The nucleolus and other core allocations in assignment games

Tamás Solymosi
Corvinus University of Budapest tamas.solymosi@uni-corvinus.hu

Summer School on Matching Problems, Markets, Mechanisms
Budapest
2013.06.27.

Outline

- Assignment markets - games
- Stable outcomes - Core
- Special stable outcomes
- Manipulability of stable mechanisms
- Assignment games
- Core
- Nucleolus (efficient computation)

Assignment markets

Assignment market:

- two types of agents (sellers - buyers)
- the objects of trade are indivisible (houses)
- unit supplies, unit demands (houses are identified with sellers)
- money (perfectly divisible), side-payments are allowed
- utility is transferable (identified with money)

Outcome consists of

- an allocation of houses (sellers) to buyers (or to sellers, if not traded)
- monetary transfers among agents

Model (Shapley, Shubik, 1972)

Assignment market:

- set of sellers M, set of buyers M^{\prime}
- each seller $i \in M$ has a reservation value r_{i} on his house
- each buyer $j \in M^{\prime}$ has reservation values $\left(t_{i j}\right)_{i \in M}$ on the houses

Pairwise value matrix: $\quad A=\left[a_{i j} \geq 0\right]_{i \in M, j \in M^{\prime}}$ with $a_{i j}=\left(t_{i j}-r_{i}\right)^{+}$ \Downarrow

Assignment game: player set $M \cup M^{\prime}$, value of coalition S

$$
w_{A}(S)=\max _{\mu \in \mathcal{M}\left(S \cap M, S \cap M^{\prime}\right)} \sum_{(i, j) \in \mu} a_{i j}
$$

where $\mathcal{M}\left(S \cap M, S \cap M^{\prime}\right)$: set of seller-buyer matchings in S

Outcomes: feasibility

A feasible outcome $(X,(u ; v))$ consists of

- a feasible assignment $X=\left[x_{i j}\right]$ (of sellers (houses) to buyers)

$$
\begin{aligned}
\sum_{j \in M^{\prime}} x_{i j} & \leq 1 & & \text { for all } i \in M \\
\sum_{i \in M} x_{i j} & \leq 1 & & \text { for all } j \in M^{\prime} \\
x_{i j} & \in\{0,1\} & & \text { for all } i \in M, j \in M^{\prime}
\end{aligned}
$$

- represents matching $\mu_{X} \in \mathcal{M}\left(M, M^{\prime}\right)$ by $\quad(i, j) \in \mu_{X} \Leftrightarrow x_{i j}=1$
- a feasible payoff vector $\left(\ldots u_{i} \ldots ; \ldots v_{j} \ldots\right)_{i \in M, j \in M^{\prime}}$

$$
\sum_{i \in M} u_{i}+\sum_{j \in M^{\prime}} v_{j} \leq \sum_{(i, j) \in\left(M, M^{\prime}\right)} a_{i j} x_{i j}=\sum_{(i, j) \in \mu_{X}} a_{i j}
$$

Outcomes: stability

A feasible outcome $(X,(u ; v))$ is stable, if payoffs are acceptable:

- $u_{i} \geq 0, v_{j} \geq 0 \quad$ for all $i \in M, j \in M^{\prime} \quad$ (individually acceptable)
- $u_{i}+v_{j} \geq a_{i j} \quad$ for all $i \in M, j \in M^{\prime}$ (pairwise acceptable)

Note: If payoffs are acceptable then for any feasible assignment X

$$
\sum_{(i, j) \in \mu_{X}} a_{i j}+\sum 0 \leq \sum_{(i, j) \in \mu_{X}}\left(u_{i}+v_{j}\right)+\sum_{i \in M \backslash \mu_{X}} u_{i}+\sum_{j \in M^{\prime} \backslash \mu_{X}} v_{j}
$$

Recall: Feasibility implies the reverse inequality:

$$
\sum_{(i, j) \in \mu_{X}}\left(u_{i}+v_{j}\right)+\sum_{i \in M \backslash \mu_{X}} u_{i}+\sum_{j \in M^{\prime} \backslash \mu_{X}} v_{j} \leq \sum_{(i, j) \in\left(M, M^{\prime}\right)} a_{i j} x_{i j}
$$

Stability results /1

Proposition

A feasible outcome $(X,(u ; v))$ is stable, if and only if at the same time

- X maximizes total value $\sum_{i j} a_{i j} x_{i j}$ over all feasible assignments
- ($u ; v$) minimizes total payoff $\sum_{i} u_{i}+\sum_{j} v_{j}$ over all acceptable payoffs In that case,
- $u_{i}=0 \quad$ for each unmatched seller $i \in M \backslash \mu_{X}$

$$
\begin{array}{r}
\left(\sum_{j \in M^{\prime}} x_{i j}<1\right) \\
\left(\sum_{i \in M} x_{i j}<1\right) \\
\left(x_{i j}>0\right)
\end{array}
$$

? Existence Is there a stable outcome for any assignment market?

Stability results / 1

Proposition

A feasible outcome $(X,(u ; v))$ is stable, if and only if at the same time

- X maximizes total value $\sum_{i j} a_{i j} x_{i j}$ over all feasible assignments
- ($u ; v$) minimizes total payoff $\sum_{i} u_{i}+\sum_{j} v_{j}$ over all acceptable payoffs In that case,
- $u_{i}=0 \quad$ for each unmatched seller $i \in M \backslash \mu_{X} \quad\left(\sum_{j \in M^{\prime}} x_{i j}<1\right)$
- $v_{j}=0 \quad$ for each unmatched buyer $j \in M^{\prime} \backslash \mu_{X} \quad\left(\sum_{i \in M} x_{i j}<1\right)$
- $u_{i}+v_{j}=a_{i j} \quad$ for each matched pair $(i, j) \in \mu_{X}$ $\left(x_{i j}>0\right)$
? Existence Is there a stable outcome for any assignment market?

Theorem (Egerváry, 1931)

For any nonnegative matrix $A=\left[a_{i j}\right]$,

$$
\max _{\text {feasible }} \sum_{i j} a_{i j} x_{i j}=\min _{(u ; v)} \sum_{\text {acceptable }} \sum_{i} u_{i}+\sum_{j} v_{j}
$$

Stability results / 2

Theorem (Shapley, Shubik, 1972)

For any nonnegative matrix $A=\left[a_{i j}\right]$, the core
$C o=\left\{x=(u, v): x\left(M \cup M^{\prime}\right)=w\left(M \cup M^{\prime}\right), x(S) \geq w(S) \quad \forall S \subset M \cup M^{\prime}\right\}$ of the induced assignment game $w=w_{A}$

- = the set of dual optimal solutions to the max assignment LP ($=$ the set of stable payoff vectors)
- hence, it is a non-empty polytope (and 'easily' computable)
- has a lattice structure: if (.. $u_{i} . . ;$.. $\left.v_{j} ..\right)$ and (.. $u_{i}^{\prime} . . ;$.. $\left.v_{j}^{\prime} ..\right) \in C o$, then $\left(. . u_{i} \vee u_{i}^{\prime} . . ; . . v_{j} \wedge v_{j}^{\prime} ..\right)$ and $\left(. . u_{i} \wedge u_{i}^{\prime} . . ; . . v_{j} \vee v_{j}^{\prime} ..\right) \in C_{o}$
- has a seller-optimal (.. $\left.\bar{u}_{i} . . ; . . \underline{v}_{j} ..\right)$ vertex

$$
\text { where } \bar{u}_{i}=\max \left\{u_{i}:(u, v) \in C o\right\} \text { and } v_{j}=\min \left\{v_{j}:(u, v) \in C o\right\}
$$

has a buyer-optimal (.. $\left.\underline{u}_{i} . . ; . . \bar{v}_{j} ..\right)$ vertex
where $\underline{u}_{i}=\min \left\{u_{i}:(u, v) \in C o\right\}$ and $\bar{v}_{j}=\max \left\{v_{j}:(u, v) \in C o\right\}$

- = the set of surplus vectors attainable at competitive equilibrium prices

Example 3×3

market \begin{tabular}{cl||ccc|}
\& \& $t .1$ \& $t_{.2}$ \& $t .3$

\cline { 2 - 4 } \& $r_{1}=20$ \& 27 \& 21 \& 24

\& $r_{2}=21$ \& 29 \& 27 \& 28

$r_{3}=22$ \& 27 \& 20 \& 25

\&

$\quad \Longrightarrow$ pairwise values

\hline 7 \& 1 \& 4

8 \& 6 \& 7

5 \& 0 \& 3

\hline
\end{tabular}

stable outcome

	$v_{1} \geq 0$	$v_{2} \geq 0$	$v_{3} \geq 0$
$0 \leq u_{1}$	$u_{1}+v_{1}=7$	$u_{1}+v_{2} \geq 1$	$u_{1}+v_{3} \geq 4$
$0 \leq u_{1}$	$u_{2}+v_{1} \geq 8$	$u_{2}+v_{2}=6$	$u_{2}+v_{3} \geq 7$
$0 \leq u_{2}$	$u_{3}+v_{1} \geq 5$	$u_{3}+v_{2} \geq 0$	$u_{3}+v_{3}=3$

seller payoffs

	$u_{1} \leq 7$	$u_{2} \leq 6$	$u_{3} \leq 3$
$0 \leq u_{1}$	\cdot	$u_{1}-u_{2} \geq-5$	$u_{1}-u_{3} \geq+1$
$0 \leq u_{2}$	$u_{2}-u_{1} \geq+1$	\cdot	$u_{2}-u_{3} \geq+4$
$0 \leq u_{3}$	$u_{3}-u_{1} \geq-2$	$u_{3}-u_{2} \geq-6$.

buyer payoffs

$$
v_{1}=7-u_{1} \quad v_{2}=6-u_{2} \quad v_{3}=3-u_{3}
$$

Example 3×3 : the core

7	1	4				
8		7				
5	0	7				
5	0	3	\Longrightarrow	$0 \leq u_{1} \leq 7$	$0 \leq u_{2} \leq 6$	$0 \leq u_{3} \leq 3$
:---:	:---:	:---:				
\cdot	$u_{1}-u_{2} \geq-5$	$u_{1}-u_{3} \geq 1$				
$u_{2}-u_{1} \geq 1$	\cdot	$u_{2}-u_{3} \geq 4$				
$u_{3}-u_{1} \geq-2$	$u_{3}-u_{2} \geq-6$	\cdot				

Example 3×3 : the core

7	1	4				
8	6	7				
5	0	3	0 3 $\quad \Longrightarrow$	$0 \leq u_{1} \leq 7$	$0 \leq u_{2} \leq 6$	$0 \leq u_{3} \leq 3$
:---:	:---:	:---:				
\cdot	$u_{1}-u_{2} \geq-5$	$u_{1}-u_{3} \geq 1$				
$u_{2}-u_{1} \geq 1$.	$u_{2}-u_{3} \geq 4$				
$u_{3}-u_{1} \geq-2$	$u_{3}-u_{2} \geq-6$.				

Example 3×3 : the core

7	1	4				
8	6	7				
5	0	7				
5	0	3	\Longrightarrow	$0 \leq u_{1} \leq 7$	$0 \leq u_{2} \leq 6$	$0 \leq u_{3} \leq 3$
:---:	:---:	:---:				
\cdot	$u_{1}-u_{2} \geq-5$	$u_{1}-u_{3} \geq 1$				
$u_{2}-u_{1} \geq 1$.	$u_{2}-u_{3} \geq 4$				
$u_{3}-u_{1} \geq-2$	$u_{3}-u_{2} \geq-6$	\cdot				

Example 3×3 : the core

7	1	4				
8	6	7				
5	0	7				
5	0	3	\Longrightarrow	$0 \leq u_{1} \leq 7$	$0 \leq u_{2} \leq 6$	$0 \leq u_{3} \leq 3$
:---:	:---:	:---:				
\cdot	$u_{1}-u_{2} \geq-5$	$u_{1}-u_{3} \geq 1$				
$u_{2}-u_{1} \geq 1$.	$u_{2}-u_{3} \geq 4$				
$u_{3}-u_{1} \geq-2$	$u_{3}-u_{2} \geq-6$	\cdot				

Example 3×3 : the core

7	1	4				
8	6	7				
5	0	3	0 3 $\quad \Longrightarrow$	$0 \leq u_{1} \leq 7$	$0 \leq u_{2} \leq 6$	$0 \leq u_{3} \leq 3$
:---:	:---:	:---:				
\cdot	$u_{1}-u_{2} \geq-5$	$u_{1}-u_{3} \geq 1$				
$u_{2}-u_{1} \geq 1$.	$u_{2}-u_{3} \geq 4$				
$u_{3}-u_{1} \geq-2$	$u_{3}-u_{2} \geq-6$.				

For sellers: worst corner $(1,4,0)$, best corner $(4,6,2)$

Example 2×2

Market \begin{tabular}{ll||ll}
\& \& $t_{.1}$ \& $t_{.2}$

\& $r_{1}=20$ \& 26 \& 22

$r_{2}=22$ \& 26 \& 25

$| \Longrightarrow$ pairwise values

\hline 6 \& 2

4 \& 3

\hline
\end{tabular}

stable payoffs | | | $v_{1} \geq 0$ | $v_{2} \geq 0$ |
| :---: | :---: | :---: | :---: |
| | $0 \leq u_{1}$ | $u_{1}+v_{1}=6$ | $u_{1}+v_{2} \geq 2$ |
| $0 \leq u_{2}$ | $u_{2}+v_{1} \geq 4$ | $u_{2}+v_{2}=3$ | |

- for sellers

	$u_{1} \leq 6$	$u_{2} \leq 3$
$0 \leq u_{1}$	\cdot	$u_{1}-u_{2} \geq-1$
$0 \leq u_{2}$	$u_{2}-u_{1} \geq-2$.

- for buyers

$$
v_{1}=6-u_{1} \quad v_{2}=3-u_{2}
$$

competitive equilibrium prices $p_{1}=r_{1}+u_{1}=t_{11}-v_{1}, p_{2}=r_{2}+u_{2}=t_{22}-v_{2}$ induce optimal seller-buyer assignment and stable payoffs

Core, competitive prices in Example 2×2

		$u_{1} \leq 6$	$u_{2} \leq 3$
20+	$u_{1} \geq 0$		$u_{1}-u_{2} \geq$
$22+$	$u_{2} \geq 0$	$u_{2}-u_{1} \geq-2$.

Stable market mechanism

Stable mechanism in assignment markets:

- each seller reports his reservation price
- each buyer reports his monetary valuation on each house
- prices are determined (from stable outcomes) and announced
- each buyer demands the house which maximizes his surplus
- houses are allocated, payments are made

Theorem

No stable mechanism exists for which stating the true reservation prices is a dominant strategy for every agent.

Theorem (Demange, 1982 / Leonard, 1983)

If the mechanism selects the minimum equilibrium prices then truthful reporting is a dominant strategy for every buyer.

Theorem (Demange, Gale, Sotomayor, 1986)

The minimum equilibrium prices can be achieved by ascending auctions.

Buyer-optimal competitive prices

$20+0$	6	2
$22+0$	4	3

Buyer-optimal competitive prices

$\left.$| $20+0$ | 6 | 2 |
| :--- | :--- | :--- |
| $22+0$ | 4 | 3 |\longrightarrow| $1+20+0$ |
| ---: |
| $22+0$ | \right\rvert\, | | 1 |
| :--- | :--- |

Fair prices (Thompson, 1981)

Fair prices $=$ average of the buyer-optimal and seller-optimal prices Núñez, Rafels (2002) Tau-value = payoffs at the fair prices

Fair prices (Thompson, 1981)

Fair prices $=$ average of the buyer-optimal and seller-optimal prices Núñez, Rafels (2002) Tau-value = payoffs at the fair prices

Nucleolus prices

The nucleolus is the lexicographically 'innermost' point of the core Solymosi, Raghavan (1994) Efficiently computable from data matrix

Nucleolus prices

The nucleolus is the lexicographically 'innermost' point of the core Solymosi, Raghavan (1994) Efficiently computable from data matrix

Example 2×2 continued

0	6	2
0	4	3

Example 2×2 continued

0	6	2				
0	4	3	\longrightarrow	$1+0$	5	1
---:	---:	:---				
0	4	3				

Example 2×2 continued

$1+0$	5	1				
0	4	3	\rightarrow	$2+0$	4	0
---:	---:	---:				
0	4	3				

Manipulability results for sellers

Let seller k increase his reported reservation price by $0 \leq c$ small enough not to change the optimal assignment. In new input matrix

$$
a_{k j}^{\prime}=\left(a_{k j}-c\right)^{+} \text {for all } j \quad \text { and } \quad a_{i j}^{\prime}=a_{i j} \text { for all } j \text { and }(i \neq k) .
$$

Then

- for the buyer-optimal corner $(\underline{u}, \bar{v}), \quad 0+\underline{u}_{k} \leq c+\underline{u}_{k}^{\prime} \leq c+\underline{u}_{k}$ Seller k can increase the minimum eq. price, but by at most c.
- for the seller-optimal corner $(\bar{u}, \underline{v}), \quad 0+\bar{u}_{k}=c+\bar{u}_{k}^{\prime}$ Seller k cannot influence the maximum eq. price.
- Consequently, for the tau-value $\tau, \quad 0+\tau_{k} \leq c+\tau_{k}^{\prime} \leq \tau_{k}+\frac{c}{2}$. Seller k can increase the fair equilibrium price, but by at most $\frac{c}{2}$.
- for the nucleolus $\eta, \quad 0+\eta_{k} \leq c+\eta_{k}^{\prime} \leq \eta_{k}+\frac{d}{d+1} c$ Seller k can increase the nucleolus price, but by at most $\frac{d}{d+1} c$, where d is the number of houses sold.

Moreover, all bounds are sharp.

Summary of first part

We considered

- assignment markets à la Shapley and Shubik (1972)
- equilibrium prices induced by core solutions of associated games (special corners, tau-value, nucleolus)
- sensitivity of these equilibrium prices w.r.t. market data changes

We found that each player could influence any of these prices to his benefit, and established sharp upper bounds for its extent.

Further questions:

? Manipulability of other stable assignment mechanisms?
? Is there a 'least manipulable' stable assignment mechanism?

References /1

- Demange G (1982) Strategyproofness in the assignment market game. Mimeo, Laboratoire d'Econométrie de l'École Politechnique, Paris.
- Demange G, Gale D, Sotomayor M (1986) Multi-item auctions. Journal of Political Economy, 94(4): 863-872.
- Egerváry J (1931) Matrixok kombinatorius tulajdonságairól, Matematikai és Fizikai Lapok 38: 16-28.
- Leonard HB (1983) Elicitation of honest preferences for the assignment of individuals to positions. Journal of Political Economy, 91: 461-479.
- Núñez M, Rafels C (2002) The assignment game: the τ-value. International Journal of Game Theory, 31(3): 411-422.
- Shapley LS, Shubik M (1972) The assignment game I: The core. International Journal of Game Theory, 1: 111-130.
- Solymosi T, Raghavan TES (1994) An algorithm for finding the nucleolus of assignment games. International Journal of Game Theory, 23: 119-143.
- Thompson GL (1981) Auctions and market games. In: Essays in Game Theory and Mathematical Economics in Honor of Oskar Morgenstern, RJ Aumann (ed), Bibliographisches Institut, Wissenschaftsverlag, Mannheim, 181-196.

Core - minimum matrix covers

Recall

the core of the assignment game induced by the matrix $A=\left[a_{i j} \geq 0\right]_{i \in M, j \in M^{\prime}}$
$=$ the (non-empty) set of minimum covers of matrix A
$=$ the (non-empty) set of optimal solutions to the dual assignment LP:

$$
\begin{array}{rlrl}
\sum_{i \in M} u_{i}+\sum_{j \in M^{\prime}} v_{j} & \rightarrow \min & =w_{A}\left(M \cup M^{\prime}\right) \\
u_{i}+v_{j} & \geq a_{i j} & & \text { for all } i \in M, j \in M^{\prime} \\
u_{i}, v_{j} & \geq 0 & \text { for all } i \in M, j \in M^{\prime}
\end{array}
$$

By complementary slackness between primal and dual optimal solutions, for any maximum value assignment μ_{X}, i.e. $w_{A}\left(M \cup M^{\prime}\right)=\sum_{(i, j) \in \mu_{X}} a_{i j}$ and for any core vector (u, v)

$$
\begin{aligned}
u_{i}+v_{j} & =a_{i j} \quad \text { for all matched } \quad(i, j) \in \mu_{X} \\
u_{i} & =0 \quad \text { for all unmatched } i \in M \backslash \mu_{X} \\
v_{j} & =0 \quad \text { for all unmatched } j \in M^{\prime} \backslash \mu_{X}
\end{aligned}
$$

Core description - unified notation

Assume w.l.o.g.

- $|M|=\left|M^{\prime}\right|$
(0 rows/columns \rightarrow dummy player)
- no player is unmatched in an optimal matching
- the diagonal matching is optimal (rearrange rows/columns)

Introduce a fictitious seller 0 and a fictitious buyer 0^{\prime}
Extend any optimal matching with the pair of 0 and 0^{\prime}.
Denote dual slacks $f_{i j}(u, v)=\left\{\begin{array}{lll}u_{i}+v_{j}-a_{i j} & \text { for } \quad i \in M, j \in M^{\prime} \\ u_{i} & \text { for } & i \in M, j=0^{\prime} \\ v_{j} & \text { for } & i=0, j \in M^{\prime} \\ 0 & \text { for } & i=0, j=0^{\prime}\end{array}\right.$
Then, under any optimal matching,

$$
(u ; v) \in C_{0} \Leftrightarrow \begin{cases}f_{i 0^{\prime}}(u, v) \geq 0 & \text { for each seller } i \\ f_{0 j}(u, v) \geq 0 & \text { for each buyer } j \\ f_{i j}(u, v) \geq 0 & \text { for each unmatched pair } i, j \\ f_{i j}(u, v)=0 & \text { for each matched pair } i, j\end{cases}
$$

Dual slacks in Example 3×3

square matrix | 7 | 1 | 4 |
| :---: | :---: | :---: |
| 8 | 6 | 7 |
| 5 | 0 | 3 | with an optimal matching in the diagonal

core constraints

	$v_{1} \geq 0$	$v_{2} \geq 0$	$v_{3} \geq 0$
$0 \leq u_{1}$	$u_{1}+v_{1}=7$	$u_{1}+v_{2} \geq 1$	$u_{1}+v_{3} \geq 4$
$0 \leq u_{1}$	$u_{2}+v_{1} \geq 8$	$u_{2}+v_{2}=6$	$u_{2}+v_{3} \geq 7$
$0 \leq u_{2}$	$u_{3}+v_{1} \geq 5$	$u_{3}+v_{2} \geq 0$	$u_{3}+v_{3}=3$

in extended dual slacks $f_{i j}=f_{i j}(u, v)$

$f_{00}=0$	$v_{1}=f_{01} \geq 0$	$v_{2}=f_{02} \geq 0$	$v_{3}=f_{03} \geq 0$
$u_{1}=f_{10} \geq 0$	$f_{11}=0$	$f_{12} \geq 0$	$f_{13} \geq 0$
$u_{2}=f_{20} \geq 0$	$f_{21} \geq 0$	$f_{22}=0$	$f_{23} \geq 0$
$u_{3}=f_{30} \geq 0$	$f_{31} \geq 0$	$f_{32} \geq 0$	$f_{33}=0$

Example 3×3 : box allocations $/ 1$

0	6	4	0
1	0	4	-3
2	0	0	-5
3	4	7	0

box allocation (1, 2, 3; 6, 4, 0) not in core

Example 3×3 : box allocations $/ 2$

0	5	1	2
2	0	2	0
2	2	0	0
5	2		
1	1	2	0

\square

allocation $(2,5,1 ; 5,1,2)$ is in the core, but not an extreme point

Example 3×3 : box allocations $/ 3$

0	5	0	3
2	0	1	1
6	3	0	2
0	0	0	0

allocation $(2,6,0 ; 5,0,3)$ is a core extreme point

Nucleolus = lexicographic center

The nucleolus was introduced by Schmeidler (1969). Alternatively, Maschler, Peleg, Shapley (1979) describe a finite process that iteratively reduces the set of payoffs to a singleton, called the lexicographic center. It is shown to be exactly the nucleolus.

The lexicographic center procedure can be easily implemented. Each iteration can be carried out by solving LPs with $n+1$ variables and 2^{n} constraints including only $-1,0$, or 1 coefficients. E.g. Sankaran (1991) proposed such a formulation with at most $\mathcal{O}\left(2^{n}\right)$ LPs to be solved for an n-person game.

For assignment games, Solymosi and Raghavan (1994) applied graph-related techniques instead of LPs. Their algorithm generates a finite sequence of payoffs leading to the nucleolus. For an (m, n)-person game with $m=\min (m, n)$, the algorithm determines the nucleolus in at most $m(m+3) / 2$ steps, each one requiring at most $\mathcal{O}(m \cdot n)$ elementary operations.

Lexicographic center for assignment games

Let σ be a fixed optimal matching. Construct a sequence $\left(\Delta^{0}, \Sigma^{0}\right), \ldots,\left(\Delta^{\rho}, \Sigma^{\rho}\right)$ of partitions of $\left(M_{0}, M_{0}^{\prime}\right)$ with $\Sigma^{0} \supset \ldots \supset \Sigma^{\rho}$, and a nested sequence $X^{0} \supset \ldots \supset X^{\rho}$ of sets of payoff vectors.

Initially, let $\Delta^{0}=\sigma, \Sigma^{0}=\left(M_{0}, M_{0}^{\prime}\right) \backslash \sigma$,

$$
\begin{aligned}
\left(u^{0}, v^{0}\right) \text { with } u_{i}^{0}=0 & \forall i \in M, v_{j}^{0}=a_{j j} \quad \forall j \in M^{\prime} \\
\alpha^{0}=\min \left\{f_{i j}\left(u^{0}, v^{0}\right):(i, j) \in \Sigma^{0}\right\} & \\
X^{0}=\left\{(u, v) \geq(0,0), f_{i j}(u, v)=0\right. & \forall(i, j) \in \Delta^{0} \\
f_{i j}(u, v) \geq \alpha^{0} & \left.\forall(i, j) \in \Sigma^{0}\right\} .
\end{aligned}
$$

For $r=0,1, \ldots, \rho$ define recursively
(1) $\alpha^{r+1}=\max _{(u, v) \in X^{r}} \min _{(i, j) \in \Sigma^{r}} f_{i j}(u, v)$
(2) $X^{r+1}=\left\{(u, v) \in X^{r}: \min _{(i, j) \in \Sigma^{r}} f_{i j}(u, v)=\alpha^{r+1}\right\}$
(3) $\Sigma_{r+1}=\left\{(i, j) \in \Sigma^{r}: f_{i j}(u, v)=\right.$ constant on $\left.X^{r+1}\right\}$
(c) $\Sigma^{r+1}=\Sigma^{r} \backslash \Sigma_{r+1}, \Delta^{r+1}=\Delta^{r} \cup \Sigma_{r+1}$,
where ρ is the last value of index r for which $\Sigma^{r} \neq \emptyset$.
The set $X^{\rho+1}$ is the lexicographic center of $A\left(M, M^{\prime}\right)$.

Algorithm (Solymosi, Raghavan, 1994)

Given: square matrix $\left(a_{i j} \geq 0\right)_{\left(M_{0}, M_{0}^{\prime}\right)}$ with diagonal optimal matching σ
Initially let $r=0, \Delta=\sigma, \Sigma=\left(M_{0}, M_{0}^{\prime}\right) \backslash \sigma, u_{i}=0 \quad \forall i \in M_{0}, v_{j}=a_{j j} \quad \forall j \in M_{0}^{\prime}$, $f_{i j}=u_{i}+v_{j}-a_{i j} \quad \forall(i, j) \in\left(M_{0}, M_{0}^{\prime}\right), \alpha=\min \left\{f_{i j}:(i, j) \in \Sigma\right\}$.

While $\Sigma \neq \emptyset$ do (iteration r)
(1) Build the graph $G:=G(r, \alpha)$
(2) While G is proper do $(\operatorname{step}(r, \alpha))$
(1) Find direction (s, t)
(2) Find step size $\beta:=\beta(r, \alpha)$

- Update arcs in graph, $G:=G(r, \alpha+\beta)$
- Update payoff, $(u, v):=(u, v)+\beta \cdot(s, t)$
- Update $f_{i j}:=f_{i j}+\beta \cdot\left(s_{i}+t_{j}\right) \quad \forall(i, j) \in \Sigma$
- Update guaranteed level, $\alpha:=\alpha+\beta$
(3) Find to-be-settled coalitions $\bar{\Sigma}:=\Sigma_{r+1}$
(1) Update partition, $\Sigma:=\Sigma \backslash \bar{\Sigma}, \Delta:=\Delta \cup \bar{\Sigma}$
(0) Set $r:=r+1$.

Iteration $\mathrm{r}=0$, step $\alpha=-4$

0	7	6	3
0	0	5	-1
0	-1	0	-4
0	2	6	0

$$
\begin{array}{|c:ccc}
\hline \begin{array}{|c:ccc}
\hline 0 & 7_{0} & 6_{-1} & 3_{0} \\
\hdashline 0_{0} & 0 & 5_{-1} & -1_{0} \\
0_{+1} & -1_{+1} & \boxed{0} & -4_{+1} \\
0 & 0 & & \\
0_{0} & 2_{0} & 6_{-1} & \boxed{0} \\
\hline 0 & 0 & -1 & 0
\end{array} & \begin{array}{l}
\beta=3 \\
\hline
\end{array}
\end{array}
$$

Iteration $\mathrm{r}=0$, step $\alpha=-1$

0	7	3	3
0	0	2	-1
3	2	0	-1
0	2	3	0

$$
\beta=1
$$

Iteration $\mathrm{r}=0$, step $\alpha=0$

0	6	2	3
1	0	2	0
4	2	0	0
0	1	2	0

0	6_{-2}	2_{-2}	3_{-1}
1_{+2}	0	2_{0}	0_{+1}
4_{+2}	2_{0}	0	0
0			
0_{+1}	1_{-1}	2_{-1}	$\boxed{0}$
0	-2	-2	-1

$$
\beta=1 / 2
$$

Iteration $\mathrm{r}=0$, step $\alpha=1 / 2$

0	5	1	$\frac{5}{2}$
2	0	2	$\frac{1}{2}$
5	2	0	$\frac{1}{2}$
	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{2}$

Iteration $\mathrm{r}=0$, step $\alpha=1 / 2$

0	5	1	$\frac{5}{2}$
2	0	2	$\frac{1}{2}$
5	2	0	$\frac{1}{2}$
	$\frac{1}{1}$	$\frac{1}{2}$	$\frac{3}{2}$

Settling step

Iteration $\mathrm{r}=1$, step $\alpha=1 / 2$

0	5	1	$\frac{5}{2}$
2	0	2	$\frac{1}{2}$
5	2	0	$\frac{1}{2}$
$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{2}$	0

$$
\beta=1 / 6
$$

Iteration $r=1$, step $\alpha=2 / 3$

0	$\frac{29}{6}$	$\frac{2}{3}$	$\frac{7}{3}$
$\frac{13}{6}$	0	$\frac{11}{6}$	$\frac{1}{2}$
$\frac{16}{3}$	$\frac{13}{6}$	0	$\frac{2}{3}$
$\frac{2}{3}$	$\frac{1}{2}$	$\frac{4}{3}$	0

Iteration $\mathrm{r}=1$, step $\alpha=2 / 3$

0	$\frac{29}{6}$	$\frac{2}{3}$	$\frac{7}{3}$
$\frac{13}{6}$	0	$\frac{11}{6}$	$\frac{1}{2}$
$\frac{16}{3}$	$\frac{13}{6}$	0	$\frac{2}{3}$
$\frac{2}{3}$	$\frac{1}{2}$	$\frac{4}{3}$	0

Settling step \rightarrow STOP \rightarrow the nucleolus $=\left(\frac{13}{6}, \frac{16}{3}, \frac{2}{3} ; \frac{29}{6}, \frac{2}{3}, \frac{7}{3}\right)$

References $/ 2$

- Huberman G (1980) The nucleolus and the essential coalitions. in: Analysis and Optimization of Systems, Proceedings of the Fourth International Conference, Versailles, 1980, Bensoussan, A., Lions, J. (Eds.), Springer, Berlin. Lecture Notes in Control and Information Sciences, 28:416-422.
- Kohlberg E (1971) On the nucleolus of a characteristic function game. SIAM Journal on Applied Mathematics, 20:62-66.
- Reijnierse J, Potters JAM (1998) The \mathcal{B}-nucleolus of TU-games. Games and Economic Behavior, 24:77-96.
- Maschler M, Peleg B, Shapley LS (1979) Geometric properties of the kernel, nucleolus and related solution concepts.
Mathematics of Operations Research, 4:303-338.
- Sankaran J (1991) On finding the nucleolus of an n-person cooperative game. International Journal of Game Theory, 19:329-338.
- Schmeidler D (1969) The nucleolus of a characteristic function game. SIAM Journal on Applied Mathematics, 17:1163-1170.

Example 3×3 : Trees of longest paths to special corners

extended matrix \begin{tabular}{|c|ccc|}
\hline 0 \& 0 \& 0 \& 0

\hline 0 \& 7 \& 1 \& 4

0 \& 8 \& 6 \& 7

0 \& 5 \& 0 \& 3

\hline

\quad arc lengths

\hline. \& -7 \& -6 \& -3

\hline 0 \&. \& -5 \& +1

0 \& +1 \&. \& +4

0 \& -2 \& -6 \&.

\hline
\end{tabular}

The minimal $\underline{u}=(1,4,0)$

The maximal $\bar{u}=(4,6,2)$

THANK YOU FOR YOUR ATTENTION

