ′) be the set of matchings.
X A matching µ is optimal iff, for any other µ′ ∈M(M,M ′),∑

(i ,j)∈µ

aij ≥
∑

(i ,j)∈µ′

aij .

Let M∗A(M,M ′) be the set of optimal matchings.
The cooperative assignment game is defined by (M ∪M ′,wA), the
characteristic function wA being (for all S ⊆ M and T ⊆ M ′)

wA(S ∪ T ) = max{
∑

(i ,j)∈µ

aij | µ ∈M(S ,T )}.



The core

The core:

C (wA) =

(u, v) ∈ RM × RM′

∣∣∣∣∣∣
∑

i∈M ui +
∑

j∈M′ vj = wA(M ∪M ′)

ui + vj ≥ aij for all (i , j) ∈ M ×M ′,
ui ≥ 0,∀i ∈ M, vj ≥ 0, ∀j ∈ M ′.


Given any optimal matching µ, if (u, v) ∈ C (wA) then ui + vj = aij

for all (i , j) ∈ µ and ui = 0 if i is unmatched by µ.

Fact

In the core of the assignment game, third-party payments are
excluded



The core

Theorem (Shapley and Shubik, 1972)

The core of the assignment game is non-empty and coincides with
the set of solutions of the dual program to the linear assignment
problem.

wA(M ∪M ′) = max
∑

i∈M

∑
j∈M′ aijxij min

∑
i∈M ui +

∑
j∈M′ vj

where
∑

i∈M xij ≤ 1, ∀ j ∈ M ′, ui + vj ≥ aij ∀(i , j) ∈ M ×M ′,∑
j∈M′ xij ≤ 1, ∀ i ∈ M, ui ≥ 0, vj ≥ 0 .

xij ≥ 0, ∀ (i , j) ∈ M ×M ′.



Example 1

3 4

1
2

4 1

2 3

u1 + v3 = 4
u1 + v4 ≥ 1
u2 + v3 ≥ 2
u2 + v4 = 3
ui ≥ 0, vj ≥ 0.

−2 ≤ u2 − u1 ≤ 2
0 ≤ u1 ≤ 4
0 ≤ u2 ≤ 3

u1

u2

(0,0)

(4,3)

(u, v) and (u, v), optimal core points for each side.
(u, v) = (4, 3; 0, 0), (u, v) = (0, 0, 4, 3).



Lattice structure 1

Fact (Shapley and Shubik, 1972)

C (wA) with the following partial order(s) is a complete lattice

(u, v) ≤M (u′, v ′)⇔ ui ≤ u′i ∀i ∈ M.

Let (M ∪M ′,wA) be an assignment market and (u, v), (u′, v ′) two
elements in C (wA). Then,

(u, v) ∨ (u′, v ′) =
(

(max{ui , u
′
i})i∈M , (min{vj , v

′
j })j∈M′

)
∈ C (wA)

(u, v) ∧ (u′, v ′) =
(

(min{ui , u
′
i})i∈M , (max{vj , v

′
j })j∈M′

)
∈ C (wA).

X As a consequence the existence of a buyers-optimal core
allocation and a sellers-optimal core allocation is obtained.

Fact (Demange, 1982; Leonard, 1983)

For all i ∈ M, ui = wA(M ∪M ′)− wA(M ∪M ′ \ {i}).



The buyers-optimal core allocation

The buyers optimal core allocation (u, v) can be obtained by
solving m + 1 linear programs.

But since all buyers attain their marginal contribution at the
same core point, it can easily be obtained by means of only
two linear programs: the one that gives an optimal matching
µ and

max
∑

i∈M ui

where ui + vj ≥ aij ∀(i , j) ∈ M ×M ′,
ui + vj = aij ,∀(i , j) ∈ µ,
ui ≥ 0, vj ≥ 0 .



Competitive equilibria

X In this section let us interpret M as a set of bidders and M ′ as a
set of objects.
X A feasible price vector is p ∈ RM′

such that pj ≥ cj for all
j ∈ M ′.
X Add a null object O with aiO = 0 for all i ∈ M and price 0.
More than one bidder may be matched to O: Q = M ′ ∪ {O}.
X The demand set of a bidder i at prices p is

Di (p) =

{
j ∈ Q | aij − pj = max

k∈Q
{aik − pk}

}
.

X The price vector p is quasi-competitive if there is a matching µ
such that, for all i ∈ M, if µ(i) = j then j ∈ Di (p). Then µ is
compatible with p.
X (p, µ) is a competitive equilibrium if p is a quasi-competitive
price, µ is compatible with p and pj = cj for all j 6∈ µ(M).



Competitive equilibria

Theorem (Gale, 1960)

Let (M,M ′,A) be an assignment market. Then,

1 (p, µ) competitive equilibrium⇒ (u, v) ∈ C (wA) where
ui = hij − pj if µ(i) = j
vj = pj − cj , j ∈ M ′ \ {O}

2 µ ∈M∗A(M,Q) with aiµ(i) > 0 ∀i ∈ M and (u, v) ∈ C (wA)

⇒ (p, µ) is a competitive equilibrium, where
pj = vj + cj if j ∈ M ′ and pO = 0

X The buyers-optimal core allocation corresponds to the minimal
competitive price vector.
X The sellers-optimal core allocation corresponds to the maximal
competitive price vector.



Lattice structure 2

Given a (square) assignment market (M,M ′,A), denote by i ′ the
ith seller and assume µ = {(i , i ′) | i ∈ M} is optimal. Then, the
projection of C (wA) to the space of the buyers’ payoffs is

Cu(wA) =

{
u ∈ RM

∣∣∣∣ aij − ajj ≤ ui − uj ≤ aii − aji ∀i , j ∈ {1, 2, . . . ,m}
0 ≤ ui ≤ aii for all i ∈ {1, 2, . . . ,m}.

}
X Notice that Cu(wA) is a 45-degree lattice.

Theorem (Quint, 1991; Characterization of the core )

Given any 45-degree lattice L, there exists an assignment game
(M,M ′,A) such that C (wA) = L.

X But matrix A in the above theorem may not be unique.



Example 2

1’ 2’ 3’

1
2
3

5 8 2

7 9 6
2 3 0

X Optimal matching: µ = {(1, 2′), (2, 3′), (3, 1′)}.
X (u, v) = (5, 6, 1; 1, 3, 0), (u, v) = (3, 5, 0; 2, 5, 1).

0

1

2

0 2 4 6 8
0

6

2

4

u1 (=8-v2)

u2 (=6-v3)

u3 (=2-v1)



Example 2

Aα:
1’ 2’ 3’

1
2
3

5 8 α

7 9 6
2 3 0

X Notice that for all (u, v) ∈ C (wA), u1 + v3 ≥ 3 > 2:

u1+v3 = u1+v1+u3+v3−u3−v1 ≥ a11+a33−a31 = 5+0−2 = 3.

X Hence, all matrices Aα with α ∈ [0, 3] lead to assignment
markets with the same core.



Some properties of the core

Definition (Solymosi and Raghavan, 2001)

(M,M ′,A) a square assignment market and µ ∈M∗A(M,M ′):

1 A has dominant diagonal ⇔ aiµ(i) ≥ max{aij , ak,µ(i)} for all
i , k ∈ M, j ∈ M ′.

2 A has a doubly dominant diagonal ⇔
aij + akµ(k) ≥ aiµ(k) + akj for all i , k ∈ M and j ∈ M ′.

Theorem (Solymosi and Raghavan, 2001)

Let (M,M ′,A) be a square assignment market. C (wA) is stable
(∀x ∈ I (wA) \ C (wA), ∃y ∈ C (wA), y domx) ⇔ A has a dominant
diagonal.



Markets with the same core

Definition

An assignment market (M,M ′,A) is buyer-seller exact ⇔ for all
(i , j) ∈ M ×M ′ there exists (u, v) ∈ C (wA) such that ui + vj = aij .

Fact (Núñez and Rafels, 2002)

An assignment market (M,M ′,A) is buyer-seller exact ⇔ A has a
doubly dominant diagonal.

Fact (Mart́ınez-de-Albéniz, Núñez and Rafels, 2011)

Two square assignment markets (M,M ′,A) and (M,M ′,B) have
the same core ⇔ for all (i , j) ∈ M ×M ′

wA(N \ {i , j}) = wB(N \ {i , j}).



Markets with the same core

Theorem (Mart́ınez-de-Albéniz, Núñez and Rafels, 2011)

The set of matrices leading to markets with the same core as
(M,M ′,A) is a join-semilattice (〈A〉,≤) with one maximal element
an a finite number of minimal elements:

〈A〉 =

p⋃
q=1

[Aq,A].

In Example 2:

〈A〉 =

 5 8 0
7 9 6
2 0 0

 ,

 5 8 3
7 9 6
2 3 0





More References

1 On the extreme core points:
Balinsky and Gale (1987).
Hamers et al. (2002) prove that every extreme core allocation
is a marginal worth vector.
Characterization as the set of reduced marginal worth vectors
(Núñez and Rafels, 2003).
A computation procedure (Izquierdo, Núñez and Rafels, 2007).

2 On the dimension of the core: Núñez and Rafels, 2008.
3 Axiomatic characterizations of the core (on the class of

assignment games with reservation values; Owen, 1992):
There is a first axiomatization of the core due to Sasaki (1995).
Toda (2003): Pareto optimality, individual rationality,
(derived) consistency and super-additivity.
Toda (2005): Pareto optimality, (projected) consistency,
pairwise monotonicity and individual monotonicity (or
population monotonicity).
The core is the only solution satisfying derived consistency and
Toda’s consistency (Llerena, Núñez and Rafels, 2013).



Multiple-partners assignment market: Model 1
(Sotomayor, 1992)

A multiple partner assignment game is M1(F0,W0, α, r , s) where

F is the finite set of firms and W the finite set of workers.

Firm i hires at most ri workers and worker k has at most sk

jobs.

αik ≥ 0 the income the pair (i , k) generates if they work
together.

If firm i hires worker k at a salary vik , its profit is
uik = αik − vik .

As many copies of a dummy firm f0 and a dummy worker w0

as needed. F0 and W0 are the sets of firms and workers with
the respective dummy agents.



M1: Outcomes

Definition

A feasible matching x is a m × n matrix (xik)(i ,k)∈F×W with
xik ∈ {0, 1} such that∑

k∈W xik ≤ ri for all i ∈ F ,∑
i∈F xik ≤ sk for all k ∈W , where xik = 1 means that i and

k form a partnership.

• C (i , x) is the set of workers hired by i under x and as many
copies of w0 as necessary (|C (i , x)| = ri ).
• If C (i , x) ∩W = ∅ then i is unmatched by x (or matched only to
w0).
An outcome in this market is determined by specifying a matching
and the way in which the income within each partnership is divided
among its members.



M1: Pairwise-stability

Definition

A feasible outcome ((u, v); x) is a feasible matching x and a set of
numbers uik and vik , for (i , k) ∈ F0 ×W0 with xik = 1, such that

uik + vik = αik , uik ≥ 0, vik ≥ 0 for all (i , k) ∈ F ×W with
xik = 1.

uiw0 = uf0k = uf0w0 = 0, vf0k = viw0 = vf0w0 = 0.

X x is compatible with (u, v) and (u, v) is a feasible payoff vector.

Definition

The feasible outcome ((u, v); x) is pairwise-stable if whenever
xik = 0, uim + vlk ≥ αik for all i ’s partners m and all k ’s partners l .
(or equivalently ui + vk ≥ αik , where

ui = min{uik} for k ∈ C (i , x) and vk = min{vik} for i ∈ C (k, x)



M1: Example 3

s1 = 1 s2 = 2
w1 w2

r1 = 2 f1
r2 = 2 f2

3 2

3 3
• Let x11 = x12 = x22 = 1 and x21 = 0. (f2 one unfilled position)
• Let u11 = u12 = u22 = 1, u2w0 = 0, v11 = 2, v12 = 1, v22 = 2.
• 2 = u2w0 + v11 < 3 ⇒ ((u, v); x) is not pairwise-stable:
f2 offers 2 + ε > v11, with 0 < ε < 1 to w1 and gets 1− ε.
• There is another optimal matching:
x ′ = {(f2,w1), (f2,w2), (f1,w2), (f1,w0)} ⇒ wA(F ∪W ) = 8.
• The characteristic function is: wA(fi ) = wA(wk) = 0,
wA(f1,w1) = 3,wA(f1,w2) = 2, wA(f2,w1) = 3, wA(f2,w2) = 3
wA(f1, f2,w1) = 3,
wA(f1, f2,w2) = wA(f1,w1,w2) = 5,wA(f2,w1,w2) = 6
Then (U1,U2; V1,V2) = (2, 1; 2, 3) is in the core.
The set of pairwise-stable payoffs does not coincide with the core.



M1: Pairwise-stability

Definition

The feasible matching x is optimal if, for all feasible matching x ′,∑
(i ,k)∈F×W

αik · xik ≥
∑

(i ,k)∈F×W

αik · x ′ik .

Fact

If ((u, v); x) is pairwise-stable, then x is an optimal matching.

Theorem

The set of pairwise-stable outcomes for M1(α) is nonempty.



M1: Example 3

s1 = 1 s2 = 2
w1 w2

r1 = 2 f1
r2 = 2 f2

3 2
3 3

Fix an optimal matching (x11 = x12 = x22 = 1 = x20) and define
the related one-to-one assignment market:

w1
1 w1

2 w2
2

f 1
1

f 2
1

f 1
2

f 2
2

3 0 0

0 2 0

3 0 3
3 0 0

A core-element of the one-to one assignment game gives a
pairwise-stable outcome of M1, for instance:

(2, 2, 3, 0; 1, 0, 0) → (u11, u12, u22, u20; v11, v12, v22, v20) = (2, 2, 3, 0; 1, 0, 0, 0)
(0, 0, 0, 0; 3, 2, 3) → (u11, u12, u22, u20; v11, v12, v22, v20) = (0, 0, 0, 0; 3, 2, 3, 0).



M1: Optimal pairwise-stable outcomes

Theorem

There exists at least one F -optimal pairwise-stable outcome and
one W -optimal pairwise-stable outcome for M1(α).

Take x an optimal matching, if ((u′, v ′); x̃) is the F -optimal stable
outcome of a related one-to-one assignment game, consider the
related pairwise-stable outcome for M1(α): ((u, v); x). This is
F -optimal for M1(α): for all pairwise-stable outcome ((u, v); x ′),∑

k∈W

uikxik ≥
∑
k∈W

uikx ′ik for all i ∈ F .

X Any algorithm to compute the optimal stable outcomes of a
simple assignment game can be used to obtain the optimal stable
outcomes of the multiple partners game.



M1: Competitive equilibria (Sotomayor, 2007)

Let us now think of buyers and sellers instead of firms and workers.

Definition

Given (B,Q,A, r , s), the feasible outcome ((u, p);µ) is a
competitive equilibrium iff

1 For all b ∈ B, if µ(b) = S , then S ∈ Db(p),

2 For all q ∈ Q unsold, pq = 0.

XIn a competitive equilibrium, every seller sells all his items at the
same price. If a seller has two identical objects, q and q′ and
pq > pq′ , then no buyer will demand a set of objects S that contain
object q (since by replacing by q′ will obtain a more preferable set
of objects). Then q would remain unsold with a positive price, in
contradiction with the definition of competitive price outcome.
X This is due to the assumption of the model under which no
buyer is interested in acquiring more than one item of a given seller.



M1: Competitive equilibria

Every competitive-equilibrium outcome is a pairwise-stable
outcome.

A pairwise equilibria outcome where the sold objects of a
same seller have the same price is a competitive-equilibrium
outcome.

Given a pairwise stable outcome ((u, v), µ), define
v ′pq = minq∈µ(p) vpq and u′ the corresponding payoff for the
buyers. Then ((u, v), µ) is a competitive-equilibrium payoff.

s1 = 1 s2 = 2
w1 w2

r1 = 2 f1
r2 = 2 f2

3 2
3 3

(u11, u12, u22, u20; v11, v12, v22, v20) = (2, 2, 3, 0; 1, 0, 0, 0)
(u11, u12, u22, u20; v11, v12, v22, v20) = (0, 0, 0, 0; 3, 2, 3, 0)→ (0, 0, 1, 0; 3, 2, 2, 0).



M1: Competitive equilibria

In Sotomayor (1999) it is proved the lattice structure of the
set of pairwise-stable payoffs.

By the above procedure, this structure is inherited by the set
of competitive equilibria payoffs.

Hence, there exists a buyers-optimal competitive equilibria
payoff vector and a sellers-optimal competitive equilibria
payoff vector.



M1: The core

An outcome specifies for each agent a set of payments made by
the group of agents matched to him. Thus an agent’s payoff is the
sum of these payments. We now look directly at the total payoff of
each agent (there is a loss of information).

Definition

A feasible payoff is ((U,V ); x), where x is a feasible matching,
U ∈ RF

+, V ∈ RW
+ and

i) Ui = 0 if i unmatched; Vk = 0 if k unmatched,
ii)
∑

i∈F Ui +
∑

k∈W Vk ≤
∑

(i ,k)∈F×W αikxik .

Definition

The feasible payoff ((U,V ); x) is in the core if there are no subsets
R ⊆ F , S ⊆W and a feasible matching x ′ such that∑

i∈R

Ui +
∑
k∈S

Vk <
∑

(i ,k)∈R×S

αikx ′ik .



M1: The core

X Coalitional rationality for buyer-seller pairs does not suffice to
describe the core.
X A market with one firm and three workers.

s1 = 1 s2 = 1 s3 = 1
w1 w2 w3

r1 = 2 f1 1 2 3

The feasible outcome ((U,V ); x) where U = 1, V = (0, 1, 3)
and x = (0, 1, 1) is blocked by R = {f1}, S = {w1,w2} and
the matching x ′ = (1, 1, 0).
But there are no blocking pairs since U1 + Vk ≥ α1k for all k.

Theorem

Every pairwise-stable outcome ((u, v); x) for M1(α) gives a payoff
vector ((U,V ); x) in the core of the game generated by this
market:

∑
f ∈S Uf +

∑
w∈R Vw ≥ wA(S ∪ R). Hence, the core is

nonempty.
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Multiple-partners assignment market: Model 2 (Thompson,
1981; Crawford and Knoer, 1981; Sotomayor, 2002)

Let F be a finite set of firms, W a finite set of workers and
for each (f ,w) ∈ F ×W , afw represents the amount of
income the pair can generate.
The capacity of each agent is not the number of different
partnerships he can establish but the number of units of work
he supplies or demands. Let pi be the capacity of firm i ∈ F
and qj the capacity of worker j ∈W .
In Operations Research, finding and optimal assignment to
this situation is known as the transportation problem.

max
∑

F×W xijaij

where
∑

j∈W xij ≤ pi , for all i ∈ F ,∑
i∈F xij ≤ qj , for all j ∈W .

xij ≥ 0, for all (i , j) ∈ F ×W .

If pi , qj ∈ Z, there exists integer solution x = (xij)
(Dantzing,1963).



M2: Solutions to the dual linear problem

The dual linear problem is:

min
∑

i∈F piyi +
∑

j∈W qjzj

where yi + zj ≥ aij , for all (i , j) ∈ F ×W ,
yi ≥ 0, zj ≥ 0, for all (i , j) ∈ F ×W .

Given a solution (y , z) to the dual problem, the payoff vector
(u, v) where ui = piyi for all i ∈ F and vj = qjzj for all
j ∈W , belongs to the core of the related assignment game.

In this vector, each firm pays equally each unit of labour (even
though they correspond to different workers) and each worker
receives the same payment for each unit of labour (even
though they correspond to different firms).

Theorem

The core of the multiple-partner assignment game M2 is non-empty



M2: Differences with the assignment game

The core strictly contains the set of solutions of the dual
problem.
For instance, in a market with one firm f1 with capacity
r1 = 2, one worker w1 with capacity s1 = 1 and a11 = 4.
The characteristic function is wA(f1) = wA(w1) = 0,
wA(f1,w1) = 4.
The core is {(u, 4− u) | 0 ≤ u ≤ 4} but the only solution to
the dual problem is (0, 4).
Inside the core there is no oposition of interest between the
two sides of the market and the core is not a lattice.

s1 = 1 s2 = 1
w1 w2

r1 = 2 f1 3 3
wA(f ,w1) = wA(f ,w2) = 3,wA(f ,w1,w2) = 6
(u; v) = (5; 1, 0), (u′; v ′) = (4; 0, 2) ∈ C (wA) but
(u ∨ u′, v ∧ v ′) = (5; 0, 0) 6∈ C (wA)



M2: Existence of optimal core elements for each sector

It is an open problem the existence of a core element that is
optimal for each side of the market.

There may not be a worst core element for one side of the
market.

s1 = 1 s2 = 3
w1 w2

r1 = 2 f1
r2 = 2 f2

4 1

4.5 1.5

(4, 3.5)

(3,0)

(2,1)

v2

v1



M2: The many-to-one case

All agents on one side (let us say the workers) have capacity 1.

Then, there exists an optimal core allocation for each side of
the market (which is the worst one for the opposite side).

But the core does not have a lattice structure
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