Complexity of Voting Systems

Piotr Faliszewski AGH University Kraków, Poland

Agenda

- A First Course in Complexity Theory
 - Complexity classes P and NP.
 - NP-completeness
 - Dealing with NP-completeness
- Complexity is Bad
 - Winner determination problems
 - Dodgson, Kemeny, Young...
 - Monroe, Chamberlin-Courant
 - Way around!
- Complexity is Good
 - The complexity barrier approach
 - Fighting Gibbard-Satterhwaite
 - Fighting other deamons...
 - ... and not winning

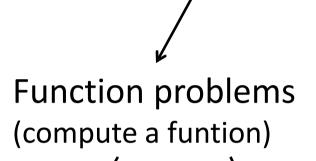
Agenda

- A First Course in Complexity Theory
 - Complexity classes P and NP.
 - NP-completeness
 - Dealing with NP-completeness
- Complexity is Bad
 - Winner determination problems
 - Dodgson, Kemeny, Young...
 - Monroe, Chamberlin-Courant
 - Way around!
- Complexity is Good
 - The complexity barrier approach
 - Fighting Gibbard-Satterhwaite
 - Fighting other deamons...
 - ... and not winning

What is complexity theory?

Computational complexity theory – a formal theory that identifies and explains which tasks can be efficiently carried out on a computer.

- Sort of...
- What do you mean?
- It will take 10'000 years
- It's not going to be very useful then, will it?
- Not particularly...
- Why shouldn't I fire you?
- Because there is noone better...



Decision problems (yes/no answer)

Counting problems (How many items of a given type are there?)

Optimization problems (compute a maximum of a function)

Why Decision Problems?

Because they suffice...

Primes

Input: n – an integer

Task: compute the smallest prime

factor of n

If we can solve Primes, then we can solve PrimesDecision.

If we can solve PricesDecision, we can also solve Primes! **PrimesDecision**

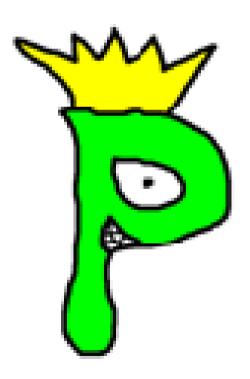
Input: n, k – integers

Question: Is n's smallest prime factor

smaller or equal to k?

If we can solve Primes...

... but what does it even mean? Obviously we can solve Primes – just divide n by all number from 2 to n-1



Complexity class P (polynomial-time):

The class of decision problems for which there are polynomial-time, deterministic algorithms.

The notion of effective computation!

Borda-Winner is in P

Borda-Winner

Input: $P=(P_1, ..., P_n)$ is a profile of preference orders, c-a candidate from P

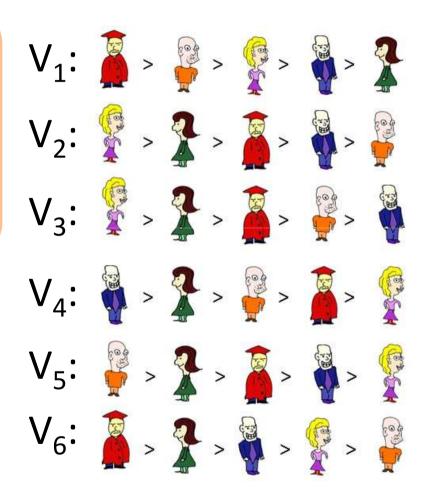
Question: Is c a Borda winner under profile P?

Input size: n voters x m candidates

Algorithm:

For each candidate compute his/her Borda score Check if c has highest Borda score.

Running time: $O(nm) \leftarrow polynomial!$



Primes is in P... but not as we thought it!

Simply dividing n by 2, 3, ..., n-1 is an exponential time algorithm!

Doing O(n) divisions means, in fact, doing $O(2^{\log(n)})$ divisions—exponential within the length of the encoding.

There is a more complexy proof that Primes is in P though...

Class P

A decision problem D is in class P if there exists an algorithm that given input I for D, solves I in time polynomial with respect to the length of the encoding of I.

Examples of P-time running times (n – size of the input):

- n²
- n log n
- n¹⁰⁰⁰

Examples of running times not in P:

- 2ⁿ
- 1.0000000000001ⁿ

Computationally Hard Problems

What does it mean that a problem is computationally hard?

- No polynomial time algorithm!
- Can we prove that such problems exist?
 - Yes…
 - ... but it's useless in most cases

A different computational complexity class...

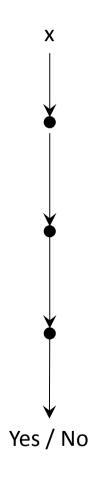
Compexity Class NP

Complexity class NP (nondeterministic polynomial-time): The class of decision problems for which there are polynomial-time , nondeterministic algorithms.

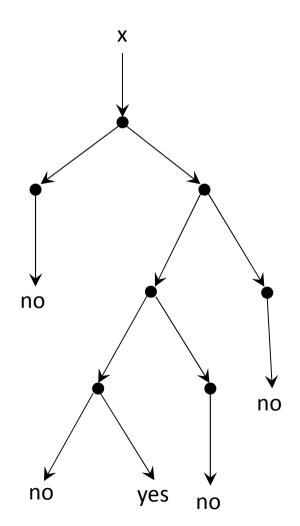
What is a nondeterministic computation?

(Non)deterministic Computation

Deterministic computation

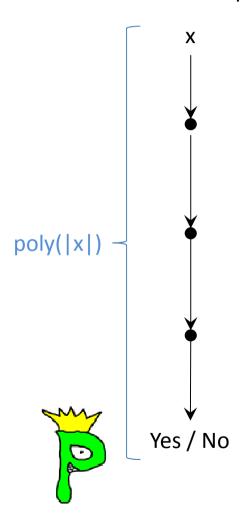


Nondeterministic computation

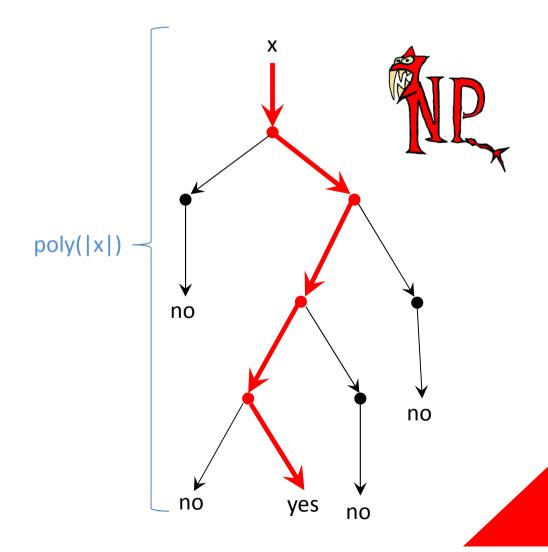


(Non)deterministic Computation

Deterministic computation



Nondeterministic computation



What does it all mean?

Nondeterministic computation

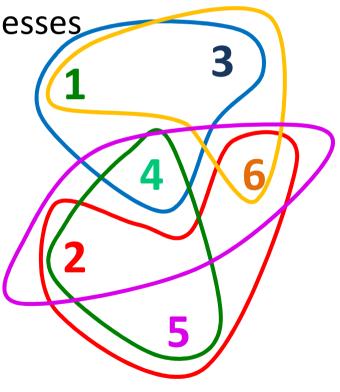
• Just like normal computation ...

... but the algorithm can make guesses

SetCover

Input: $S = \{S_1, ..., S_m\}$ – family of sets k – an integer

Question: Is there a family of k sets from S whose union is equal to union of all sets from S?



What does it all mean?

Nondeterministic computation

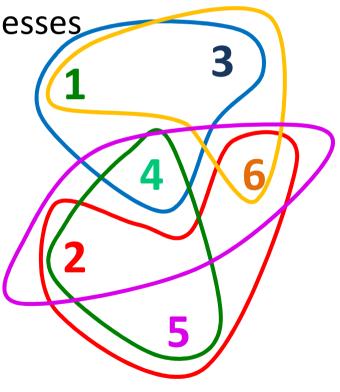
• Just like normal computation ...

... but the algorithm can make guesses

SetCover

Input: $S = \{S_1, ..., S_m\}$ – family of sets k – an integer

Question: Is there a family of k sets from S whose union is equal to union of all sets from S?



Compexity Class NP

Complexity class NP (nondeterministic polynomial-time): The class of decision problems for which there are polynomial-time , nondeterministic algorithms.

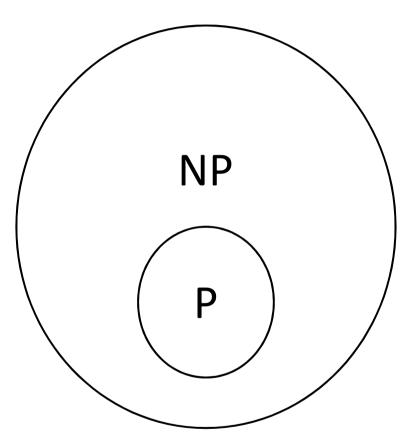
Class NP: Class of problems whose solutions can be verified in polynomial time.

Compexity Class NP

Complexity class NP (nondeterministic polynomial-time): The class of decision problems for which there are polynomial-time , nondeterministic algorithms.

Class NP: Class of problems
In effect, NP is exactle the class the capture most whose solutions can be of voting related problems. Is there is constituted in polynomial time. manipulation? If there is one, we can be referred in the class that capture most whose solutions can be of voting related problems. Is there is constituted in polynomial time. The manipulation? If there is one, we can be referred to the class that capture most whose solutions can be of voting related problems. Is there is constituted in polynomial time.

Is NP bigger than P? – that is the question!



Clearly, all problems from P also belong to NP. What aboue the other way round?

One of the biggest questions in ... well... all of science ©

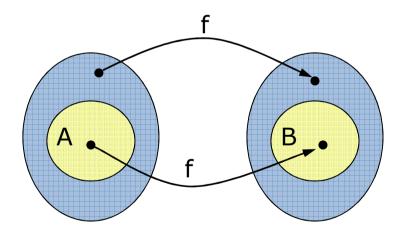
If we do not know if NP is bigger, how can it help us? There is an order on the hardness of problems!

Partial Order of Hardness

Reduction between problems

- A, B two decision problems
- A reduces to B if there is a polynomialtime computable function f such that

$$x \text{ in } A \Leftrightarrow f(x) \text{ in } B$$



If A reduces to B, then A is no harder than B → If we could solve B, we could solve A as well.

SAT-3CNF

Input: Logical formuka F in 3CNF form

Question: Is F satisfiable?

reduces to

SetCover

Input: $S = \{S_1, ..., S_m\}$ – family of sets

k – an integer

Question: Is there a family of k sets

from S whose union is equal to

union of all sets from S?

SetCover instance:

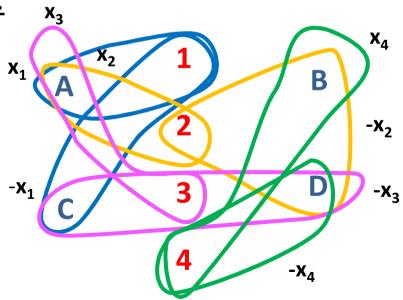
$$(x_1 \lor x_2 \lor x_3) (-x_2 \lor x_4) (-x_1 \lor -x_3) (-x_2 \lor -x_3 \lor -x_4)$$

A

B

C

SetCover instance:



SetCover instance:

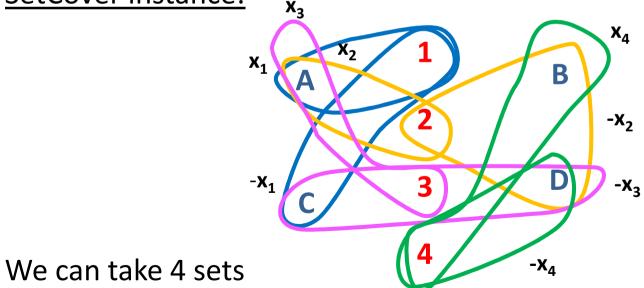
$$(x_1 \lor x_2 \lor x_3) (-x_2 \lor x_4) (-x_1 \lor -x_3) (-x_2 \lor -x_3 \lor -x_4)$$

A

B

C

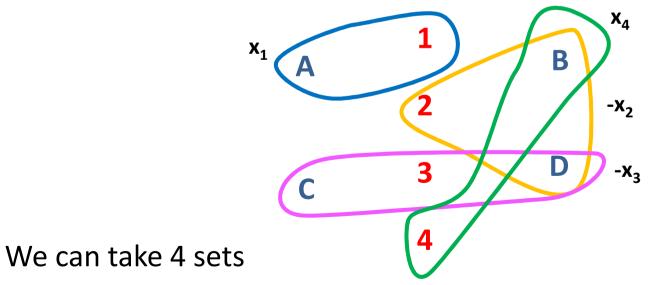
SetCover instance:



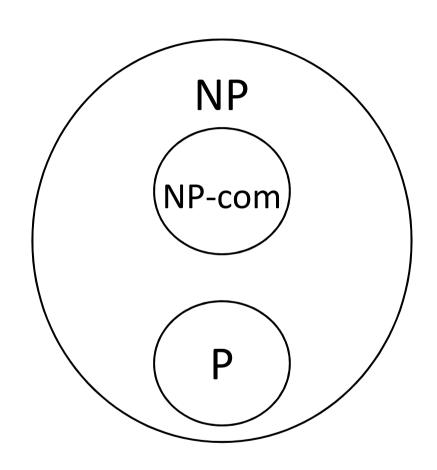
SetCover instance:

$$(x_1 \lor x_2 \lor x_3) (-x_2 \lor x_4) (-x_1 \lor -x_3) (-x_2 \lor -x_3 \lor -x_4)$$
A
B
C
D

SetCover instance:



Is NP bigger than P? – that is the question!



NP-completeness: A problem is NP- complete if it is in NP and every problem from NP reduces to it → The hardest problems in NP!

SAT-3CNF is **NP-complete...**

... so SetCover is too!

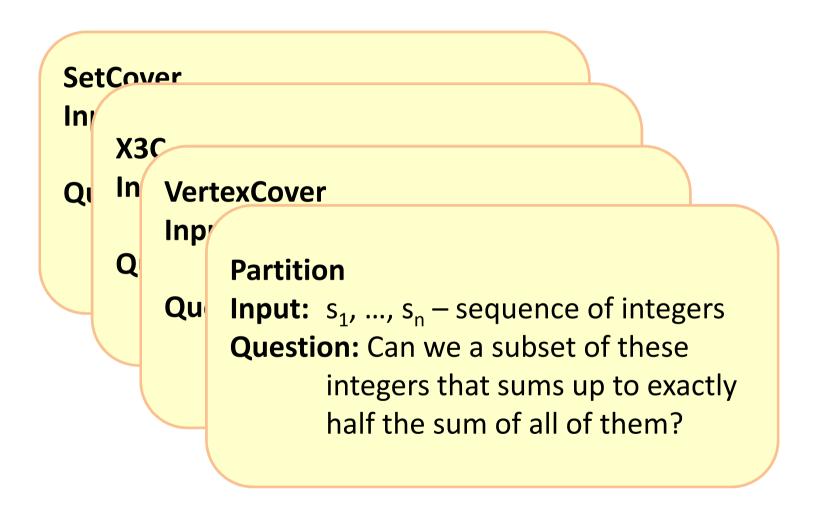
NP-completness

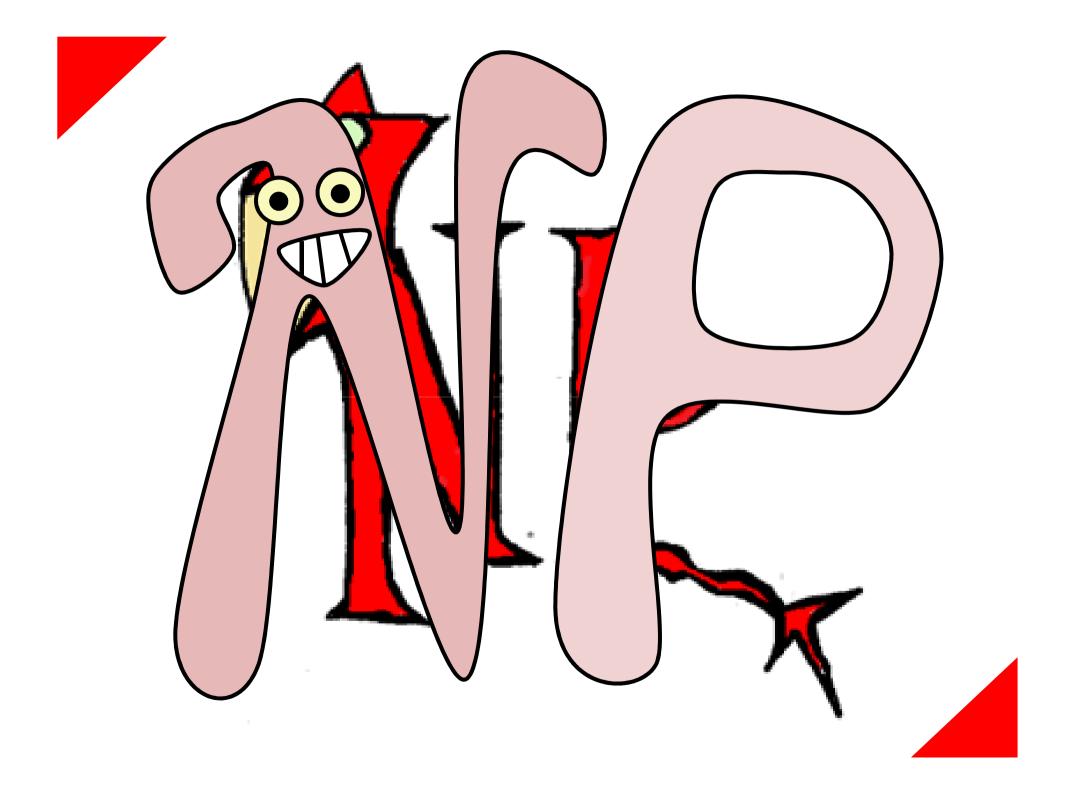
Definition: A problem is NP-complete if it belongs to NP and every problem in NP reduces to it

Proving NP-completeness: Tak an NP-complete problem and reduce it to your problem of interest (reductions are transitive!)

NP-complete problems are hard: No polynomial time algorithm known for them, in spite of decades of search! A natural notion of hardness!

NP-complete Problems: Examples





NP-completeness: Not always beyond reach

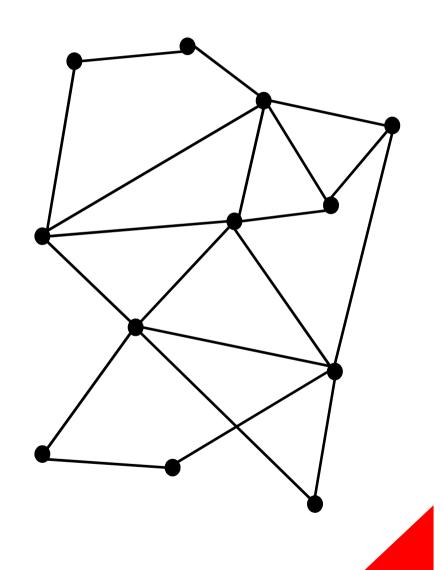
VertexCover

Input: G = (V, E) - undirected graph k - an integer

Question: Can we pick k
vertices so that all edges
are touched by at least
one chosen vertex?

Algorithm

Pick an edge that does not touch any vertices yet chosen. Pick both its endpoints



NP-completeness: Not always beyond reach

VertexCover

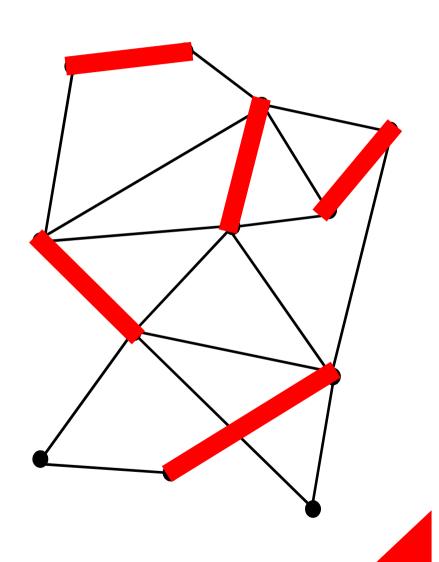
Input: G = (V, E) - undirected graph k - an integer

Question: Can we pick k
vertices so that all edges
are touched by at least
one chosen vertex?

Algorithm

Pick an edge that does not touch any vertices yet chosen. Pick both its endpoints

Solution at worst twice as big as the optimal one!



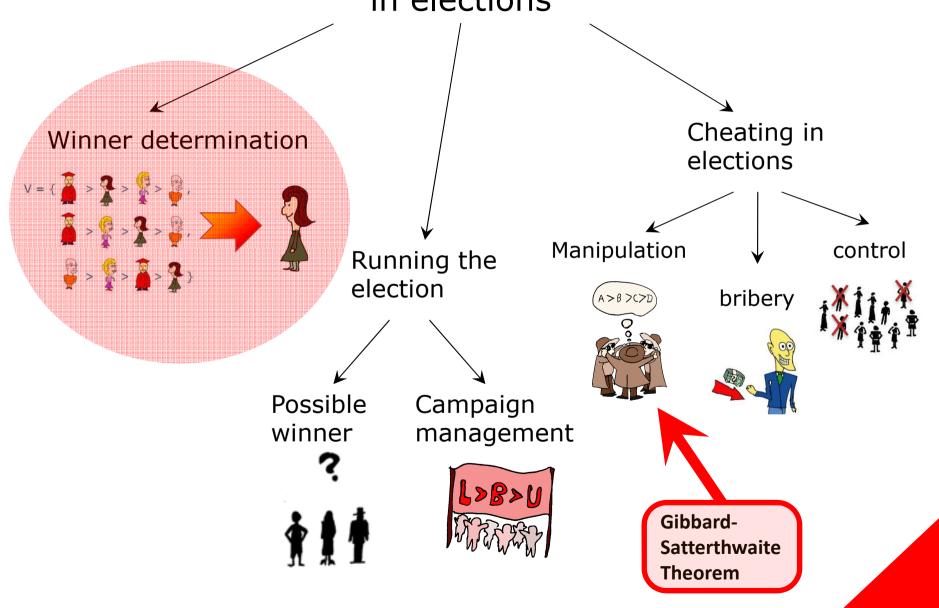
Complexity Theory: Conclusions

- P and NP the most important complexity classes
 - P efficient computation
 - NP efficient verification
- NP-completeness
 - The hardest problems in NP.
 - Solving large instances seems to require millenia...
- Dealing wiht NP-completeness
 - Approximations...
 - .. and many many others

Agenda

- A First Course in Complexity Theory
 - Complexity classes P and NP.
 - NP-completeness
 - Dealing with NP-completeness
- Complexity is Bad
 - Winner determination problems
 - Dodgson, Kemeny, Young...
 - Monroe, Chamberlin-Courant
 - Way around!
- Complexity is Good
 - The complexity barrier approach
 - Fighting Gibbard-Satterhwaite
 - Fighting other deamons...
 - ... and not winning

Computational issues in elections



Winner Determination Problem

R-Winner

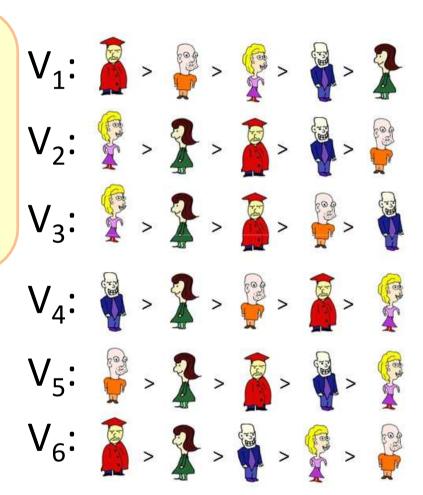
Input: $P=(P_1, ..., P_n)$ – preference profile, c - a candidate from P

Question: Is c an R winner under profile P?

Input size: n voters x m candidates

Typically easy...

- Scoring rules (Plurality, Borda, etc.)
- STV
- Copeland, Maximin, Schuze
- Bucklin
- Approval, and many others ...



Winner Determination Can Be Hard!

Three interesting voting rules:

- Dodgson's
- Kemeny's
- Young's

Under each system, we wish to elect someone closest to being a Condorcet winner. Each system defines "closest" in a different way

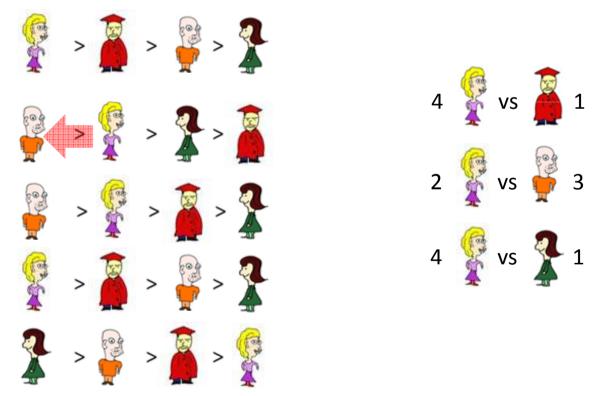
Dodgson's Rule

Dodgson's score: Number of swaps of adjacent candidates necessary to ensure that a candidate is a winner

Dodgson's Rule

Dodgson's score: Number of swaps of adjacent candidates necessary to ensure that a candidate is a

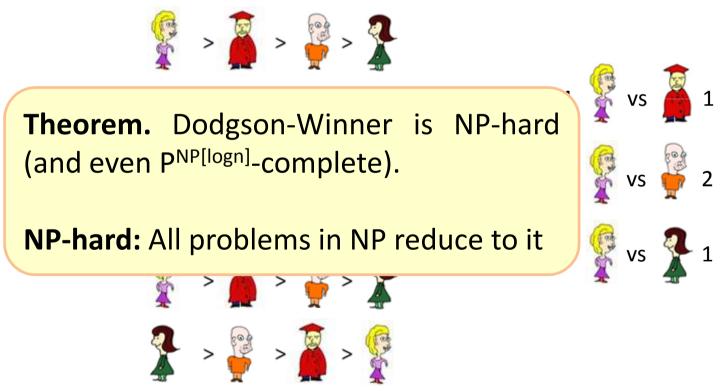
winner



Green lady becomes Condorcet winner after one swap

Dodgson's Rule

Dodgson's score: Number of swaps of adjacent candidates necessary to ensure that a candidate is a winner

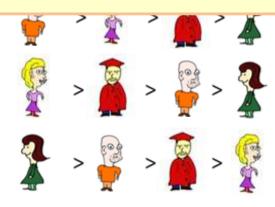


Green lady becomes Condorcet winner after one swap

Kemeny's Rule

Kemeny's score of a ranking: The number of inversions between the votes and the ranking.

Theorem. Kemeny-Winner is NP-hard (and even P^{NP[logn]}-complete).



Kemeny-Winner is NP-hard

Other Hard-To-Compute Rules

We will now consider the issue of electing a parliament

Given:

P – preference profile

k – an integer, the size of the parliament

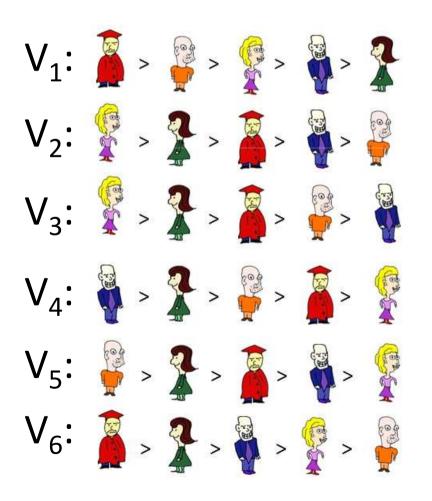
Task:

Pick k candidates that will represent the voters

Many ways of solving the problem...

Monroe and Chambelrin—Courant

Interesting rules to choose parliaments

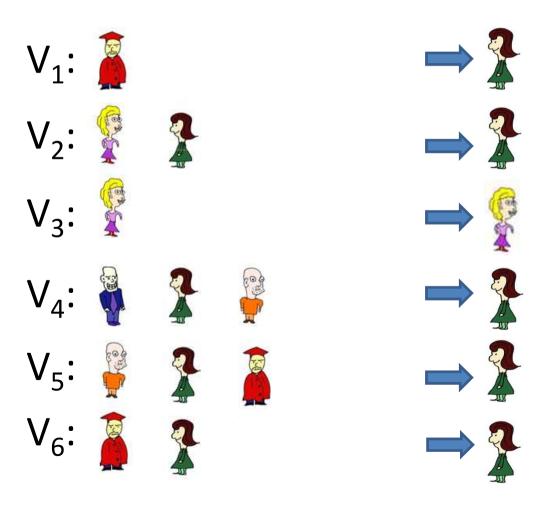


Candidates = Resources

Election system that matches candidates to voters

Monroe oraz Chambelrin—Courant

Interesting rules to choose parliaments

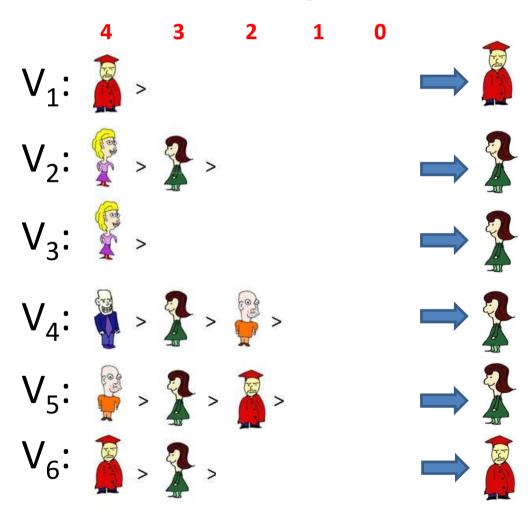


Chamberlin-Courant

Pick k candidates and assign them to voters to maximize voter satisfaction

Monroe oraz Chambelrin—Courant

Interesting rules to choose parliaments



Chamberlin-Courant

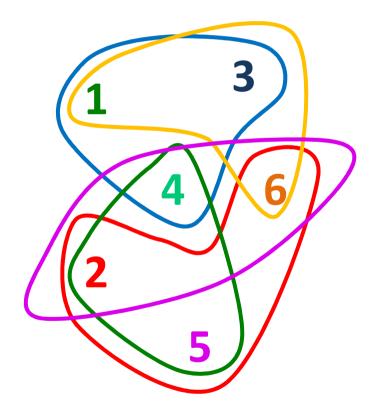
Pick k candidates and assign them to voters to maximize voter satisfaction

Monroe and Chamberlin-Courant are NP-Complete

P – polynomial time computation

NP – polynomial time verification of solutions

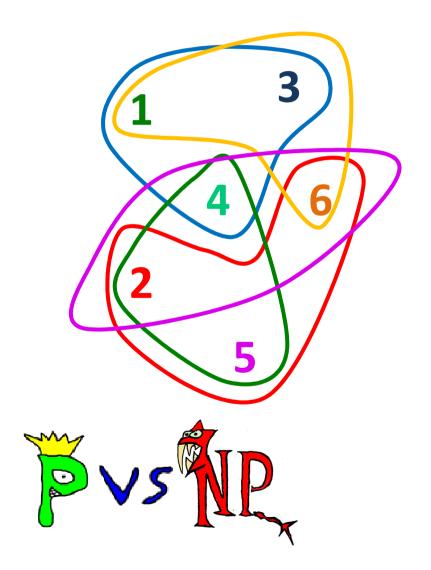
eXact 3-set Cover (X3C)



Monroe and Chamberlin-Courant are NP-Complete

eXact 3-set Cover (X3C)

Monroe Winner (Approval)

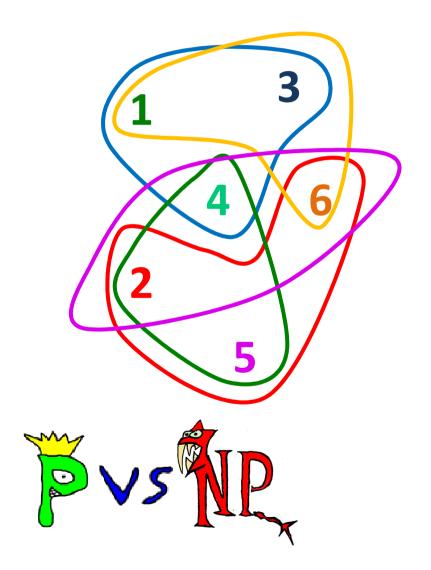


$$k = 2$$
 (#elements / 3)

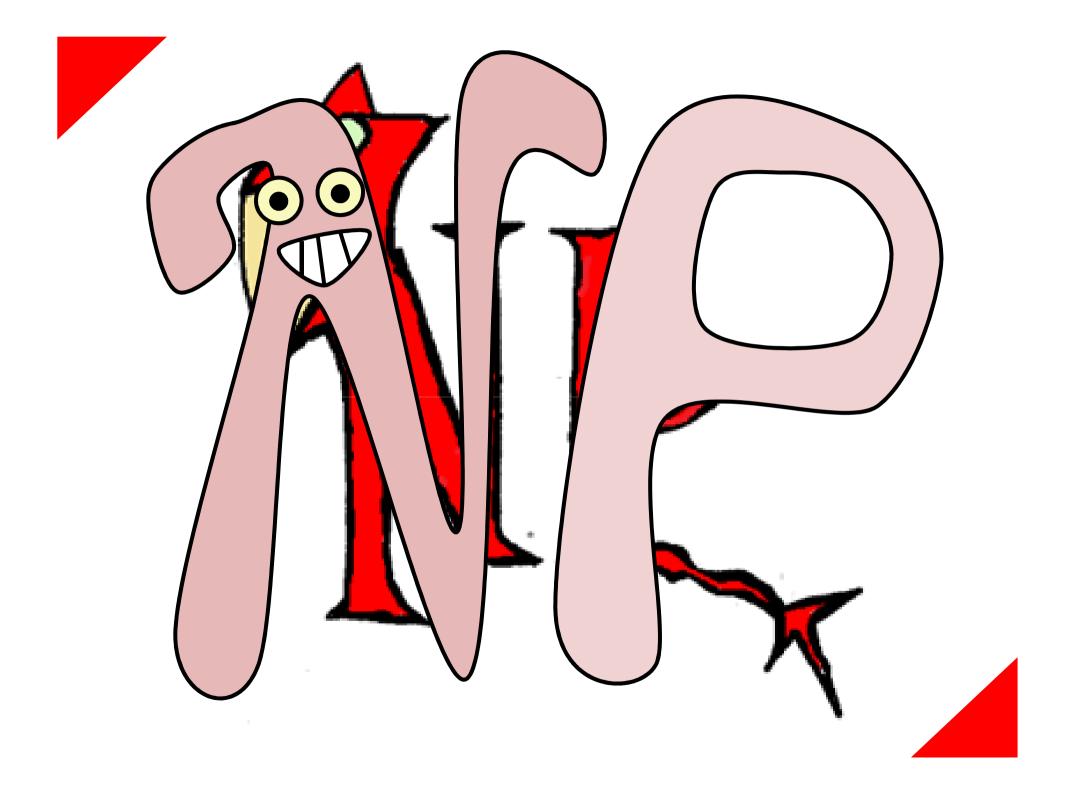
Monroe and Chamberlin-Courant are NP-Complete

eXact 3-set Cover (X3C)

Monroe Winner (Approval)

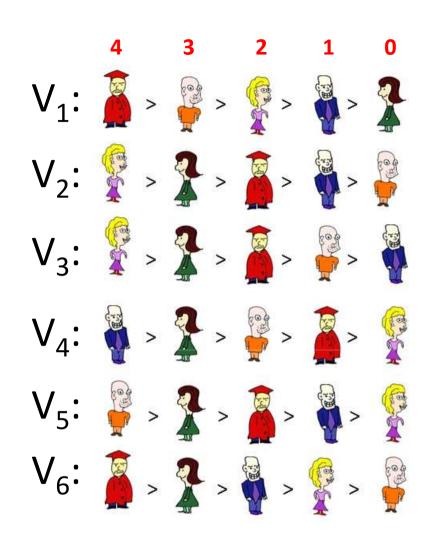


$$k = 2$$
 (#elements/3)

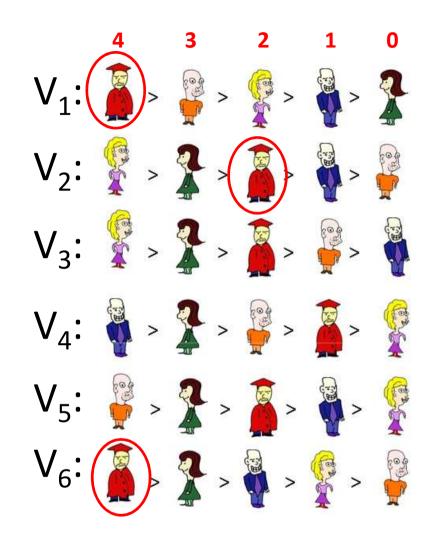


Approximation!

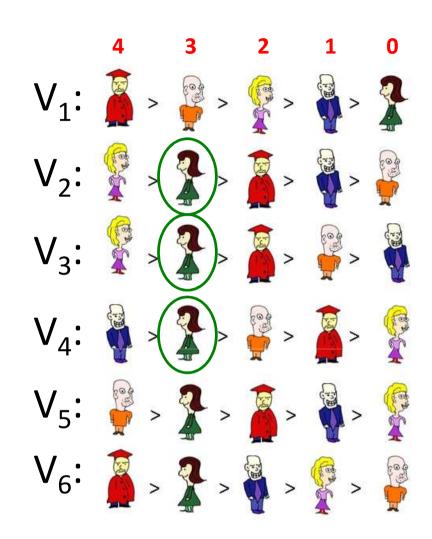
Goal: Match candidates to voters to maximize satisfaction



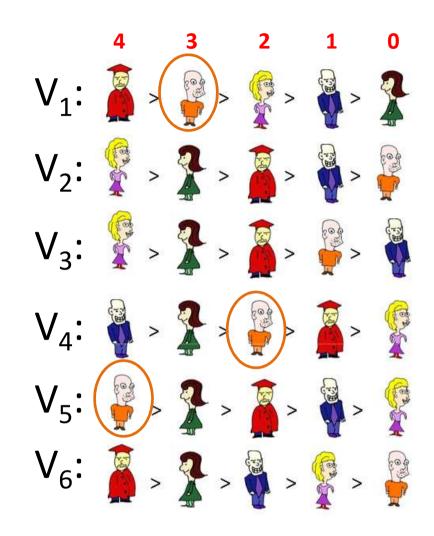
```
Input:
  E = (C,V) — election
              parliament size
  k
Algorithm:
S \leftarrow \emptyset
for i = 1 to k do:
  for each c in C - S:
     V(c) \leftarrow n/k voters ranking c highest
     score(c) \leftarrow points of c in V(c)
```




```
Input:
  E = (C,V) — election
              parliament size
  k
Algorithm:
S \leftarrow \emptyset
for i = 1 to k do:
  for each c in C - S:
     V(c) \leftarrow n/k voters ranking c highest
     score(c) \leftarrow points of c in V(c)
```



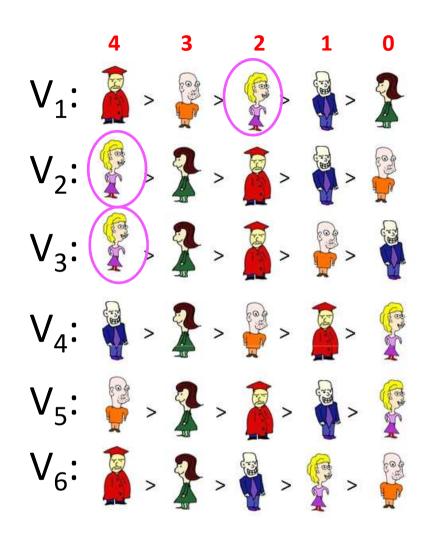

```
Input:
  E = (C,V) — election
              parliament size
  k
Algorithm:
S \leftarrow \emptyset
for i = 1 to k do:
  for each c in C - S:
     V(c) \leftarrow n/k voters ranking c highest
     score(c) \leftarrow points of c in V(c)
```



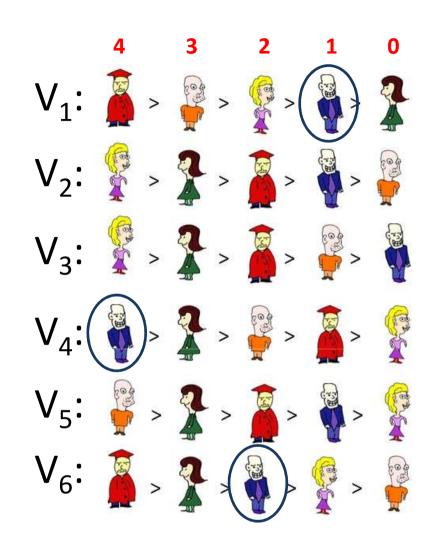

```
Input:
  E = (C,V) — election
  k

    parliament size

Algorithm:
S \leftarrow \emptyset
for i = 1 to k do:
  for each c in C - S:
     V(c) \leftarrow n/k voters ranking c highest
     score(c) \leftarrow points of c in V(c)
```



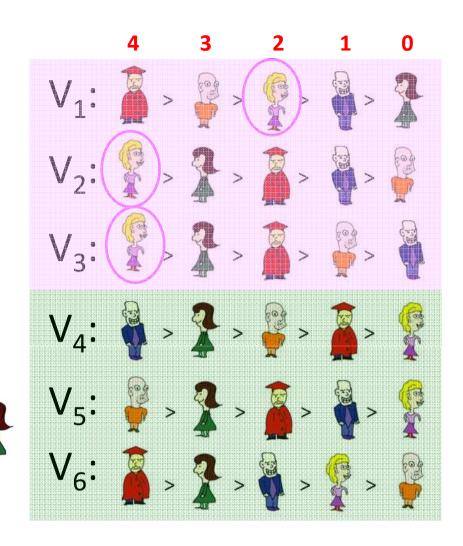

```
Input:
  E = (C,V) — election
              parliament size
  k
Algorithm:
S \leftarrow \emptyset
for i = 1 to k do:
  for each c in C - S:
     V(c) \leftarrow n/k voters ranking c highest
     score(c) \leftarrow points of c in V(c)
```




```
Input:
   E = (C,V) — election
   k

    parliament size

Algorithm:
S \leftarrow \emptyset
for i = 1 to k do:
   for each c in C - S:
      V(c) \leftarrow n/k voters ranking c highest
      score(c) \leftarrow points of c in V(c)
   c^* \leftarrow \operatorname{argmax}_{c \in C}(\operatorname{score}(c))
   S \leftarrow S \cup \{c^*\}
   V \leftarrow V - V(c^*)
   C \leftarrow C - \{c^*\}
   assign c* to voters from V(c*)
return computed assignment
```



How Good is Greedy Monroe?

Consider the situation after the i-th iteration

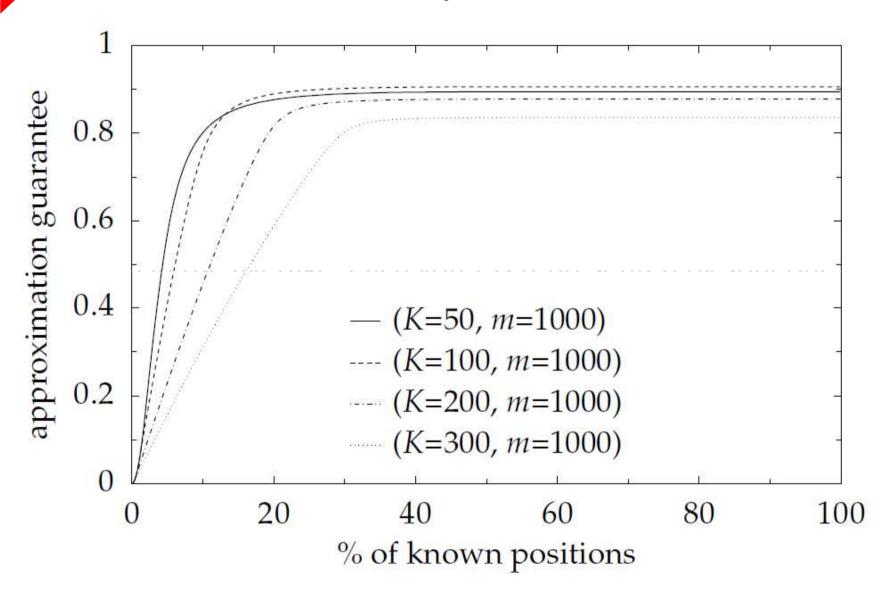
By the pigeonhole principle, there are at

inntentially

$$\begin{split} \sum_{i=0}^{K-1} \frac{n}{K} \cdot \left(m - i - \lceil \frac{m-i}{K-i} \rceil \right) &\geq \sum_{i=0}^{K-1} \frac{n}{K} \cdot \left(m - i - \frac{m-i}{K-i} - 1 \right) \\ &= \sum_{i=1}^{K} \frac{n}{K} \cdot \left(m - i - \frac{m-1}{K-i+1} + \frac{i-2}{K-i+1} \right) \\ &= \frac{n}{K} \left(\frac{K(2m-K-1)}{2} - (m-1)H_K + K(H_K-1) - H_K \right) \\ &= (m-1)n \left(1 - \frac{K-1}{2(m-1)} - \frac{H_K}{K} + \frac{H_K-1}{m-1} - \frac{H_K}{K(m-1)} \right) \\ &> (m-1)n \left(1 - \frac{K-1}{2(m-1)} - \frac{H_K}{K} \right) \end{split}$$

$$\geq m-i \left(\frac{1}{K} \right) \left(\frac{1}{K-i} \right) = \frac{1}{K}$$

How Good is Greedy Monroe?



Winner Determination: Conclusions

- Most voting rules have efficient winner determination procedures
 - Scoring rules, STV, Bucklin, ...
 - Copeland, Maximin, Schulze
- But for some it is computationally hard
 - Dodgson, Kemeny, Young
 - Monroe, Chamberlin-Courant
 - ... But almost always there is a workaround (almost)

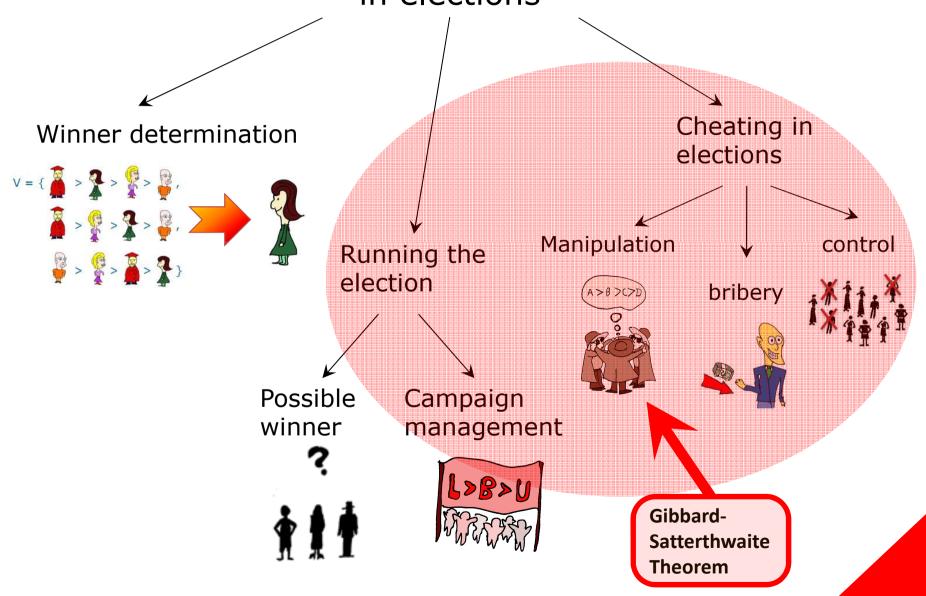
Agenda

- A First Course in Complexity Theory
 - Complexity classes P and NP.
 - NP-completeness
 - Dealing with NP-completeness
- Complexity is Bad
 - Winner determination problems
 - Dodgson, Kemeny, Young...
 - Monroe, Chamberlin-Courant
 - Way around!

Complexity is Good

- The complexity barrier approach
- Fighting Gibbard-Satterhwaite
- Fighting other deamons...
- ... and not winning

Computational issues in elections



Complexity Barrier Approach

Model: Represent each cheating strategy as a computational decision problem.

Complexity barrier approach: If manipulating elections is hard, then we can ignore the fact that it is in principle possible.

Approach initiated by
Bartholdi, Tovey, and Trick
in the late 80s and the
early 90s

Complexity Barrier: Results

- Effects of complexity barrier research
 - Dozens of computational problems identified
 - Multiple standard election systems analyzed
 - Quite thorough understanding of worst case complexity of elections
- Complications...
 - We would like **some** of the problems to be efficiently computable
 - Determining winners
 - Organizing a campaign
 - Worst-case analysis seems problematic...

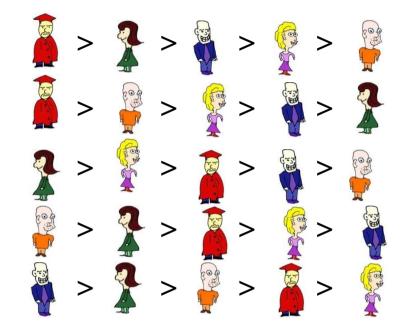
Control by adding voters

Given:

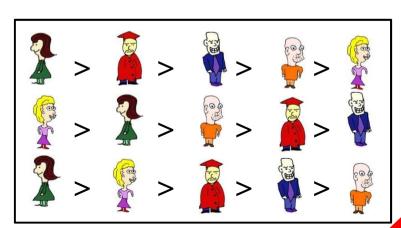
E = (C, V) – an electionW – additional votersp in C – preferred candidatek – budget

Question:

Is it possible to ensure p's victory by adding at most k voters



$$k = 2$$



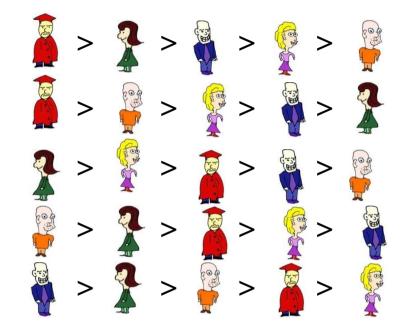
Control by adding voters

Given:

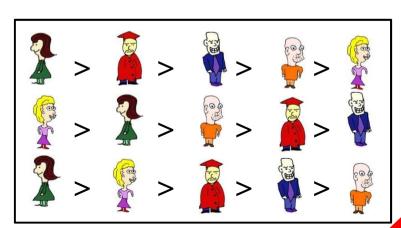
E = (C, V) – an electionW – additional votersp in C – preferred candidatek – budget

Question:

Is it possible to ensure p's victory by adding at most k voters



$$k = 2$$



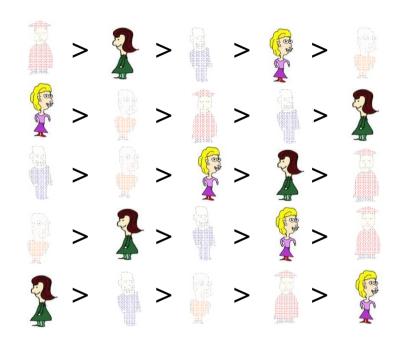
Control by adding candidates

Given:

E = (C, V) – an election A – additional candidates p in C – preferred candidate k – budget

Question:

Is it possible to ensure p's victory by adding at most k candidates



$$k = 2$$

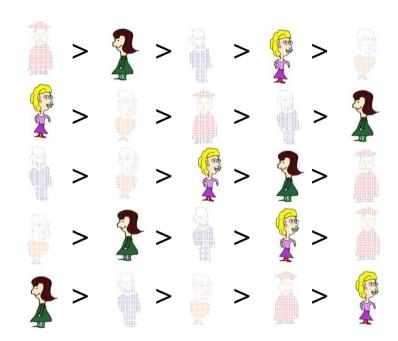
Control by adding candidates

Given:

E = (C, V) – an electionA – additional candidatesp in C – preferred candidatek – budget

Question:

Is it possible to ensure p's victory by adding at most k candidates



$$k = 2$$

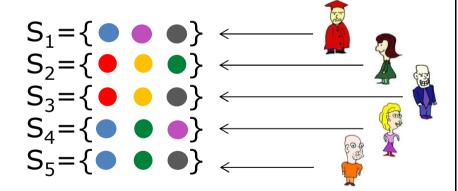
Control by Adding Candidates ∈ NP-com

Proof: Reduction from the X3C problem

Exact Cover by 3-Sets

Input:
$$B = \{b_1, b_2, b_3, ..., b_{3k}\}\$$

 $S = \{S_1, ..., S_n\}$



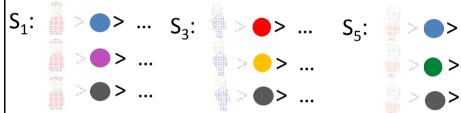
Question: Is it possible to pick k sets and cover all elements from B?

Control by Adding Candidates

$$s(p) = T$$

$$s(\bullet) = s(\bullet) = s(\bullet) = T+1$$

 $s(\bullet) = s(\bullet) = s(\bullet) = T+1$



$$S_2$$
: $> > ...$ S_4 : $> > ...$ $> > ...$ $> > ...$ $> > ...$

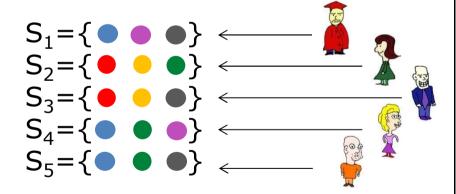
Control by Adding Candidates ∈ NP-com

Proof: Reduction from the X3C problem

Exact Cover by 3-Sets

Input:
$$B = \{b_1, b_2, b_3, ..., b_{3k}\}\$$

 $S = \{S_1, ..., S_n\}$



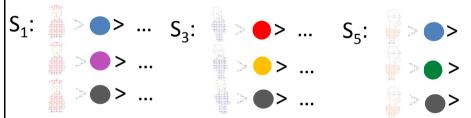
Question: Is it possible to pick k sets and cover all elements from B?

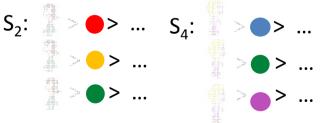
Control by Adding Candidates

$$s(p) = T$$

$$s(\bullet) = s(\bullet) = s(\bullet) = T$$

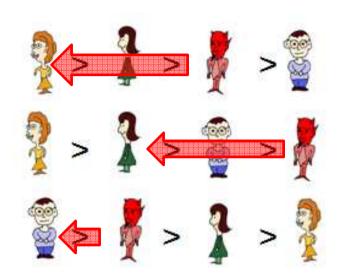
 $s(\bullet) = s(\bullet) = s(\bullet) = T$

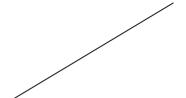




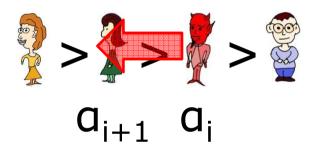
Shift Bribery

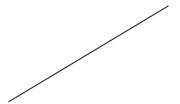
- Allowed swaps:
 - Have to involve our candidate
- Realistic?
 - As bribery: Yes
 - Also: as a campaigning model!
- Gain in complexity?





Why 2-approximation?





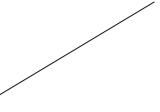
Why 2-approximation?



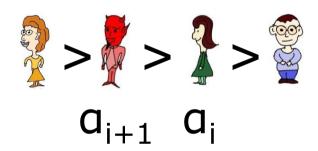
gains a_{i+1} – a_i points

loses $a_{i+1} - a_i$ points

Getting 2x the points for $\sqrt[8]{}$ than the best bribery gives is sufficient to win



Why 2-approximation?



gains $a_{i+1} - a_i$ points

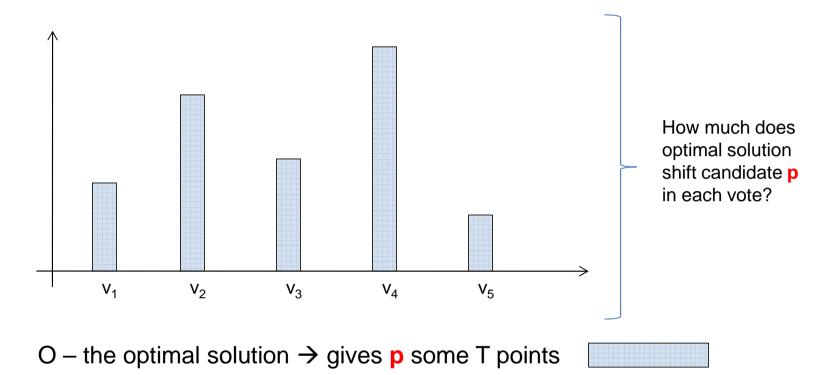
loses $a_{i+1} - a_i$ points

Getting **2x** the points for than the best bribery gives is sufficient to win

Operation of the algorithm

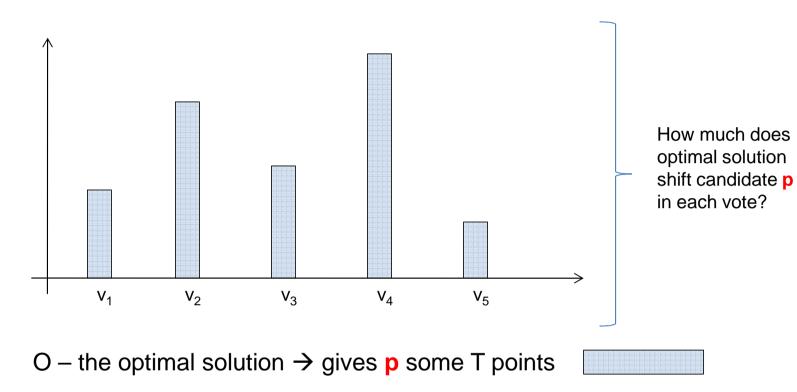
- 1. Guess a cost k
- 2. Get most points for t cost k
- 3. Guess a cost $k' \le k$
- 4. Get most points for \$\int_{\cost} \cost k'\$

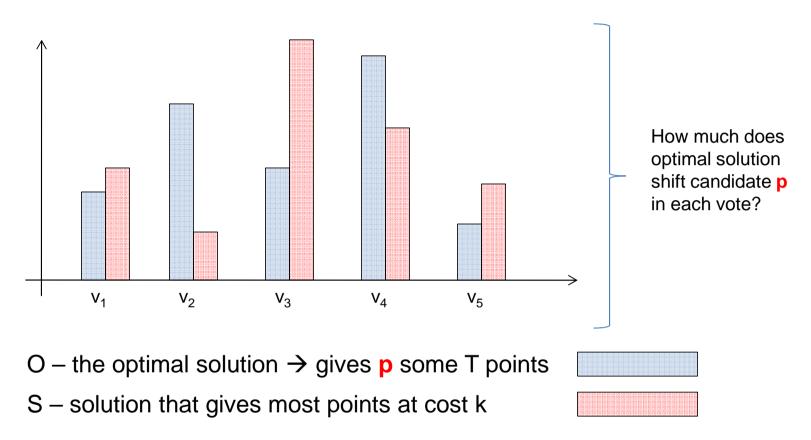
This is a 2-approximation... but works in polynomial time only if prices are encoded in unary

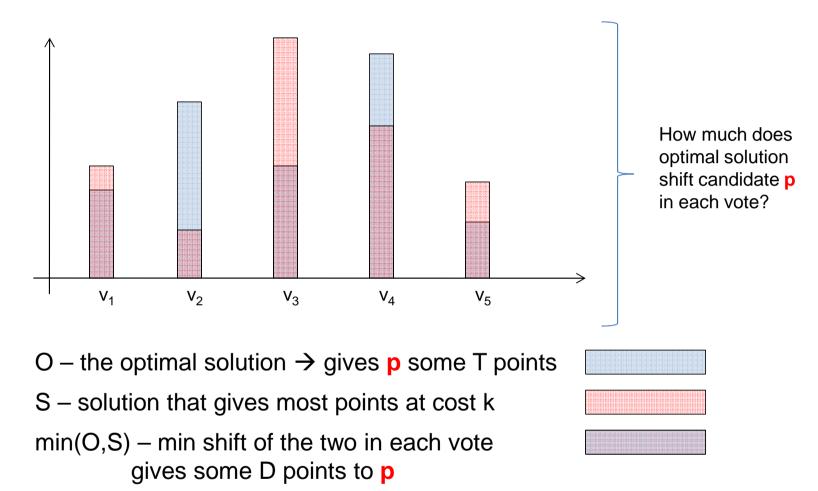


Operation of the algorithm

- 1. Guess a cost k
- 2. Get most points for **p** at cost k
- 3. Guess a cost $k' \le k$
- 4. Get most points for **p** at cost k'

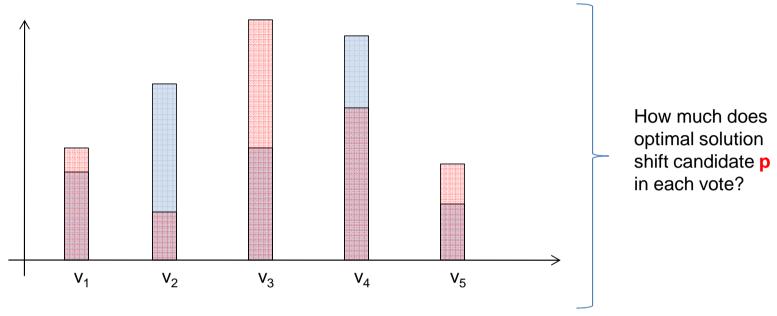






Now it is possible to complete min(O,S) in two independent ways:

- 1. By continuing as S does (getting at least T-D points extra)
- 2. By continuing as O does (getting T-D points extra)



Now it is possible to complete min(O,S) in two independent ways:

- 1. By continuing as S does (getting at least T-D points extra)
- 2. By continuing as O does (getting T-D points extra)

After we perform shifts from min(O,S), there is a way to make p win by shifts that give him T-D points

Thus, any shift that gives him 2(T-D) points, makes him a winner.

It is easy to find these 2(T-D) points. We're done!

The Algorithm (General Case)

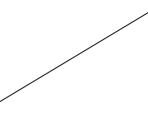
2-approximation algorithm for unary prices

Scaling argument + twists

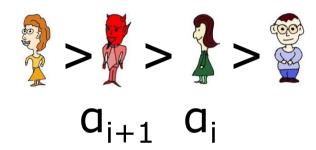
2+ε-approximation scheme for any prices

Bootstrapping-flavored argument

2-approximation algorithm for any prices



Why 2-approximation?



gains $a_{i+1} - a_i$ points

loses a_{i+1} - a_i points

Operation of the algorithm

- 1. Guess a cost k
- 2. Get most points for t cost k
- 4. Comost points for Trees W

Is this algorithm still a 2-approximation? Unclear!

Complexity Barrier: Conclusions

- Complexity theory can mean protection from manipulation
 - Most cheating problems are NP-complete...
 - ... but it is a worst-case notion
 - Approximation
 - Heuristics
 - FPT attachs (oops! Did not mention them)
- Some means of interpreting hardness/algorithmic results
 - Axiomatic view!

Thank You!