

OUTLINE OF THE COURSE

- I. Introduction
- II. Binary dichotomous voting rules
- III. Ternary-Quaternary dichotomous voting rules

INTRODUCTION

SIMPLEST VOTING SITUATION

An external proposal is submitted to the committee

The members of the committee vote (yes/no)

The proposal is accepted or not

INTRODUCTION: STUDIED SITUATIONS

- Situation where a group of people have to make decide on accept or reject a proposal with the help of a voting rule
- Examples: Parliament, Council, Jury, Referendum,...

- Assumptions
 - Binary choice: yes no
 - Dichotomous final decision: accepted rejected

INTRODUCTION: ADDRESSED QUESTIONS

- How easy is it to adopt proposals?
 - Simple majority versus unanimity versus dictatorship
 - □ The answer depends on the voting rule.
 - If voters independently vote yes with proba ½ versus if voters independently vote yes with proba 1/5
 - The answer depends on the voting behavior

INGREDIENTS OF THE MODELS

□ Voting rule

Voting behaviour

INTRODUCTION: ADDRESSED QUESTIONS

- From a normative point of view, what is the best rule?
 - Normative: all configurations equally probable
 - **Egalitarianism:** equal utility for all voters
 - Utilitarianism: to maximize the sum of utilities
 - Utility obtained by a voter: associate a level of utility to the four possible outcome:
 - The voter has voted yes and the proposal is accepted
 - The voter has voted yes and the proposal is rejected
 - The voter has voted no and the proposal is rejected
 - The voter has voted no and the proposal is accepted

INTRODUCTION: ADDRESSED QUESTIONS

What is the most adequate voting rule for a committee if each member acts on behalf of a group of individuals or a constituency of different sizes?

INTRODUCTION

In Parliament the rules used are more complex. In particular they are not binary

- Simple majorities with participation quorum
- Majority of present voters

How to model these more complex rules?

OUTLINE OF THE COURSE

- . Introduction
- II. Binary voting rules
 - A. Model
 - i. Voting rules
 - ii. Voting behaviour
 - B. Ease to pass proposal
 - C. Best voting rules
 - D. Application to the European Union

MODEL - VOTING RULE : DEFINITIONS

Let us consider a rule with n seats.

 $N=\{1,2,..,n\},$ set of labels.

 2^n possible configurations of votes

 $S \subset N$, vote configuration $S = \{i | i \text{ votes yes}\}$

VOTING RULE

S is winning if it leads to the passage of the proposal.

 ${\cal W}$ denotes the set of winning configurations

 $W = \{S \mid S \text{ leads to a final 'yes'} \}.$

MODEL - VOTING RULES: PROPERTIES

W denotes the set of winning configurations

1. $N \in W$

2. $\emptyset \notin W$

3. If $S \in W$, then $T \in W$ for any T containing S

4. If $S \in W$ then $N \setminus S \notin W$

Remark No possible manipulation: a voter always follows her or his preferences

MODEL - VOTING RULES: EXAMPLES

MODEL - VOTING RULES: REMARKS

- In a dictatorship the dictator will always get his or her preferred outcome.
- Whenever a voter has a veto right, he or she will always get his or her preferred outcome whe he or she votes no.
- It is more difficult to pass a proposal with unanimity than with a simple majority
- Is it more easy to adopt a proposal under the {1,2}-oligarchy than under the {1,3}-oligarchy?

MODEL - VOTING BEHAVIOUR: DEFINITION

$$\operatorname{Map} p \quad : \quad 2^N \to R$$

p(S) = probability that S emerges

= probability that voters in S vote'yes'

and voters in $N \backslash S$ vote 'no'.

$$0 \leq p(S) \leq 1 \text{ for any } S \subseteq N \text{ and } \sum_{S \subseteq N} p(S) = 1$$

MODEL - VOTING BEHAVIOUR: EXAMPLES

 Voters vote independently of each others

$$p^{(t_1,\dots,t_n)}(S) = \prod_{i \in S} t_i \prod_{j \in N \setminus S} (1 - t_j).$$

3 voters, each voter independently votes from the others,

- the first one votes with probability 1/2 'yes',
- the second has a probability 1/8 to vote 'yes' and
- the third one a probability 1/4 to vote 'yes'.

MODEL - VOTING BEHAVIOUR: EXAMPLES

4 voters

- The first three voters voter independently, they vote 'yes' with probability 1/2.
- The fourth voter follows the majority of the other three voters.

MODEL - NORMATIVE VOTING BEHAVIOUR

FOR A NORMATIVE APPROACH

Behind a veil of ignorance: all vote configurations have

the same probability:

$$p^*(S) = \frac{1}{2^n}$$

Equivalently: All voters independently vote 'yes' and 'no' with probability 1/2

$$P(i \ \in \ S) = P(i \notin S) = \frac{1}{2} \quad \text{for all } i$$

OUTLINE OF THE COURSE

- Introduction
- II. Binary voting rules
 - A. Model
 - i. Voting rules
 - ii. Voting behaviour
 - B. Ease to pass proposal
 - C. Best voting rules
 - D. Application to the European Union

EASE TO PASS PROPOSALS: DEFINITION

- It is more difficult to pass a proposal with unanimity than with a simple majority
- Is it more easy to adopt a proposal under the {1,2}-oligarchy than under the {1,3}-oligarchy?
 - It depends on p
- A measure of the easiness to adopt proposals: Probability that a proposal is adopted:

$$\alpha(\mathcal{W},p) := Prob \ \{ \text{acceptance} \} = \sum_{S:S \in \mathcal{W}} p(S),$$

EASE TO PASS PROPOSALS: PROPERTIES

Property

If $\mathcal{W} \subseteq \mathcal{W}'$, then for any p,

 $\alpha(\mathcal{W},p) \leq \alpha(\mathcal{W}',p),$

- It is more difficult to pass a proposal with unanimity than with a simple majority
 W={{1,2,3}} and W'={{1,2},{1,3}, {2,3}, {1,2,3}}
- Is it more easy to adopt a proposal under the {1,2}-oligarchy than under the {1,3}-oligarchy?

 $W= `=\{\{1,2\},\{1,2,3\}\} and W`=\{\{1,3\}, \{1,2,3\}\}$

EASE TO PASS PROPOSALS: NORMATIVE

- Positive evaluation versus normative evaluation
 - Positive evaluation: p as close as possible to the real data
 - Normative evaluation p*

$$p^*(S) = \frac{1}{2^n}$$

$$\alpha(W, p^*) = Prob \{ \text{acceptance} \} = \sum_{S:S \in W} p^*(S)$$

OUTLINE OF THE COURSE

- . Introduction
- II. Binary voting rules
 - A. Model
 - B. Ease to pass proposal
 - C. Best voting rules
 - i. Egalitarianism
 - ii. Utilitarianism
 - iii. In direct committees
 - iv. In indirect committees

MOST ADEQUATE VOTING RULE?

- From a normative point of view, what is the best rule?
 - Egalitarianism: equal utility for all voters
 Utilitarianism: to maximize the sum of utilities

Define the utility obtained by a voter

VOTER i'S UTILITY FOR A GIVEN ISSUE

VOTER i'S UTILITY FOR ANY ISSUE

Assumptions:

Symmetry among issues Symmetry among voters

$$u_i(\mathcal{W}, S) = \begin{cases} A^+ \text{ if } i \in S \in \mathcal{W}, \\ R^+ \text{ if } i \in S \notin \mathcal{W}, \\ R^- \text{ if } i \notin S \notin \mathcal{W}, \\ A^- \text{ if } i \notin S \in \mathcal{W}, \end{cases}$$

Define

VOTER i'S UTILITY FOR A RULE

$$E_p[u_i(\mathcal{W},S)] = A^+ P(i \in S \in \mathcal{W}) + R^+ P(i \in S \notin \mathcal{W})$$

 $+A^{-}P(i\notin S\in\mathcal{W})+R^{-}P(i\notin S\notin\mathcal{W}),$

NORMATIVE APPROACH
$$p^*(S) = \frac{1}{2^n}$$

$$P(i \in S \in \mathcal{W}) = \sum_{S:i \in S \in \mathcal{W}} \frac{1}{2^n}$$

etc

BEST VOTING RULE?

EGALITARIANISM: choose the rule (W) in order to get

$$E_p[u_i(\mathcal{W}, S)] = E_p[u_j(\mathcal{W}, S)], \text{ for all } i, j.$$

UTILITARIANISM: choose the rule (W) in order to

$$Max \sum_{i \in N} E_p \left[u_i(\mathcal{W}, S) \right].$$

BEST VOTING RULE? EGALITARIANISM

EGALITARIANISM : choose the rule (W) in order to get

$$E_p[u_i(\mathcal{W}, S)] = E_p[u_j(\mathcal{W}, S)], \text{ for all } i, j.$$

Any symmetric rule satisfies egalitarianism

k-majority rule $W^{kM} = \{S \mid s \ge kn\}.$

In particular the simple majority, the unanimity

BEST VOTING RULE? UTILITARIANISM

BEST VOTING RULE? UTILITARIANISM

Choose the rule (W) in order to

$$Max \sum_{i \in N} E_p \left[u_i(\mathcal{W}, S) \right].$$

the k-majority rule implements the utilitarian principle with k= $\frac{\Delta^{-}}{\Delta^{+} \pm \Delta^{-}}$

If
$$\Delta^- < \Delta^+$$

If $\Delta^- > \Delta^+$

the simple majority rule implements the utilitarian principle when the number of voters is odd.

BEST VOTING RULE? UTILITARIANISM

Interpretation:

- If the same importance is given to obtaining the preferred outcome with a acceptance or a rejection, then the best rule is the simple majority
- If more importance is given to obtaining the preferred result with a rejection then k>1/2 (extreme case: unanimity, k=1)
- If more importance is given to obtaining the preferred result with a acceptance then as k<1/2 impossible k=1/2</p>

BEST VOTING RULE

Direct committees

Both principles can be satisfied at once:

- Egalitarianism: choose any k-majority rule
- Utilitarianism: choose a k-majority rule with k =

Indirect committees?

Example: EU Council of Ministers

BEST VOTING RULE IN INDIRECT COMMITTEES

Indirect Committee or Committees of representatives

- Data:
 - number of members in the committee
 - sizes of each group represented

- Question
 - Which rule should be used in the Committee?

MODEL OF INDIRECT COMMITTEES

 Assumption: representatives follow the majority opinion of his/her group on every issue

INDIRECT COMMITTEES: EGALITARIANISM

EGALITARIANISM : choose the rule in the committee in order to get equal expected utilities among citizens

$$E_p[u_k(\mathcal{W}_M, S_M)] = E_p[u_l(\mathcal{W}_M, S_M)]$$
 for all $k, l \in M$.

Assumption: citizens behave independently (p=p*)
 Choose the rule in the Committee such that

$$\frac{1}{\sqrt{m_i}} \sum_{\substack{S:i \in S \in \mathcal{W} \\ S \setminus i \notin \mathcal{W}}} \frac{1}{2^{n-1}} = \frac{1}{\sqrt{m_j}} \sum_{\substack{S:j \in S \in \mathcal{W} \\ S \setminus j \notin \mathcal{W}}} \frac{1}{2^{n-1}} \text{for any } i, j \in N$$

in practice any rule will do in the EU (mi and mj large)

INDIRECT COMMITTEES: UTILITARIANISM

UTILITARIANISM: choose the rule in order to

$$Max \sum_{i \in N} \sum_{k \in M_i} E_p \left[u_k(\mathcal{W}_M, S_M) \right].$$

• Weight = Square root rules of the size of the represented group ($\sqrt{m_i}$)

• Quota
$$Q(\frac{\Delta^{-}}{\Delta^{+}}) = \frac{1}{2} \sum_{i \in N} \sqrt{m_i} + \frac{1}{2} \frac{\frac{\Delta^{-}}{\Delta^{+}} - 1}{\frac{\Delta^{-}}{\Delta^{+}} + 1} m \sqrt{\frac{\pi}{2}}$$

Similar to direct committees: Q increases with

BEST VOTING RULE: SUMMARY

- Direct committees
 - Egalitarianism: choose a k-majority rule
 - □ Utilitarianism: k-majority rule with k = $\Delta^{-} / (\Delta^{+} + \Delta^{-})$
- Committees of representatives
 - Egalitarianism: any rule
 - Utilitarianism: weighted majority
 - Weight = Square root of the represented group

• Quota = Q(Δ^+ / Δ^-)

OUTLINE OF THE COURSE

Introduction

II. Binary voting rules

- A. Model
- B. Ease to pass proposal
- C. Best voting rules
- **D.** Application to the European Union

III. Ternary and quaternary voting rules

APPLICATION TO THE EUROPEAN UNION

COUNCIL OF MINISTERS VOTING RULES

Simple Majority (\mathcal{W}^{SM}) $\mathcal{W}^{SM} = \left\{ S \subseteq N : s > \frac{n}{2} \right\}$

> Unanimity (\mathcal{W}^U) $\mathcal{W}^U = \{N\}$

Qualified Majority (\mathcal{W}^{QM}) $\mathcal{W}^{QM} = \left\{ S \subseteq N : \sum_{i \in S} w_i(N) \ge Q(N) \right\}$

 $W_6 = \{4, 4, 4, 2, 2, 1\}, Q_6 = 12$ N_6 ={**Ge**, **Fr**, **It**, **Ne**, **Be**, **Lu**}; N_{q} ={Ge, UK, Fr, It, Ne, Be, De, Ir, Lu}; $w_q = \{10, 10, 10, 10, 5, 5, 3, 3, 2\}, Q_q = 41$ N_{10} = {Ge, UK, Fr, It, Ne, Gr, Be, De, Ir, Lu}; $w_{10} = \{10, 10, 10, 10, 5, 5, 5, 3, 3, 2\}, Q_{10} = 45$ N_{12} = {Ge, UK, Fr, It, Sp, Ne, Gr, Be, Pr, De, Ir, Lu}; W_{12} = {10, 10, 10, 10, **8**, 5, 5, 5, **5**, 3, 3, 2}, Q_{12} = **54** N₁₅= {Ge, UK, Fr, It, Sp, Ne, Gr, Be, Pr, Sw, Au, De, Fi, Ir, Lu}; w_{15} = {10, 10, 10, 10, 8, 5, 5, 5, 5, **4**, **4**, 3, **3**, 3, 2}, Q_{15} = **62**

HOW EASY IS IT TO PASS A PROPOSAL IN THE EU?

	N_6	N_9	N_{10}	N_{12}	N_{15}
$\alpha(\mathcal{W}^{SM}, p^*)$	0.344	0.5	0.377	0.387	$0,\!5$
$\alpha(\mathcal{W}^U,p^*)$	0.016	0.002	0.001	0.0002	0.00003
$\alpha(\mathcal{W}^{QM},p^*)$	0.219	0.146	0.137	0.098	0.078

$$\alpha(\mathcal{W}_N^U, p_N^*) < \alpha(\mathcal{W}_N^{QM}, p_N^*) < \alpha(\mathcal{W}_N^{SM}, p_N^*)$$

OUTLINE OF THE COURSE

- Introduction
- II. Binary voting rules
 - A. Model
 - B. Ease to pass proposal
 - C. Best voting rules
 - D. Application to the European Union
- III. Ternary and quaternary voting rules
 - A. Definition Properties
 - B. Majorities and quorum

SIMPLEST VOTING SITUATION

DICHOTOMOUS VOTING RULES

BINARY RULES

$$S = (S^Y, S^N)$$

TERNARY RULES

$$S = (S^Y, S^A, S^N)$$
$$S = (S^Y, S^H, S^N)$$

QUATERNARY RULES

$$S = (S^Y, S^A, S^H, S^N)$$

- N = Set of potential voters
 S^N = Set of those who vote no
 S^H = Set of those who stay at home
 S^A = Set of those who come and abstain
 S^Y = Set of those who vote yes
- n = total number of potential voters
 s^N = number of those who vote no
 s^H = number of those who stay at home
 s^A = number of those who come and abstain
 s^Y = number of those who vote yes

QUATERNARY VOTING RULES

NOT THAT SIMPLEST VOTING SITUATIONS

 $\mathcal{W} = \{S : S \text{ leads to the acceptance of the proposal}\}\$

INCENTIVES TO VOTE NON SINCERELY

- No binary rule is manipulable: voters who are in favor of the proposal have no incentive to vote no, voters who are against the proposal have no incentive to vote yes
- This does not hold any more with ternary or quaternary voting rule. Example: when there is a participation quorum a voter may be better by staying home than showing up and voting no.

OUTLINE OF THE COURSE

- I. Introduction
- II. Binary voting rules
- III. Ternary and quaternary voting rules
 - A. Definition Properties
 - B. Examples: Majorities with quorum

QUATERNARY VOTING RULE: PROPERTIES

Unanimous YES

If all voters vote yes the result should be yes

is not winning

If **no voter** votes **yes** the result should be **no**

MONOTONOCITY FOR ORDERED OPTIONS

 If the options (yes, abstain, home and no)
 can be ordered in
 terms of support for
 yes, more support
 should be in favor of a
 final yes

QUATERNARY VOTING RULE ARE NOT ORDERED

Example: Belgian Parliament (n=150) simple majority: $s^{Y}>s^{N}$ with a participation quorum $s^{Y}+s^{A}+s^{N}>n/2$

MONOTONICITIES OF THE BELGIAN PARLIAMENT:

Simple majority with a participation quorum

QUATERNARY RULES: MONOTONICITIES

A QUATERNARY DICHOTOMOUS VOTING RULE SATISFIES AT LEAST THESE MINIMAL MONOTONICITIES

OUTLINE OF THE COURSE

- I. Introduction
- II. Binary voting rules
- III. Ternary and quaternary voting rules
 - A. Definition Properties
 - **B.** Examples: Majorities with quorum

For $\frac{1}{2} < q < 1$

- Absolute majority s^Y>q n
- Simple majority s^Y> q (s^Y+s^N)
- Majority of present voters s^Y> q (s^Y+s^A+s^N)

For k<q

- Approval quorum s^Y> k n
- Participation quorum s^Y+s^A+s^N>kn

■The Swedish Riksdag uses a 1/2-simple majority

□ The Finish parliament uses a 1/2-majority of present voters

□The Estonian parliament uses a absolute 1/2-majority

■The rule used for referendum in Germany is a 1/2-simple majority with an 1/4-approval quorum

■The Belgian Chamber of Representatives uses a 1/2-simple majority with a 1/2-participation quorum.

THIS PRESENTATION IS BASED ON

Voting and Collective Decision-Making Bargaining and Power Annick Laruelle and Federico Valenciano

Voting and Collective Decision-Making: Bargaining and Power,

2008

Cambridge University Press, Cambridge, New York.

Joint with F.Valenciano

DICHOTOMOUS COLLECTIVE DECISION-MAKING

CAMBRIDGE

□ 2010, Egalitarianism and utilitarianism in committees of representatives, Social Choice and Welfare 35(2), 221-243. Joint with Federico Valenciano. □2011, Majorities with a quorum, Journal of Theoretical Politics 23(2), 241-259. Joint with Federico Valenciano. □ 2012, Quaternary dichotomous voting rules, Social Choice and Welfare 38, 431-454. Joint with Federico Valenciano. □ 2012, Preferences, Actions and Voting Rules, SERIEs 3, 15-28. Joint with Alaitz Artabe and Federico Valenciano