DICHOTOMOUS COLLECTIVE DECISION-MAKING

ANNICK LARUELLE

OUTLINE OF THE COURSE

I. Introduction
II. Binary dichotomous voting rules
III. Ternary-Quaternary dichotomous voting rules

INTRODUCTION

SIMPLEST VOTING SITUATION

A TWO-THIRD MAJORITY IS NECESSARY TO ELECT HIM
An external proposal is submitted to the committee

The members of the committee vote (yes/no)

The proposal is accepted or not

INTRODUCTION: STUDIED SITUATIONS

- Situation where a group of people have to make decide on accept or reject a proposal with the help of a voting rule
- Examples: Parliament, Council, Jury, Referendum,...
- Assumptions
- Binary choice: yes - no
- Dichotomous final decision: accepted - rejected

INTRODUCTION: ADDRESSED QUESTIONS

- How easy is it to adopt proposals?
- Simple majority versus unanimity versus dictatorship
- The answer depends on the voting rule.
- If voters independently vote yes with proba $1 / 2$ versus if voters independently vote yes with proba $1 / 5$
- The answer depends on the voting behavior

INGREDIENTS OF THE MODELS

- Voting rule
- Voting behaviour

DICHOTOMOUS COLLECTIVE DECISION-MAKING

INTRODUCTION: ADDRESSED QUESTIONS

- From a normative point of view, what is the best rule?
- Normative: all configurations equally probable
- Egalitarianism: equal utility for all voters
- Utilitarianism: to maximize the sum of utilities
- Utility obtained by a voter: associate a level of utility to the four possible outcome:
- The voter has voted yes and the proposal is accepted
- The voter has voted yes and the proposal is rejected
- The voter has voted no and the proposal is rejected
- The voter has voted no and the proposal is accepted

INTRODUCTION: ADDRESSED QUESTIONS

- What is the most adequate voting rule for a committee if each member acts on behalf of a group of individuals or a constituency of different sizes?

DICHOTOMOUS COLLECTIVE DECISION-MAKING

INTRODUCTION

- In Parliament the rules used are more complex. In particular they are not binary
- Simple majorities with participation quorum
- Majority of present voters
- How to model these more complex rules?

OUTLINE OF THE COURSE

I. Introduction
II. Binary voting rules
A. Model
i. Voting rules
ii. Voting behaviour
B. Ease to pass proposal
C. Best voting rules
D. Application to the European Union

DICHOTOMOUS COLLECTIVE DECISION-MAKING

MODEL - VOTING RULE : DEFINITIONS

Let us consider a rule with n seats.
$N=\{1,2, . ., n\}$, set of labels.
2^{n} possible configurations of votes
$S \subset N$, vote configuration $S=\{i \mid i$ votes yes $\}$

VOTING RULE

S is winning if it leads to the passage of the proposal.
W denotes the set of winning configurations

$$
W=\{S \mid S \text { leads to a final 'yes' }\}
$$

DICHOTOMOUS COLLECTIVE DECISION-MAKING

MODEL - VOTING RULES: PROPERTIES

```
W denotes the set of winning configurations
1. N\inW
2. \emptyset\not\inW
3. If S\inW, then T\inW for any T containing S
4. If S\inW then N\S\not\inW
```

Remark No possible manipulation: a voter always follows her or his preferences

MODEL - VOTING RULES: EXAMPLES

- Simple Majority
- k-Majority

Simple majority

$$
W^{S M}=\left\{S \left\lvert\, s>\frac{n}{2}\right.\right\}
$$

Symmetric rule (k>1/2)

- Weighted Majority

Weighted majority

$$
W^{(w, Q)}=\left\{S \subseteq N: \sum_{i \in S} w_{i} \geq Q\right\} .
$$

Non
Symmetric rule

DICHOTOMOUS COLLECTIVE DECISION-MAKING

MODEL - VOTING RULES: EXAMPLES

- Dictatorship

$$
\begin{gathered}
\text { Dictatorship } \\
W^{D_{i}}=\{S \subseteq N: i \in S\}
\end{gathered}
$$

- Seat i has a veto
$i \notin S \Rightarrow S \notin W$
- Oligarchy

$$
\begin{gathered}
T \text { - Oligarchy } \\
\mathcal{W}^{T}= \\
\{S \subseteq N: S \supseteq T\} .
\end{gathered}
$$

- Unanimity
Unanimity

$$
\mathcal{W}^{N}=\{N\} . \quad \text { Symmetric rule }
$$

DICHOTOMOUS COLLECTIVE DECISION-MAKING

MODEL - VOTING RULES: REMARKS

- In a dictatorship the dictator will always get his or her preferred outcome.
- Whenever a voter has a veto right, he or she will always get his or her preferred outcome whe he or she votes no.
- It is more difficult to pass a proposal with unanimity than with a simple majority
- Is it more easy to adopt a proposal under the $\{1,2\}$-oligarchy than under the $\{1,3\}$-oligarchy?

MODEL - VOTING BEHAVIOUR: DEFINITION

$$
\begin{aligned}
\text { Map } p: & 2^{N} \rightarrow R \\
p(S)= & \text { probability that } S \text { emerges } \\
= & \text { probability that voters in } S \text { vote'yes' } \\
& \text { and voters in } N \backslash S \text { vote 'no'. } \\
0 \leq & p(S) \leq 1 \text { for any } S \subseteq N \text { and } \sum_{S \subseteq N} p(S)=1
\end{aligned}
$$

DICHOTOMOUS COLLECTIVE DECISION-MAKING

MODEL - VOTING BEHAVIOUR: EXAMPLES

- Voters vote independently of each others

$$
p^{\left(t_{1}, . ., t_{n}\right)}(S)=\prod_{i \in S} t_{i} \prod_{j \in N \backslash S}\left(1-t_{j}\right)
$$

3 voters, each voter independently votes from the others,

- the first one votes with probability $1 / 2$ 'yes',
- the second has a probability $1 / 8$ to vote 'yes' and
- the third one a probability $1 / 4$ to vote 'yes'.

MODEL - VOTING BEHAVIOUR: EXAMPLES

- 4 voters
- The first three voters voter independently, they vote 'yes' with probability $1 / 2$.
- The fourth voter follows the majority of the other three voters.

MODEL - NORMATIVE VOTING BEHAVIOUR

- FOR A NORMATIVE APPROACH

Behind a veil of ignorance: all vote configurations have the same probability:

$$
p^{*}(S)=\frac{1}{2^{n}}
$$

Equivalently: All voters independently vote 'yes' and 'no' with probability $1 / 2$

$$
P(i \in S)=P(i \notin S)=\frac{1}{2} \text { for all } i
$$

DICHOTOMOUS COLLECTIVE DECISION-MAKING

OUTLINE OF THE COURSE

I. Introduction
II. Binary voting rules
A. Model
i. Voting rules
ii. Voting behaviour

B. Ease to pass proposal
 C. Best voting rules
 D. Application to the European Union

DICHOTOMOUS COLLECTIVE DECISION-MAKING

EASE TO PASS PROPOSALS: DEFINITION

- It is more difficult to pass a proposal with unanimity than with a simple majority
- Is it more easy to adopt a proposal under the $\{1,2\}$-oligarchy than under the $\{1,3\}$-oligarchy?
- It depends on p
- A measure of the easiness to adopt proposals: Probability that a proposal is adopted:

$$
\alpha(\mathcal{W}, p):=\text { Prob }\{\text { acceptance }\}=\sum_{S: S \in \mathcal{W}} p(S)
$$

EASE TO PASS PROPOSALS: PROPERTIES

- Property

If $\mathcal{W} \subseteq \mathcal{W}^{\prime}$, then for any p,

$$
\alpha(\mathcal{W}, p) \leq \alpha\left(\mathcal{W}^{\prime}, p\right),
$$

- It is more difficult to pass a proposal with unanimity than with a simple majority
$W=\{\{1,2,3\}\}$ and $W^{\prime}=\{\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
- Is it more easy to adopt a proposal under the $\{1,2\}$-oligarchy than under the $\{1,3\}$-oligarchy?
$W='=\{\{1,2\},\{1,2,3\}\}$ and W ' $=\{\{1,3\},\{1,2,3\}\}$

EASE TO PASS PROPOSALS: NORMATIVE

- Positive evaluation versus normative evaluation
- Positive evaluation: p as close as possible to the real data
- Normative evaluation p*

$$
\begin{gathered}
p^{*}(S)=\frac{1}{2^{n}} \\
\left.\alpha\left(W, p^{*}\right)=\text { Prob \{acceptance }\right\}=\sum_{S: S \in W} p^{*}(S)
\end{gathered}
$$

DICHOTOMOUS COLLECTIVE DECISION-MAKING

OUTLINE OF THE COURSE

I. Introduction
II. Binary voting rules
A. Model
B. Ease to pass proposal
C. Best voting rules
i. Egalitarianism
ii. Utilitarianism
iii. In direct committees
iv. In indirect committees

DICHOTOMOUS COLLECTIVE DECISION-MAKING

MOST ADEQUATE VOTING RULE?

- From a normative point of view, what is the best rule?
- Egalitarianism: equal utility for all voters
- Utilitarianism: to maximize the sum of utilities

Define the utility obtained by a voter

VOTER i'S UTILITY FOR A GIVEN ISSUE

$$
\begin{aligned}
& u_{i^{+}}(A c c)=A^{i+} \\
& u_{i^{+}}(R e j)=R^{i+} \\
& u_{i^{-}}(A c c)=A^{i-} \\
& u_{i^{-}}(R e j)=R^{i-}
\end{aligned}
$$

DICHOTOMOUS COLLECTIVE DECISION-MAKING

VOTER i'S UTILITY FOR ANY ISSUE

Assumptions:
Symmetry among issues
Symmetry among voters

$$
u_{i}(\mathcal{W}, S)=\left\{\begin{array}{l}
A^{+} \text {if } i \in S \in \mathcal{W}, \\
R^{+} \text {if } i \in S \notin \mathcal{W}, \\
R^{-} \text {if } i \notin S \notin \mathcal{W}, \\
A^{-} \text {if } i \notin S \in \mathcal{W},
\end{array}\right.
$$

Define

DICHOTOMOUS COLLECTIVE DECISION-MAKING

VOTER i'S UTILITY FOR A RULE

$$
\begin{gathered}
E_{p}\left[u_{i}(\mathcal{W}, S)\right]=A^{+} P(i \in S \in \mathcal{W})+R^{+} P(i \in S \notin \mathcal{W}) \\
+A^{-} P(i \notin S \in \mathcal{W})+R^{-} P(i \notin S \notin \mathcal{W}),
\end{gathered}
$$

NORMATIVE APPROACH $p^{*}(S)=\frac{1}{2^{n}}$

$$
P(i \in S \in \mathcal{W})=\sum_{S: i \in S \in \mathcal{W}} \frac{1}{2^{n}}
$$

etc

DICHOTOMOUS COLLECTIVE DECISION-MAKING

BEST VOTING RULE?

EGALITARIANISM: choose the rule (W) in order to get

$$
E_{p}\left[u_{i}(\mathcal{W}, S)\right]=E_{p}\left[u_{j}(\mathcal{W}, S)\right], \text { for all } i, j .
$$

UTILITARIANISM: choose the rule (W) in order to

DICHOTOMOUS COLLECTIVE DECISION-MAKING

BEST VOTING RULE? EGALITARIANISM

EGALITARIANISM : choose the rule (W) in order to get

$$
E_{p}\left[u_{i}(\mathcal{W}, S)\right]=E_{p}\left[u_{j}(\mathcal{W}, S)\right], \text { for all } i, j .
$$

Any symmetric rule satisfies egalitarianism

$$
\begin{gathered}
k \text {-majority rule } \\
W^{k M}=\{S \mid s \geq k n\} .
\end{gathered}
$$

In particular the simple majority, the unanimity

BEST VOTING RULE? UTILITARIANISM

Choose the rule (W) in order to $\operatorname{Max} \sum_{i \in N} E_{p}\left[u_{i}(\mathcal{W}, S)\right]$.
The result depends on whether

$$
\Delta^{-} \geq \Delta^{+} \text {or } \Delta^{-}<\Delta^{+} \quad \Delta^{-} \geq \Delta^{+} \text {means: }
$$

Recall $\Delta^{+}:=A^{+}-R^{+}>0$

$$
\Delta^{-}:=R^{-}-A^{-}>0
$$

it is more important
to get a rejection
when against
than
to get an acceptance
when in favour

DICHOTOMOUS COLLECTIVE DECISION-MAKING

BEST VOTING RULE? UTILITARIANISM

Choose the rule (W) in order to

$$
\operatorname{Max} \sum_{i \in N} E_{p}\left[u_{i}(\mathcal{W}, S)\right] .
$$

If $\Delta^{-} \geq \Delta^{+}$
the k -majority rule implements the utilitarian principle with $\mathrm{k}=\frac{\Delta^{-}}{\Delta^{+}+\Delta^{-}}$

$$
\text { If } \Delta^{-}<\Delta^{+}
$$

the simple majority rule implements the utilitarian principle when the number of voters is odd.

BEST VOTING RULE? UTILITARIANISM

Interpretation:

- If the same importance is given to obtaining the preferred outcome with a acceptance or a rejection, then the best rule is the simple majority
- If more importance is given to obtaining the preferred result with a rejection then $\mathrm{k}>1 / 2$ (extreme case: unanimity, $\mathrm{k}=1$)
- If more importance is given to obtaining the preferred result with a acceptance then as $k<1 / 2$ impossible $k=1 / 2$

BEST VOTING RULE

- Direct committees

Both principles can be satisfied at once:

- Egalitarianism: choose any k-majority rule
- Utilitarianism: choose a k-majority rule with $\mathrm{k}=\frac{\Delta^{-}}{\Delta^{+}+\Delta^{-}}$
- Indirect committees?

Example: EU Council of Ministers

DICHOTOMOUS COLLECTIVE DECISION-MAKING

BEST VOTING RULE IN INDIRECT COMMITTEES

Indirect Committee or Committees of representatives

- Data:
- number of members in the committee
- sizes of each group represented
- Question
- Which rule should be used in the Committee?

MODEL OF INDIRECT COMMITTEES

- Assumption: representatives follow the majority opinion of his/her group on every issue

INDIRECT COMMITTEES: EGALITARIANISM

EGALITARIANISM : choose the rule in the committee in order to get equal expected utilities among citizens

$$
E_{p}\left[u_{k}\left(\mathcal{W}_{M}, S_{M}\right)\right]=E_{p}\left[u_{l}\left(\mathcal{W}_{M}, S_{M}\right)\right] \text { for all } k, l \in M
$$

- Assumption: citizens behave independently ($p=p^{*}$)

Choose the rule in the Committee such that

$$
\frac{1}{\sqrt{m_{i}}} \sum_{\substack{S i n \in S \in \mathcal{W} \\ S \backslash i \notin W}} \frac{1}{2^{n-1}}=\frac{1}{\sqrt{m_{j}}} \sum_{\substack{S: j \in S \in \mathcal{W} \\ S \backslash j \in W}} \frac{1}{2^{n-1}} \text { for any } i, j \in N
$$

in practice any rule will do in the EU (mi and mj large)

INDIRECT COMMITTEES: UTILITARIANISM

UTILITARIANISM: choose the rule in order to

$$
\operatorname{Max} \sum_{i \in N} \sum_{k \in M_{i}} E_{p}\left[u_{k}\left(\mathcal{W}_{M}, S_{M}\right)\right] .
$$

- Weight = Square root rules of the size of the represented group $\left(\sqrt{m_{i}}\right)$
- Quota $Q\left(\frac{\Delta^{-}}{\Delta^{+}}\right)=\frac{1}{2} \sum_{i \in N} \sqrt{m_{i}}+\frac{1}{2} \frac{\Delta^{-}-1}{\frac{\Delta^{+}}{\Delta^{-}}+1} m \sqrt{\frac{\pi}{2}}$.

Similar to direct committees: Q increases with $\frac{\Delta^{-}}{\Delta^{+}}$

BEST VOTING RULE: SUMMARY

- Direct committees
- Egalitarianism: choose a k-majority rule
- Utilitarianism: k -majority rule with $\mathrm{k}=\Delta^{-} /\left(\Delta^{+}+\Delta^{-}\right)$
- Committees of representatives
- Egalitarianism: any rule
- Utilitarianism: weighted majority
- Weight = Square root of the represented group
- Quota $=\mathrm{Q}\left(\Delta^{+} / \Delta^{-}\right)$

OUTLINE OF THE COURSE

I. Introduction
II. Binary voting rules
A. Model
B. Ease to pass proposal
C. Best voting rules
D. Application to the European Union
III. Ternary and quaternary voting rules

DICHOTOMOUS COLLECTIVE DECISION-MAKING

APPLICATION TO THE EUROPEAN UNION

DICHOTOMOUS COLLECTIVE DECISION-MAKING

COUNCIL OF MINISTERS VOTING RULES

Simple Majority $\left(\mathcal{W}^{S M}\right)$
$\qquad \mathcal{W}^{S M}=\left\{S \subseteq N: s>\frac{n}{2}\right\}$

Unanimity $\left(\mathcal{W}^{U}\right)$

$$
\mathcal{W}^{U}=\{N\}
$$

$$
\begin{aligned}
& \text { Qualified Majority }\left(\mathcal{W}^{Q M}\right) \\
& \qquad \mathcal{W}^{Q M}=\left\{S \subseteq N: \sum_{i \in S} w_{i}(N) \geq Q(N)\right\} \\
& \hline
\end{aligned}
$$

DICHOTOMOUS COLLECTIVE DECISION-MAKING

WEIGHTS AND QUOTA IN THE QUALIFIED MAJORITY
$\mathrm{N}_{6}=\{\mathrm{Ge}, \mathrm{Fr}, \mathrm{It}, \mathrm{Ne}, \mathrm{Be}, \mathrm{Lu}\} ; \quad \mathrm{w}_{6}=\{4,4,4,2,2,1\}, \mathrm{Q}_{6}=12$
$\mathrm{N}_{\mathrm{g}}=\{\mathrm{Ge}, \mathrm{UK}, \mathrm{Fr}, \mathrm{It}, \mathrm{Ne}, \mathrm{Be}, \mathrm{De}, \mathrm{Ir}, \mathrm{Lu}\} ;$

$$
w_{9}=\{10,10,10,10,5,5,3,3,2\}, Q_{9}=41
$$

$\mathrm{N}_{10}=\{\mathrm{Ge}, \mathrm{UK}, \mathrm{Fr}, \mathrm{It}, \mathrm{Ne}, \mathrm{Gr}, \mathrm{Be}, \mathrm{De}, \mathrm{Ir}, \mathrm{Lu}\} ;$

$$
w_{10}=\{10,10,10,10,5,5,5,3,3,2\}, Q_{10}=45
$$

$N_{12}=\{G e, \mathrm{UK}, \mathrm{Fr}, \mathrm{It}, \mathrm{Sp}, \mathrm{Ne}, \mathrm{Gr}, \mathrm{Be}, \mathrm{Pr}, \mathrm{De}, \mathrm{Ir}, \mathrm{Lu}\} ;$

$$
w_{12}=\{10,10,10,10,8,5,5,5,5,3,3,2\}, Q_{12}=54
$$

$N_{15}=\{\mathrm{Ge}, \mathrm{UK}, \mathrm{Fr}, \mathrm{It}, \mathrm{Sp}, \mathrm{Ne}, \mathrm{Gr}, \mathrm{Be}, \mathrm{Pr}, \mathrm{Sw}, \mathrm{Au}, \mathrm{De}, \mathrm{Fi}, \mathrm{Ir}, \mathrm{Lu}\} ;$

$$
w_{15}=\{10,10,10,10,8,5,5,5,5,4,4,3,3,3,2\}, Q_{15}=62
$$

HOW EASY IS IT TO PASS A PROPOSAL IN THE EU?

	N_{6}	N_{9}	N_{10}	N_{12}	N_{15}
$\alpha\left(\mathcal{W}^{S M}, p^{*}\right)$	0.344	0.5	0.377	0.387	0,5
$\alpha\left(\mathcal{W}^{U}, p^{*}\right)$	0.016	0.002	0.001	0.0002	0.00003
$\alpha\left(\mathcal{W}^{Q M}, p^{*}\right)$	0.219	0.146	0.137	0.098	0.078

$$
\alpha\left(\mathcal{W}_{N}^{U}, p_{N}^{*}\right)<\alpha\left(\mathcal{W}_{N}^{Q M}, p_{N}^{*}\right)<\alpha\left(\mathcal{W}_{N}^{S M}, p_{N}^{*}\right)
$$

DICHOTOMOUS COLLECTIVE DECISION-MAKING

OUTLINE OF THE COURSE

I. Introduction
II. Binary voting rules
A. Model
B. Ease to pass proposal
C. Best voting rules
D. Application to the European Union
III. Ternary and quaternary voting rules
A. Definition - Properties
B. Majorities and quorum

DICHOTOMOUS COLLECTIVE DECISION-MAKING

Gobine BINARY DICHOTOMOUS VOTING RULES

SIMPLEST VOTING SITUATION

Monotonicity
Unanimous YES
Absence of YES
\square is winning \square is not winning

DICHOTOMOUS VOTING RULES

- BINARY RULES

$$
S=\left(S^{Y}, S^{N}\right)
$$

- TERNARY RULES

$$
\begin{aligned}
& S=\left(S^{Y}, S^{A}, S^{N}\right) \\
& S=\left(S^{Y}, S^{H}, S^{N}\right)
\end{aligned}
$$

- QUATERNARY RULES

$$
S=\left(S^{Y}, S^{A}, S^{H}, S^{N}\right)
$$

DICHOTOMOUS COLLECTIVE DECISION-MAKING

NOTATION

$\mathrm{N}=$ Set of potential voters
$S^{N}=$ Set of those who vote no
$\mathrm{S}^{\mathrm{H}}=$ Set of those who stay at home
$S^{A}=$ Set of those who come and abstain
$S^{Y}=$ Set of those who vote yes
$\mathrm{n}=$ total number of potential voters
$s^{N}=$ number of those who vote no
$s^{H}=$ number of those who stay at home
$s^{A}=$ number of those who come and abstain
$s^{Y}=$ number of those who vote yes

QUATERNARY VOTING RULES

NOT THAT SIMPLEST VOTING SITUATIONS

$\mathcal{W}=\{S: S$ leads to the acceptance of the proposal $\}$

DICHOTOMOUS COLLECTIVE DECISION-MAKING

DIFFERENCE BETWEEN BINARY AND OTHERS

INCENTIVES TO VOTE NON SINCERELY

- No binary rule is manipulable: voters who are in favor of the proposal have no incentive to vote no, voters who are against the proposal have no incentive to vote yes
- This does not hold any more with ternary or quaternary voting rule. Example: when there is a participation quorum a voter may be better by staying home than showing up and voting no.

OUTLINE OF THE COURSE

I. Introduction
II. Binary voting rules
III. Ternary and quaternary voting rules
A. Definition - Properties
B. Examples: Majorities with quorum

DICHOTOMOUS COLLECTIVE DECISION-MAKING

QUATERNARY VOTING RULE: PROPERTIES

Unanimous YES

is winning
If all voters vote yes the result should be yes

Absence of YES

If no voter votes yes the result should be no

MONOTONOCITY FOR ORDERED OPTIONS

- If the options (yes, abstain, home and no) can be ordered in terms of support for yes, more support should be in favor of a final yes

QUATERNARY VOTING RULE ARE NOT ORDERED

Example: Belgian Parliament ($\mathrm{n}=150$) simple majority: $\mathrm{s}^{Y}>\mathrm{s}^{\mathrm{N}}$
with a participation quorum
 $s^{\mathrm{Y}}+\mathrm{s}^{\mathrm{A}}+\mathrm{s}^{\mathrm{N}}>\mathrm{n} / 2$

$$
\begin{aligned}
& s^{N}=40, t^{N}=20 \\
& s^{H}=60, t^{H}=80 \\
& s^{A}=0, t^{A}=0 \\
& s^{Y}=50, t^{Y}=50
\end{aligned}
$$

$s^{H}=60, t^{H}=40$
$s^{N}=40, t^{N}=60$
$s^{A}=0, t^{A}=0$
$s^{Y}=50, t^{Y}=50$

bricye
 ікеrbasque
 MONOTONICITIES OF THE BELGIAN PARLIAMENT:

Simple majority with a participation quorum

$\sqrt{\text { Kin }}$
 iкerbasque
 QUATERNARY RULES: MONOTONICITIES

AY

HY

NA + AY imply NY

MINIMAL MONOTONICITIES

A QUATERNARY DICHOTOMOUS VOTING RULE SATISFIES AT LEAST THESE MINIMAL MONOTONICITIES

\& bricye MORE MONOTONICITIES
 ikerbasque

OUTLINE OF THE COURSE

I. Introduction
II. Binary voting rules
III. Ternary and quaternary voting rules
A. Definition - Properties

B. Examples: Majorities with quorum

DICHOTOMOUS COLLECTIVE DECISION-MAKING

-biride MAJORITIES AND QUORUM IN PARLIAMENT

For $1 / 12<q<1$

- Absolute majority $s^{\curlyvee}>q n$
- Simple majority $s^{\curlyvee}>q\left(s^{\curlyvee}+s^{N}\right)$
- Majority of present voters $s^{\curlyvee}>q\left(s^{\curlyvee}+s^{A}+s^{N}\right)$

For $k<q$

- Approval quorum $\mathrm{s}^{\curlyvee}>\mathrm{kn}$
- Participation quorum $s^{\curlyvee}+s^{A}+s^{N}>k n$
-The Swedish Riksdag uses a $1 / 2$-simple majority
- The Finish parliament uses a 1/2-majority of present voters
aThe Estonian parliament uses a absolute 1/2-majority
\square The rule used for referendum in Germany is a $1 / 2$-simple majority with an $1 / 4$-approval quorum
-The Belgian Chamber of Representatives uses a $1 / 2$-simple majority with a $1 / 2$-participation quorum.

THIS PRESENTATION IS BASED ON

Voting and Collective Decision-Making

Bargaining and Power
Annick Laruelle and
Federico Valenciano

Voting and Collective
Decision-Making: Bargaining and Power,

2008
Cambridge University Press, Cambridge, New York.

Joint with F.Valenciano

DICHOTOMOUS COLLECTIVE DECISION-MAKING

THIS PRESENATION IS BASED ON

2010, Egalitarianism and utilitarianism in committees of representatives, Social Choice and Welfare 35(2), 221-243. Joint with Federico Valenciano.
[2011, Majorities with a quorum, Journal of Theoretical Politics 23(2), 241-259. Joint with Federico Valenciano.
\square 2012, Quaternary dichotomous voting rules, Social Choice and Welfare 38, 431-454. Joint with Federico Valenciano.

- 2012, Preferences, Actions and Voting Rules, SERIEs 3, 15-28. Joint with Alaitz Artabe and Federico
Valenciano

