
Complexity of Voting

Systems

Piotr FaliszewskiPiotr Faliszewski

AGH University

Kraków, Poland

Agenda

• A First Course in Complexity Theory

– Complexity classes P and NP.

– NP-completeness

– Dealing with NP-completeness

• Complexity is Bad

– Winner determination problems– Winner determination problems

• Dodgson, Kemeny, Young…

• Monroe, Chamberlin-Courant

• Way around!

• Complexity is Good

– The complexity barrier approach

– Fighting Gibbard-Satterhwaite

– Fighting other deamons…

– … and not winning

Agenda

• A First Course in Complexity Theory

– Complexity classes P and NP.

– NP-completeness

– Dealing with NP-completeness

• Complexity is Bad

– Winner determination problems– Winner determination problems

• Dodgson, Kemeny, Young…

• Monroe, Chamberlin-Courant

• Way around!

• Complexity is Good

– The complexity barrier approach

– Fighting Gibbard-Satterhwaite

– Fighting other deamons…

– … and not winning

What is complexity theory?

• Can all problems be solved on a computer?

– No…

• Can my problem be solved on a computer?

– Sort of…

– What do you mean?

Computational complexity theory – a formal theory

that identifies and explains which tasks can be

efficiently carried out on a computer.

– What do you mean?

– It will take 10’000 years

– It’s not going to be very useful then, will it?

– Not particularly…

– Why shouldn’t I fire you?

– Because there is noone better…

Computational Problems

Decision problems
(yes/no answer)

Function problems
(compute a funtion)

Optimization problems
(compute a maximum of a

function)

Counting problems
(How many items of a

given type are there?)

Why Decision Problems?

Because they suffice…

Primes

Input: n – an integer

Task: compute the smallest prime

factor of n

If we can solve Primes,

then we can solve

PrimesDecision.
factor of n

PrimesDecision

Input: n, k – integers

Question: Is n’s smallest prime factor

smaller or equal to k?

If we can solve

PricesDecision, we can

also solve Primes!

If we can solve Primes…

… but what does it even mean? Obviously we can solve

Primes – just divide n by all number from 2 to n-1

Complexity class P (polynomial-time):Complexity class P (polynomial-time):

The class of decision problems for

which there are polynomial-time ,

deterministic algorithms.

The notion of effective computation!

Borda-Winner is in P

Borda-Winner

Input: P=(P1, …, Pn) is a profile

of preference orders,

c – a candidate from P

Question: Is c a Borda winner

under profile P?

V1:

V2:

V3:
under profile P?

V5:

V3:

V6:

V4:
Input size: n voters x m candidates

Algorithm:

For each candidate compute his/her

Borda score Check if c has highest

Borda score.

Running time: O(nm) � polynomial!

Primes is in P… but not as we thought it!

Simply dividing n by 2, 3, … , n-1 is an exponential time
algorithm!

n = 1 0 1 1 1 0

Doing O(n) divisions means, in fact, doing O(2log(n)) divisions—
exponential within the length of the encoding.

There is a more complexy proof that Primes is in P though…

log(n)

Class P

A decision problem D is in class P if there exists an algorithm that
given input I for D, solves I in time polynomial with respect to the
length of the encoding of I.

Examples of P-time running times (n – size of the input):

• n2• n2

• n log n

• n1000

Examples of running times not in P:

• 2n

• 1.000000000000001n

Computationally Hard Problems

What does it mean that a problem is computationally

hard?

• No polynomial time algorithm!

• Can we prove that such problems exist?

– Yes…– Yes…

– … but it’s useless in most cases

A different computational

complexity class…

Compexity Class NP

Complexity class NP (nondeterministic

polynomial-time): The class of decision problems

for which there are polynomial-time ,

nondeterministic algorithms.

What is a nondeterministic

computation?

(Non)deterministic Computation

Deterministic computation

x

Nondeterministic computation

x

Yes / No

no

no

nono yes

x x

(Non)deterministic Computation

Deterministic computation Nondeterministic computation

Yes / No

no

no

nono yes

poly(|x|) poly(|x|)

What does it all mean?

Nondeterministic computation

• Just like normal computation …

• … but the algorithm can make guesses

1
3

SetCover

Input: S = {S1, … Sm} – family of sets

k – an integer

Question: Is there a family of k sets

from S whose union is equal to

union of all sets from S?

1

2

4

5

6

What does it all mean?

Nondeterministic computation

• Just like normal computation …

• … but the algorithm can make guesses

1
3

SetCover

Input: S = {S1, … Sm} – family of sets

k – an integer

Question: Is there a family of k sets

from S whose union is equal to

union of all sets from S?

1

2

4

5

6

Compexity Class NP

Complexity class NP (nondeterministic

polynomial-time): The class of decision problems

for which there are polynomial-time ,

nondeterministic algorithms.

Class NP: Class of problems

whose solutions can be

verified in polynomial time.

Compexity Class NP

Complexity class NP (nondeterministic

polynomial-time): The class of decision problems

for which there are polynomial-time ,

nondeterministic algorithms.

Class NP: Class of problems

whose solutions can be

verified in polynomial time.

In effect, NP is exactle the class that captures most

of voting related problems. Is there a successful

manipulation? If there is one, we can show it and

verify that, indeed, it is successful.

Is NP bigger than P? – that is the question!

NP

Clearly, all problems from P also

belong to NP. What aboue the

other way round?

P
One of the biggest questions in …

well... all of science ☺

If we do not know if NP is bigger, how

can it help us? There is an order on the

hardness of problems!

Partial Order of Hardness

Reduction between problems
• A, B – two decision problems

• A reduces to B if there is a polynomial-
time computable function f such that

x in A � f(x) in B

If A reduces to B,

then A is no harder

than B � If we

could solve B, we

A B

f

f

could solve B, we

could solve A as

well.

Example of a Reduction

SAT-3CNF

Input: Logical formuka F in 3CNF form

Question: Is F satisfiable?

reduces to

SetCover

Input: S = {S1, … Sm} – family of sets

k – an integer

Question: Is there a family of k sets

from S whose union is equal to

union of all sets from S?

reduces to

Example of a Reduction

SetCover instance:

(x1 ∨ x2 ∨ x3) (-x2 ∨ x4) (-x1 ∨ -x3) (-x2 ∨ -x3 ∨ -x4)

A DCB

SetCover instance:

1

2

3

4

A

D
C

B
x1

-x1

x2

-x2

x3

-x3

x4

-x4

Example of a Reduction

SetCover instance:

(x1 ∨ x2 ∨ x3) (-x2 ∨ x4) (-x1 ∨ -x3) (-x2 ∨ -x3 ∨ -x4)

A DCB

SetCover instance:

We can take 4 sets

1

2

3

4

A

D
C

B
x1

-x1

x2

-x2

x3

-x3

x4

-x4

Example of a Reduction

SetCover instance:

(x1 ∨∨∨∨ x2 ∨∨∨∨ x3) (-x2 ∨∨∨∨ x4) (-x1 ∨∨∨∨ -x3) (-x2 ∨∨∨∨ -x3 ∨∨∨∨ -x4)

A DCB

SetCover instance:

We can take 4 sets

1

2

3

4

A

D
C

B
x1

-x2

-x3

x4

Is NP bigger than P? – that is the question!

NP
NP-completeness: A problem is

NP- complete if it is in NP and

every problem from NP reduces to

it � The hardest problems in NP!

NP-com

P

it � The hardest problems in NP!

SAT-3CNF is NP-complete…

… so SetCover is too!

NP-completness

Definition: A problem is NP-complete if it belongs

to NP and every problem in NP reduces to it

Proving NP-completeness: Tak an NP-completeProving NP-completeness: Tak an NP-complete

problem and reduce it to your problem of interest

(reductions are transitive!)

NP-complete problems are hard: No polynomial

time algorithm known for them, in spite of

decades of search! A natural notion of hardness!

SetCover

Input: S = {S1, … Sm} – family of sets

k – an integer

Question: Is there a family of k sets

from S whose union is equal to

X3C

Input: S = {S1, … Sm} – family of three

element subset of some set B

NP-complete Problems: Examples

VertexCover

Input: G = (V, E) – undirected graphfrom S whose union is equal to

union of all sets from S?

element subset of some set B

Question: Is there a family of |B|/3 of

sets from S that union up to B?

Input: G = (V, E) – undirected graph

k – an integer

Question: Can we pick k vertices so

that all edges are touched by

at least one chosen vertex?

Partition

Input: s1, …, sn – sequence of integers

Question: Can we a subset of these

integers that sums up to exactly

half the sum of all of them?

NP-completeness: Not always beyond reach

VertexCover

Input: G = (V, E) – undirected

graph k – an integer

Question: Can we pick k

vertices so that all edges

are touched by at leastare touched by at least

one chosen vertex?

Algorithm

Pick an edge that does not touch

any vertices yet chosen. Pick both

its endpoints

NP-completeness: Not always beyond reach

VertexCover

Input: G = (V, E) – undirected

graph k – an integer

Question: Can we pick k

vertices so that all edges

are touched by at leastare touched by at least

one chosen vertex?

Algorithm

Pick an edge that does not touch

any vertices yet chosen. Pick both

its endpoints

Solution at worst twice as big as

the optimal one!

Complexity Theory: Conclusions

• P and NP – the most important complexity classes

– P – efficient computation

– NP – efficient verification

• NP-completeness• NP-completeness

– The hardest problems in NP.

– Solving large instances seems to require millenia…

• Dealing wiht NP-completeness

– Approximations…

– .. and many many others

Agenda

• A First Course in Complexity Theory

– Complexity classes P and NP.

– NP-completeness

– Dealing with NP-completeness

• Complexity is Bad

– Winner determination problems– Winner determination problems

• Dodgson, Kemeny, Young…

• Monroe, Chamberlin-Courant

• Way around!

• Complexity is Good

– The complexity barrier approach

– Fighting Gibbard-Satterhwaite

– Fighting other deamons…

– … and not winning

Computational issues
in elections

Winner determination

Running the

Cheating in
elections

Manipulation controlRunning the
election

Possible
winner

Campaign
management

Manipulation

bribery

control

Gibbard-

Satterthwaite

Theorem

Winner Determination Problem

R-Winner

Input: P=(P1, …, Pn) – preference

profile, c – a candidate

from P

Question: Is c an R winner under

profile P?

V1:

V2:

V3:
profile P?

V5:

V3:

V6:

V4:
Input size: n voters x m candidates

Typically easy…

• Scoring rules (Plurality, Borda, etc.)

• STV

• Copeland, Maximin, Schuze

• Bucklin

• Approval, and many others …

Winner Determination Can Be Hard!

Three interesting voting rules:

• Dodgson’s

• Kemeny’s

• Young’s

Under each system, we wish to elect someone closest

to being a Condorcet winner. Each system defines

„closest” in a different way

Dodgson’s Rule

Dodgson’s score: Number of swaps of adjacent

candidates necessary to ensure that a candidate is a

winner

4 vs 14 vs 1

2 vs 3

4 vs 1

Dodgson’s Rule

Dodgson’s score: Number of swaps of adjacent

candidates necessary to ensure that a candidate is a

winner

4 vs 1

Green lady becomes Condorcet winner after one swap

4 vs 1

2 vs 3

4 vs 1

Dodgson’s Rule

Dodgson’s score: Number of swaps of adjacent

candidates necessary to ensure that a candidate is a

winner

4 vs 1

Green lady becomes Condorcet winner after one swap

4 vs 1

3 vs 2

4 vs 1

Theorem. Dodgson-Winner is NP-hard

(and even PNP[logn]-complete).

NP-hard: All problems in NP reduce to it

Kemeny’s Rule

Kemeny’s score of a ranking: The number of inversions

between the votes and the ranking.

Theorem. Kemeny-Winner is NP-hard

(and even PNP[logn]-complete).

Kemeny-Winner is NP-hard

Other Hard-To-Compute Rules

We will now consider the issue of electing a parliament

Given:

P – preference profile

k – an integer, the size of the parliament

Task:

Pick k candidates that will represent the voters

Many ways of solving the problem…

Monroe and Chambelrin—Courant

Interesting rules to choose parliaments

V1:

V2:
Candidates = Resources

V5:

V2:

V3:

V6:

V4:

Election system that

matches candidates to

voters

V1:

V2:

Monroe oraz Chambelrin—Courant

Chamberlin-Courant

Interesting rules to choose parliaments

V5:

V2:

V3:

V6:

V4:

Chamberlin-Courant

Pick k candidates and

assign them to voters to

maximize voter

satisfaction

Chamberlin-Courant

V1:

V2:

Monroe oraz Chambelrin—Courant

4 3 2 1 0

Interesting rules to choose parliaments

Chamberlin-Courant

Pick k candidates and

assign them to voters to

maximize voter

satisfaction

V5:

V2:

V3:

V6:

V4:

Monroe and Chamberlin-Courant are NP-Complete

P – polynomial time

computation

NP – polynomial time

verification of solutions

1
3

eXact 3-set Cover (X3C)

verification of solutions

2

4

5

6

eXact 3-set Cover (X3C)

1
3

4 6

v1:

v2:

v3:

Monroe Winner (Approval)

Monroe and Chamberlin-Courant are NP-Complete

2

4

5

6 v3:

v4:

v5:

v6:

k = 2 (#elements / 3)

eXact 3-set Cover (X3C)

1
3

4 6

v1:

v2:

v3:

Monroe Winner (Approval)

Monroe and Chamberlin-Courant are NP-Complete

2

4

5

6 v3:

v4:

v5:

v6:

k = 2 (#elements/ 3)

Approximation!

Goal: Match candidates to

voters to maximize

satisfaction

V1:

V2:

V3:

V4:

4 3 2 1 0

V5:

V6:

V4:

Greedy Monroe

Input:

E = (C,V) — election

k — parliament size

Algorithm:

S � ∅
for i = 1 to k do:

for each c in C – S:

V1:

V2:

V3:

V4:

4 3 2 1 0

for each c in C – S:

V(c) � n/k voters ranking c highest

score(c) � points of c in V(c)

c* � argmax
c∈C

(score(c))

S � S ∪ {c*}

V � V – V(c*)

C � C – {c*}

assign c* to voters from V(c*)

return the computed assignment

V5:

V6:

V4:

: 10

V1:

V2:

V3:

V4:

4 3 2 1 0

Input:

E = (C,V) — election

k — parliament size

Algorithm:

S � ∅
for i = 1 to k do:

for each c in C – S:

Greedy Monroe

V5:

V6:

V4:

: 10 : 9

for each c in C – S:

V(c) � n/k voters ranking c highest

score(c) � points of c in V(c)

c* � argmax
c∈C

(score(c))

S � S ∪ {c*}

V � V – V(c*)

C � C – {c*}

assign c* to voters from V(c*)

return the computed assignment

V1:

V2:

V3:

V4:

4 3 2 1 0

Input:

E = (C,V) — election

k — parliament size

Algorithm:

S � ∅
for i = 1 to k do:

for each c in C – S:

Greedy Monroe

V5:

V6:

V4:

: 10 : 9 : 9

for each c in C – S:

V(c) � n/k voters ranking c highest

score(c) � points of c in V(c)

c* � argmax
c∈C

(score(c))

S � S ∪ {c*}

V � V – V(c*)

C � C – {c*}

assign c* to voters from V(c*)

return the computed assignment

V1:

V2:

V3:

V4:

4 3 2 1 0

Input:

E = (C,V) — election

k — parliament size

Algorithm:

S � ∅
for i = 1 to k do:

for each c in C – S:

Greedy Monroe

V5:

V6:

V4:

: 10 : 9 : 9 : 10

for each c in C – S:

V(c) � n/k voters ranking c highest

score(c) � points of c in V(c)

c* � argmax
c∈C

(score(c))

S � S ∪ {c*}

V � V – V(c*)

C � C – {c*}

assign c* to voters from V(c*)

return the computed assignment

V1:

V2:

V3:

V4:

4 3 2 1 0

Input:

E = (C,V) — election

k — parliament size

Algorithm:

S � ∅
for i = 1 to k do:

for each c in C – S:

Greedy Monroe

V5:

V6:

V4:

: 10 : 9 : 9 : 10 : 7

for each c in C – S:

V(c) � n/k voters ranking c highest

score(c) � points of c in V(c)

c* � argmax
c∈C

(score(c))

S � S ∪ {c*}

V � V – V(c*)

C � C – {c*}

assign c* to voters from V(c*)

return the computed assignment

Input:

E = (C,V) — election

k — parliament size

Algorithm:

S � ∅
for i = 1 to k do:

for each c in C – S:

V1:

V2:

V3:

V4:

4 3 2 1 0Greedy Monroe

for each c in C – S:

V(c) � n/k voters ranking c highest

score(c) � points of c in V(c)

c* � argmax
c∈C

(score(c))

S � S ∪ {c*}

V � V – V(c*)

C � C – {c*}

assign c* to voters from V(c*)

return computed assignment

V5:

V6:

V4:

: 10 : 9 : 9 : 10 : 7

How Good is Greedy Monroe?

Consider the situation after the i-th iteration

v1:

i potentially

unavailable

positions

(m-i)/(k-i)

positions

By the pigeonhole

principle, there are at

least n/k voters who rank

the same candidate in

the green area

v1:

vj:

vn:

in/k voters with

assigned

candidates

How Good is Greedy Monroe?

• Parliamentary elections in Poland:

– k = 460, m = 6000

– 96% of maximum conceivable voter satisfaction

– On the average, each voter is represented by soneone– On the average, each voter is represented by soneone

he/she prefers to 96% of the candidates

• Something wrong?

– … each voter has to rank all the candidates…

Winner Determination: Conclusions

• Most voting rules have efficient winner

determination procedures

– Scoring rules, STV, Bucklin, …

– Copeland, Maximin, Schulze

• But for some it is computationally hard

– Dodgson, Kemeny, Young

– Monroe, Chamberlin-Courant

... But almost always there is a workaround (almost)

Agenda

• A First Course in Complexity Theory

– Complexity classes P and NP.

– NP-completeness

– Dealing with NP-completeness

• Complexity is Bad

– Winner determination problems– Winner determination problems

• Dodgson, Kemeny, Young…

• Monroe, Chamberlin-Courant

• Way around!

• Complexity is Good

– The complexity barrier approach

– Fighting Gibbard-Satterhwaite

– Fighting other deamons…

– … and not winning

Computational issues
in elections

Winner determination

Running the

Cheating in
elections

Manipulation controlRunning the
election

Possible
winner

Campaign
management

Manipulation

bribery

control

Gibbard-

Satterthwaite

Theorem

Complexity Barrier Approach

Complexity barrier approach: If
manipulating elections is hard, then we can
ignore the fact that it is in principle possible.

Model: Represent each cheating strategy as
a computational decision problem.

Complexity Barrier: Results

• Effects of complexity barrier research

– Dozens of computational problems identified

– Multiple standard election systems analyzed

– Quite thorough understanding of worst case complexity of
elections

• Complications…

– We would like some of the problems to be efficiently
computable

• Determining winners

• Organizing a campaign

– Worst-case analysis seems problematic…

Control under Plurality

Control by adding voters

Given:

E = (C, V) – an election

W – additional voters

p in C – preferred candidate

k – budget

Question:

Is it possible to ensure p’s victory by

> > > >

> > > >

> > > >

> > > > Is it possible to ensure p’s victory by

adding at most k voters

> > > >

> > > >

> > > >

> > > >

> > > >

p =

k = 2

Control under Plurality

Control by adding voters

Given:

E = (C, V) – an election

W – additional voters

p in C – preferred candidate

k – budget

Question:

Is it possible to ensure p’s victory by

> > > >

> > > >

> > > >

> > > > Is it possible to ensure p’s victory by

adding at most k voters

> > > >

> > > >

> > > >

> > > >

> > > >

p =

k = 2

Control under Plurality

Control by adding candidates

Given:

E = (C, V) – an election

A – additional candidates

p in C – preferred candidate

k – budget

Question:

Is it possible to ensure p’s victory by

> > > >

> > > >

> > > >

> > > > Is it possible to ensure p’s victory by

adding at most k candidates

> > > >

> > > >

p =

k = 2

Control under Plurality

Control by adding candidates

Given:

E = (C, V) – an election

A – additional candidates

p in C – preferred candidate

k – budget

Question:

Is it possible to ensure p’s victory by

> > > >

> > > >

> > > >

> > > > Is it possible to ensure p’s victory by

adding at most k candidates

> > > >

> > > >

p =

k = 2

Control by Adding Candidates ∈∈∈∈ NP-com

Proof: Reduction from the X3C problem

Input: B = {b1, b2, b3, … , b3k}
S = {S1, …, Sn}

B = { }

Exact Cover by 3-Sets Control by Adding Candidates

s(p) = T

s() = s()= s() = T+1
s() = s()= s() = T+1

S2: > > …

> > …

> > …

B = { }

S1={ }
S2={ }
S3={ }
S4={ }
S5={ }

Question: Is it possible to pick k
sets and cover all elements from B?

s() = s()= s() = T+1

S1: > > …

> > …

> > …

S3: > > …

> > …

> > …

S4: > > …

> > …

> > …

S5: > >

> >

> >

Control by Adding Candidates ∈∈∈∈ NP-com

Proof: Reduction from the X3C problem

Input: B = {b1, b2, b3, … , b3k}
S = {S1, …, Sn}

B = { }

Exact Cover by 3-Sets Control by Adding Candidates

s(p) = T

s() = s()= s() = T+1
s() = s()= s() = T+1

S2: > > …

> > …

> > …

B = { }

S1={ }
S2={ }
S3={ }
S4={ }
S5={ }

Question: Is it possible to pick k
sets and cover all elements from B?

s() = s()= s() = T+1

S1: > > …

> > …

> > …

S3: > > …

> > …

> > …

S4: > > …

> > …

> > …

S5: > >

> >

> >

Shift Bribery

• Allowed swaps:

– Have to involve our candidate

• Realistic?

– As bribery: Yes– As bribery: Yes

– Also: as a campaigning model!

• Gain in complexity?

The Algorithm

Why 2-approximation?

> > >
αα αiαi+1

The Algorithm

Why 2-approximation?

> > >
αα αiαi+1

gains αi+1 – αi points

loses αi+1 – αi points

Getting 2x the points for
than the best bribery gives
is sufficient to win

The Algorithm

Why 2-approximation?

> > >
αα

Operation of the algorithm

1. Guess a cost k

2. Get most points for at cost kαiαi+1

gains αi+1 – αi points

loses αi+1 – αi points

Getting 2x the points for
than the best bribery gives
is sufficient to win

2. Get most points for at cost k

3. Guess a cost k’ <= k

4. Get most points for at cost k’

This is a 2-approximation… but

works in polynomial time only if

prices are encoded in unary

Why Does the Algorithm Work?

How much does
optimal solution
shift candidate p
in each vote?

v vv vv

Operation of the algorithm

1. Guess a cost k

2. Get most points for p at cost k

3. Guess a cost k’ <= k

4. Get most points for p at cost k’

O – the optimal solution � gives p some T points

v1 v5v3 v4v2

Why Does the Algorithm Work?

How much does
optimal solution
shift candidate p
in each vote?

v vv vv

O – the optimal solution � gives p some T points

v1 v5v3 v4v2

Why Does the Algorithm Work?

How much does
optimal solution
shift candidate p
in each vote?

v vv vv

O – the optimal solution � gives p some T points

v1 v5v3 v4v2

S – solution that gives most points at cost k

Why Does the Algorithm Work?

How much does
optimal solution
shift candidate p
in each vote?

v vv vv

O – the optimal solution � gives p some T points

v1 v5v3 v4v2

S – solution that gives most points at cost k

min(O,S) – min shift of the two in each vote
gives some D points to p

Now it is possible to complete min(O,S) in two independent ways:

1. By continuing as S does (getting at least T-D points extra)

2. By continuing as O does (getting T-D points extra)

Why Does the Algorithm Work?

How much does
optimal solution
shift candidate p
in each vote?

v vv vv

Now it is possible to complete min(O,S) in two independent ways:

1. By continuing as S does (getting at least T-D points extra)

2. By continuing as O does (getting T-D points extra)

After we perform shifts from min(O,S), there is a way to make p win by shifts

that give him T-D points

Thus, any shift that gives him 2(T-D) points, makes him a winner.

It is easy to find these 2(T-D) points. We’re done!

v1 v5v3 v4v2

The Algorithm (General Case)

2-approximation algorithm

for unary prices

2+ε-approximation scheme

Scaling argument + twists

2+ε-approximation scheme

for any prices

2-approximation algorithm

for any prices

Bootstrapping-flavored argument

The Algorithm

Why 2-approximation?

> > >
αα

Operation of the algorithm

1. Guess a cost k

2. Get most points for at cost kαiαi+1

gains αi+1 – αi points

loses αi+1 – αi points

2. Get most points for at cost k

3. Guess a cost k’ <= k

4. Get most points for at cost k’

Is this algorithm still a 2-
approximation? Unclear!

Complexity Barrier: Conclusions

• Complexity theory can mean protection from

manipuation

– Most cheating problems are NP-complete…

– … but it is a worst-case notion

• Approximation• Approximation

• Heuristics

• FPT attachs (oops! Did not mention them)

• Some means of interpreting hardness/algorithmic

results

– Axiomatic view!

Thank You!

