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Totals 9 7 11 8 10

Agent a1 a2 a3 a4 a5

1 5 1 2 4 3
2 1 2 3 4 5
3 3 4 5 2 1

Totals 9 7 10 10 9

No agent’s preference between a1 and a4 has changed, but society’s
preference has!
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1 5 1 3 2 4
2 1 2 3 4 5
3 3 4 5 2 1

Totals 9 7 11∗ 8 10

Agent a1 a2 a3 a4 a5

1 5 3 1 2 4
2 1 2 3 4 5
3 3 4 5 2 1

Totals 9 9 9 8 10∗

Agent 1 prefers a5 over a3 and thus has successfully manipulated!
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A is finite with at least three elements

R = L, with L the set of linear orderings on A (i.e., complete,
transitive, antisymmetric)

W : LN → L∗ is a social welfare function, with L∗ the set of all weak
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Arrow’s Theorem

Let W be a Pareto optimal and IIA social welfare function. Then W is
dictatorial.

Some references:

Arrow (1951, 1963) Social Choice and Individual Values. Wiley, New
York

There are many other proofs in the literature!

A simple and elegant proof of the theorem jointly with the Theorem
of Gibbard and Satterthwaite (later), can be found in:
Reny (2001) Arrow’s theorem and the Gibbard-Satterthwaite
theorem: a unified approach. Economics Letters 70:99–105

See also Chapter 11 in:
Peters (2008) Game theory: a multi-leveled approach. Springer,
Berlin Heidelberg
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R = L, with L the set of linear orderings on A (i.e., complete,
transitive, antisymmetric)

F : LN → A is a social choice function

Gibbard-Satterthwaite consider the following conditions:

F is strategy-proof (SP) if for all RN ,QN ∈ LN and i ∈ N, if R j = Q j

for all j ∈ N \ {i}, then F (RN)R iF (QN)

F is dictatorial if there is an i ∈ N (the dictator) such that F (RN)R ia

for all RN ∈ LN and a ∈ A

Why strategy-proofness?

Choice should be based on the right information

Agent has an easy decision problem and needs know knowledge of or
conjecture about preferences of others

Ethical reasons
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Some references:

Gibbard A (1973) Manipulation of voting schemes: a general result.
Econometrica 41:587–602

Satterthwaite M (1975) Strategy-proofness and Arrow’s conditions:
existence and correspondence theorems for voting procedures and
social welfare functions. Journal of Economic Theory 10:187–217

There are many other proofs in the literature, e.g., Reny (2001) and
Chapter 11 in Peters (2008), as mentioned earlier
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The Muller-Satterthwaite Theorem

Consider the following condition within the same framework:

F is (Maskin) monotonic if for all RN ,QN ∈ LN such that
F (RN)R ia ⇒ F (RN)Q ia for all a ∈ A, we have F (QN) = F (RN)

Muller-Satterthwaite Theorem

Let F be a monotonic social choice function with at least three
alternatives in its range. Then F is dictatorial.

References:

Muller E, Satterthwaite MA (1977) The equivalence of strong positive
association and strategy-proofness. Journal of Economic Theory
14:412–418

Reny (2001) and Chapter 11 in Peters (2008)
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◮ F is unanimous if F (RN) = a whenever aR ib for all i ∈ N and
b ∈ A \ {a}

◮ F is Pareto optimal if F (RN) 6= b whenever there is an a ∈ A \ {b}
such that aR ib for all i ∈ N

(Maskin) monotonicity is a necessary condition for implementation in
Nash equilibrium (briefly later)

The previous results hold on the ‘universal domain’ of
preferences/profiles. Below we will relax this assumption

In what follows we restrict attention to social choice functions (as opposed
to social welfare functions)
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An example: room temperature

Let A = {15◦, . . . , 25◦} and let n be odd

Suppose that each agent i ∈ N has a preference of the following kind:
he has an ideal temperature (the peak) t◦, and preference decreases
when moving away from t◦ in either direction

Let the social choice function F pick the median of the peaks of the
reported preferences. Note: this is equivalent to pairwise majority
voting

This F is strategy-proof and surjective (full range) but not dictatorial

The idea of considering ‘single-peaked’ preferences goes back to at least:

Black D (1948) On the rationale of group-decision-making. Journal of
Political Economy 56:23–34

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 13 /

70



Formal treatment

We now assume:

A = {a1, . . . , am} ⊆ R with a1 < . . . < am

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 14 /

70



Formal treatment

We now assume:

A = {a1, . . . , am} ⊆ R with a1 < . . . < am

R i is a preference (linear or weak ordering) on A which is
single-peaked:
there is an ap ∈ A (the peak) such that apP

iaℓR
iak whenever

p > ℓ > k or p < ℓ < k

(Here, P i is the asymmetric part of R i .)

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 14 /

70



Formal treatment

We now assume:

A = {a1, . . . , am} ⊆ R with a1 < . . . < am

R i is a preference (linear or weak ordering) on A which is
single-peaked:
there is an ap ∈ A (the peak) such that apP

iaℓR
iak whenever

p > ℓ > k or p < ℓ < k

(Here, P i is the asymmetric part of R i .)

S is the set of single-peaked preferences on A

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 14 /

70



Formal treatment

We now assume:

A = {a1, . . . , am} ⊆ R with a1 < . . . < am

R i is a preference (linear or weak ordering) on A which is
single-peaked:
there is an ap ∈ A (the peak) such that apP

iaℓR
iak whenever

p > ℓ > k or p < ℓ < k

(Here, P i is the asymmetric part of R i .)

S is the set of single-peaked preferences on A

Let F : SN → A be a social choice function

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 14 /

70



Formal treatment

We now assume:

A = {a1, . . . , am} ⊆ R with a1 < . . . < am

R i is a preference (linear or weak ordering) on A which is
single-peaked:
there is an ap ∈ A (the peak) such that apP

iaℓR
iak whenever

p > ℓ > k or p < ℓ < k

(Here, P i is the asymmetric part of R i .)

S is the set of single-peaked preferences on A

Let F : SN → A be a social choice function

F is peaks-only if F (RN) = F (QN) whenever R i and Q i have the
same peak for each i ∈ N

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 14 /

70



Formal treatment

We now assume:

A = {a1, . . . , am} ⊆ R with a1 < . . . < am

R i is a preference (linear or weak ordering) on A which is
single-peaked:
there is an ap ∈ A (the peak) such that apP

iaℓR
iak whenever

p > ℓ > k or p < ℓ < k

(Here, P i is the asymmetric part of R i .)

S is the set of single-peaked preferences on A

Let F : SN → A be a social choice function

F is peaks-only if F (RN) = F (QN) whenever R i and Q i have the
same peak for each i ∈ N

F is anonymous if F (RN) = F (QN) whenever there is a permutation
π of N such that Qπ(i) = R i for each i ∈ N

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 14 /

70



Formal treatment

We now assume:

A = {a1, . . . , am} ⊆ R with a1 < . . . < am

R i is a preference (linear or weak ordering) on A which is
single-peaked:
there is an ap ∈ A (the peak) such that apP
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iak whenever

p > ℓ > k or p < ℓ < k

(Here, P i is the asymmetric part of R i .)

S is the set of single-peaked preferences on A

Let F : SN → A be a social choice function

F is peaks-only if F (RN) = F (QN) whenever R i and Q i have the
same peak for each i ∈ N

F is anonymous if F (RN) = F (QN) whenever there is a permutation
π of N such that Qπ(i) = R i for each i ∈ N

Strategy-proofness and Pareto optimality of F are defined as before
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Theorem (Moulin 1980)

Let F : SN → A be a social choice function.
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Theorem (Moulin 1980)
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b0, . . . , bn ∈ A with bn ≤ . . . ≤ b0 such that for every profile
RN ∈ SN , we have

F (RN) = median{x1, . . . , xn, b0, . . . , bn}

where x i is the peak of R i for each i ∈ N.

(b) F is peaks-only, anonymous, strategy-proof, and Pareto optimal if and
only if there are b1, . . . , bn−1 ∈ A with bn−1 ≤ . . . ≤ b1 such that for
every profile RN ∈ SN , we have

F (RN) = median{x1, . . . , xn, b1, . . . , bn−1}

where x i is the peak of R i for each i ∈ N.
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Theorem can also be formulated for A being an interval in R or the
whole of R

The numbers bj are also called ‘fixed ballots’

Result is due to
Moulin H (1980) On strategy-proofness and single peakedness. Public
Choice 35:437–455

For an extension to a continuum of agents (voters) with
A = [0, 1] ⊆ R see Maus et al (2006). There a fixed ballot takes the
form of a (decumulative) distribution function

The theorem can be extended to non-anonymous social choice
functions: then we have a fixed ballot for every coalition, and
coalitions of the same size can have different fixed ballots
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Theorem: Moulin without anonymity

(a) F is peaks-only and strategy-proof if and only if there are bS ∈ A,
S ⊆ N, such that bT ≤ bS whenever S ⊆ T , and such that for each
profile RN with peaks x i1 ≤ . . . ≤ x in we have

F (RN) = median{x i1 , . . . , x in , bS0 , . . . , bSn}

where S0 = ∅, S1 = {i1}, S2 = {i1, i2}, . . ., Sn = N.
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(a) F is peaks-only and strategy-proof if and only if there are bS ∈ A,
S ⊆ N, such that bT ≤ bS whenever S ⊆ T , and such that for each
profile RN with peaks x i1 ≤ . . . ≤ x in we have

F (RN) = median{x i1 , . . . , x in , bS0 , . . . , bSn}

where S0 = ∅, S1 = {i1}, S2 = {i1, i2}, . . ., Sn = N.

(b) F is peaks-only, strategy-proof and Pareto optimal if and only if there
are bS ∈ A, ∅ 6= S 6= N, such that bT ≤ bS whenever S ⊆ T , and
such that for each profile RN with peaks x i1 ≤ . . . ≤ x in we have

F (RN) = median{x i1 , . . . , x in , bS1 , . . . , bSn−1}

where S1 = {i1}, S2 = {i1, i2}, . . ., Sn−1 = N \ {in}.
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Single-peaked preferences in higher dimensions

We now assume:

A = Rk for some k ≥ 2

Indifference curves of preferences are ellipsoids with axes parallel to
the axes of Rk : single-peaked quadratic preferences

The collection of all such preferences is denoted by Q

Note: each RN ∈ QN induces a single-peaked preference profile
RN
j ∈ S on every axis j = 1, . . . , k

Let F : QN → A be a social choice function

F is unanimous if F (RN) = p whenever all preferences in RN share
the same peak p ∈ A

Strategy-proofness, Pareto optimality and anonymity of F are defined
as before

Note: F is Pareto optimal if and only if it always assigns an
alternative in the convex hull (polytope) of the preference peaks
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Theorem: Border and Jordan 1983

The social choice function F : QN → A is strategy-proof and unanimous if
and only if there are peaks-only strategy-proof unanimous social choice
functions F1, . . . ,Fk : S → R such that F (RN) = (F1(R

N
1 ), . . . ,Fm(R

N
k ))

for every RN ∈ QN .
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by Moulin (1980). See the previous theorems for the cases with and
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Although these Fj are Pareto optimal, F itself is not: the resulting
alternative does not have to be in the convex hull of the peaks. (E.g.
k = 2, n = 2, fixed ballots (1, 1).)
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and only if there are peaks-only strategy-proof unanimous social choice
functions F1, . . . ,Fk : S → R such that F (RN) = (F1(R

N
1 ), . . . ,Fm(R

N
k ))

for every RN ∈ QN .

This theorem was proved by Border and Jordan (RES 1983)

The (one-dimensional) social choice functions Fj were characterized
by Moulin (1980). See the previous theorems for the cases with and
without anonymity

Although these Fj are Pareto optimal, F itself is not: the resulting
alternative does not have to be in the convex hull of the peaks. (E.g.
k = 2, n = 2, fixed ballots (1, 1).)

What can we get under Pareto optimality? We consider a further
domain restriction
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Let Q̃ be the set of all Euclidian preferences on A = Rk (e.g., circular if
k = 2)
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Theorem on circular preferences

Let F : Q̃N → A be a social choice function.

(a) Let k = 2 and let n be odd. Then F is anonymous, Pareto optimal,
and strategy-proof, if and only if there are orthogonal axes in R2 such
that F (RN) = (F1(R

N
1 ),F2(R

N
2 )), where Fj(R

N
j ) is the median of the

peaks of the profile RN
j induced by RN on axis j = 1, 2.
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that F (RN) = (F1(R

N
1 ),F2(R

N
2 )), where Fj(R

N
j ) is the median of the

peaks of the profile RN
j induced by RN on axis j = 1, 2.

(b) If k ≥ 2 and n is even, or if k > 2 and n ≥ 3, then there is no social
choice function F : Q̃N → A which is anonymous, Pareto optimal,
and strategy-proof.

The impossibility result in (b) also holds for domain QN
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Let Q̃ be the set of all Euclidian preferences on A = Rk (e.g., circular if
k = 2)

Theorem on circular preferences

Let F : Q̃N → A be a social choice function.

(a) Let k = 2 and let n be odd. Then F is anonymous, Pareto optimal,
and strategy-proof, if and only if there are orthogonal axes in R2 such
that F (RN) = (F1(R

N
1 ),F2(R

N
2 )), where Fj(R

N
j ) is the median of the

peaks of the profile RN
j induced by RN on axis j = 1, 2.

(b) If k ≥ 2 and n is even, or if k > 2 and n ≥ 3, then there is no social
choice function F : Q̃N → A which is anonymous, Pareto optimal,
and strategy-proof.

The impossibility result in (b) also holds for domain QN

References: Kim and Roush (MASS 1984); Peters et al (IJGT 1992)
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I.4 Domain restrictions: single-dipped preferences

Roughly, a preference is single-dipped if there is a unique alternative
(the dip) such that preference increases when moving away from that
alternative

Typical examples include preferences concerning the location of a
public bad (nuclear plant, garbage dump, windmill) in one- or
two-dimensional space

For the one-dimensional case see:

Peremans and Storcken (1999); Barbera, Berga, and Moreno (SCW
2012); Manjunath (IJGT 2013)

Here we consider the two-dimensional case
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A ⊆ R2 is a polytope (convex hull of finitely many points) with
nonempty interior

Preferences are Euclidian single-dipped, i.e., for such a preference R i

there is a point a ∈ A such that xR iy exactly if ||x − a|| ≥ ||y − a||,
where || · || denotes Euclidian distance

Thus, such a preference can be identified with its dip, a point in A

A point x ∈ A is called a unique best point if there is a point y ∈ A

such that ||x − y || > ||z − y || for all z ∈ A \ {x}.

Let F : AN → A be a social choice function

Strategy-proofness and Pareto optimality of F are defined in the usual
way

F is dictatorial if there is an agent i ∈ N (the dictator) such that F
assigns to each profile some point at maximal distance from agent i ’s
dip
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Theorem: spatial single-dipped preferences

Let F : AN → A be a strategy-proof and Pareto optimal social choice
function. Preferences are Euclidian single-dipped.
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(a) Suppose that either A has two unique best points or A has four
unique best points which are the vertices of a rectangle. Then F may
be non-dictatorial.
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Theorem: spatial single-dipped preferences

Let F : AN → A be a strategy-proof and Pareto optimal social choice
function. Preferences are Euclidian single-dipped.

(a) Suppose that either A has two unique best points or A has four
unique best points which are the vertices of a rectangle. Then F may
be non-dictatorial.

(b) In all other cases, F is dictatorial.

Example of (a), where A is an obtuse rectangle and its inside:
majority voting between the two unique best points

Example of (a), where A is a rectangle and its inside: majority voting
between the opposite edges of the rectangle

For (a) in general: voting by committees (simple games) plus
tie-breaking rules

See: Öztürk et al (ET 2014)
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Part II: Probabilistic approaches and minimal manipulability

II.1 Decision schemes and random dictatorship

II.2 Decision schemes and single-peaked preferences

II.3 Cardinally strategy-proof decision schemes

II.4 Minimal manipulability
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each function ui : A → R representing R i , and each QN ∈ LN with
Q j = R j for all j ∈ N \ {i}, we have Eui(ϕ(RN)) ≥ Eui (ϕ(QN)).
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II.1 Decision schemes and random dictatorship

N = {1, . . . , n}, A finite with |A| = m

L(A) is the set of lotteries (probability distributions) over A

L is the set of linear orderings (strict preferences) over A

ϕ : LN → L(A) is a decision scheme (probabilistic social choice
function)

ϕ is ordinally strategy-proof (OSP) if for each RN ∈ LN , each i ∈ N,
each function ui : A → R representing R i , and each QN ∈ LN with
Q j = R j for all j ∈ N \ {i}, we have Eui(ϕ(RN)) ≥ Eui (ϕ(QN)).
Here Eui (·) denotes expected utility

In other words, if agent i deviates to Q i , then the result is a lottery
which is (weakly) stochastically dominated by the lottery obtained
when i is truthful
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ϕ is ex post Pareto optimal if, for all RN ∈ LN and all x , y ∈ A such
that xR iy for every i ∈ N, ϕ(RN)(y) = 0 (i.e., the probability
assigned to y by the lottery ϕ(RN) is zero)
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that xR iy for every i ∈ N, ϕ(RN)(y) = 0 (i.e., the probability
assigned to y by the lottery ϕ(RN) is zero)

A decision scheme ϕ is a random dictatorship if there are probabilities
λ1, . . . , λn such that for each RN ∈ LN and each x ∈ A, we have
ϕ(RN)(x) =

∑
i∈N(x) λi , where N(x) = {i ∈ N : xR iy for all y ∈ A}

Theorem: Random dictatorship

Let ϕ : LN → L(A) be an ordinally strategy-proof and ex post Pareto
optimal decision scheme. Then ϕ is a random dictatorship.
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ϕ is ex post Pareto optimal if, for all RN ∈ LN and all x , y ∈ A such
that xR iy for every i ∈ N, ϕ(RN)(y) = 0 (i.e., the probability
assigned to y by the lottery ϕ(RN) is zero)

A decision scheme ϕ is a random dictatorship if there are probabilities
λ1, . . . , λn such that for each RN ∈ LN and each x ∈ A, we have
ϕ(RN)(x) =

∑
i∈N(x) λi , where N(x) = {i ∈ N : xR iy for all y ∈ A}

Theorem: Random dictatorship

Let ϕ : LN → L(A) be an ordinally strategy-proof and ex post Pareto
optimal decision scheme. Then ϕ is a random dictatorship.

Proved in:
Gibbard A (1977) Manipulation of schemes that mix voting with chance.
Econometrica 45:665–681
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Random dictatorship seems an improvement over dictatorship
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Random dictatorship seems an improvement over dictatorship

However, consider a profile of the kind

R1 a d · · · (bc . . .)
R2 b d · · · (ac . . .)
R3 c d · · · (ab . . .)
· · · · · · d · · · · · ·

Then d seems to be a better compromise than a random dictatorship
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R i is a preference (linear or weak ordering) on A which is
single-peaked:
there is an ap ∈ A (the peak) such that apP

iaℓR
iak whenever

p > ℓ > k or p < ℓ < k

(Here, P i is the asymmetric part of R i)
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II.2 Decision schemes and single-peaked preferences

As before we consider:

A = {a1, . . . , am} ⊆ R with a1 < . . . < am

R i is a preference (linear or weak ordering) on A which is
single-peaked:
there is an ap ∈ A (the peak) such that apP

iaℓR
iak whenever

p > ℓ > k or p < ℓ < k

(Here, P i is the asymmetric part of R i)

S is the set of single-peaked preferences on A

Let ϕ : SN → L(A) be a decision scheme

Ordinal strategy-proofness of ϕ was defined above

Peaks-onliness of ϕ is defined in the obvious way
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Theorem: decision schemes and single-peaked preferences

Every peaks-only and ordinally strategy-proof decision scheme ϕ : SN → L
is a probability mixture of peaks-only and strategy-proof deterministic
social choice functions

These deterministic social choice functions follow from Moulin
(1980), discussed in part I
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(1980), discussed in part I

The theorem was proved in Peters et al (JME 2014)

There is no general answer to the question when strategy-proof
decision schemes are probability mixtures of strategy-proof social
choice functions
See: Chatterji et al (GEB 2014)
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Theorem: decision schemes and single-peaked preferences

Every peaks-only and ordinally strategy-proof decision scheme ϕ : SN → L
is a probability mixture of peaks-only and strategy-proof deterministic
social choice functions

These deterministic social choice functions follow from Moulin
(1980), discussed in part I

The theorem was proved in Peters et al (JME 2014)

There is no general answer to the question when strategy-proof
decision schemes are probability mixtures of strategy-proof social
choice functions
See: Chatterji et al (GEB 2014)

For instance, that question is open for the case that A is not a finite
set but a real interval or the real line
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Decision schemes for single-peaked preferences on the real line
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Decision schemes for single-peaked preferences on the real line

Let A = R and let now S denote the set of single-peaked preferences
on the real line

A decision scheme now assigns a probability measure on A = RN to
every profile RN

A fixed probabilistic ballot (over the extended real line)
R̄ = R ∪ {−∞,+∞} is a probability distribution (measure) on R̄
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A collection of fixed probabilistic ballots (DS)S⊆N is admissible if
◮ D∅({−∞}) = 0
◮ DN({+∞}) = 0
◮ DT ([−∞, x ])− DS ([−∞, x)) ≥ 0 for all x ∈ R whenever S ⊆ T
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Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 31 /

70



A collection of fixed probabilistic ballots (DS)S⊆N is admissible if
◮ D∅({−∞}) = 0
◮ DN({+∞}) = 0
◮ DT ([−∞, x ])− DS ([−∞, x)) ≥ 0 for all x ∈ R whenever S ⊆ T

With an admissible collection of fixed probabilistic ballots
∆ = (DS)S⊆N we associate a decision scheme Φ∆ as follows

Let RN ∈ LN with distinct peaks p1 < . . . < pk and associated
coalitions Sj = {i ∈ N | peak(R i) ≤ pj}. So
∅ =: S0 ( S1 ( . . . ( Sk−1 ( Sk = N. Also let p0 = −∞ and
pk+1 = +∞
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Now µ = Φ∆(RN) is the probability distribution on R defined as
follows:
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Now µ = Φ∆(RN) is the probability distribution on R defined as
follows:

◮ strictly between two peaks pℓ and pℓ+1, µ coincides with DSℓ
, for

ℓ = 0, . . . , k
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Now µ = Φ∆(RN) is the probability distribution on R defined as
follows:

◮ strictly between two peaks pℓ and pℓ+1, µ coincides with DSℓ
, for

ℓ = 0, . . . , k
◮ on each peak pℓ for ℓ = 1, . . . , k the probability distribution µ puts

DSℓ
([−∞, pℓ])− DSℓ−1

([−∞, pℓ))

Theorem: OSP decision schemes on the real line

The decision schemes Phi∆ for ∆ an admissible collection of fixed
probabilistic ballots, are the only decision schemes for single-peaked
preference profiles on the real line that are ordinally strategy-proof and
peaks-only. Moreover, the collections ∆ are uniquely determined.

(Ehlers et al, JET 2002)
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upper contour sets around this peak.

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 33 /

70



Extension to higher dimensions

A = Rk

We consider all strictly convex single-peaked preferences. Hence, a
preference is determined by its peak in Rk and its strictly convex
upper contour sets around this peak.

A decision scheme ϕ unanimous if it assigns probability 1 to
alternative x whenever all agents have the same preference with peak
x .
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Extension to higher dimensions

A = Rk

We consider all strictly convex single-peaked preferences. Hence, a
preference is determined by its peak in Rk and its strictly convex
upper contour sets around this peak.

A decision scheme ϕ unanimous if it assigns probability 1 to
alternative x whenever all agents have the same preference with peak
x .

Theorem: Multi-dimensional random dictatorship

A decision scheme defined on the set of profiles of strictly convex
single-peaked preferences on Rk is unanimous and ordinally strategy-proof
if and only if it is a random dictatorship.
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Extension to higher dimensions

A = Rk

We consider all strictly convex single-peaked preferences. Hence, a
preference is determined by its peak in Rk and its strictly convex
upper contour sets around this peak.

A decision scheme ϕ unanimous if it assigns probability 1 to
alternative x whenever all agents have the same preference with peak
x .

Theorem: Multi-dimensional random dictatorship

A decision scheme defined on the set of profiles of strictly convex
single-peaked preferences on Rk is unanimous and ordinally strategy-proof
if and only if it is a random dictatorship.

(Dutta et al, JET 2002)
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II.3 Cardinally strategy-proof decision schemes

A finite

L(A) is the set of lotteries on A

Each agent i ∈ N has a utility function ui : A → R and evaluates
lotteries by their expected utility

U is the collection of all functions from A to R

A preference profile is an n-tuple of utility functions uN ∈ UN

A decision scheme ϕ : UN → L(A) assigns to each n-tuple a lottery
on A

ϕ is cardinally strategy-proof (CSP) if for each uN ∈ UN , each i ∈ N,
and each vN ∈ UN with v j = uj for each agent j 6= i , we have
Eui(ϕ(uN )) ≥ Eui (ϕ(vN))
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Theorem: CSP decision schemes

Decision scheme ϕ : UN → L is unanimous and cardinally strategy-proof if
and only if it is a random dictatorship.
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Theorem: CSP decision schemes

Decision scheme ϕ : UN → L is unanimous and cardinally strategy-proof if
and only if it is a random dictatorship.

Theorem is due to Hylland (1980, unpublished thesis)
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Theorem: CSP decision schemes

Decision scheme ϕ : UN → L is unanimous and cardinally strategy-proof if
and only if it is a random dictatorship.

Theorem is due to Hylland (1980, unpublished thesis)

For a relatively short but flawed proof see Dutta et al (SCW 2007,
2008)

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 35 /

70



Theorem: CSP decision schemes

Decision scheme ϕ : UN → L is unanimous and cardinally strategy-proof if
and only if it is a random dictatorship.

Theorem is due to Hylland (1980, unpublished thesis)

For a relatively short but flawed proof see Dutta et al (SCW 2007,
2008)

Further see Barberà et al (MASS 1998) and Nandeibam (RED 2013)
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Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 36 /

70



II.4 Minimal manipulability

According to the Gibbard-Satterthwaite Theorem, if the domain of
preferences is not very limited and the range of a social choice
function is at least three, then it is strategy-proof if and only if it is
dictatorial
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Here, we accept this as a fact of life and look for social choice
functions that are least manipulable in some sense

We measure this by simply counting the number of manipulable
profiles. Equivalently, assume a uniform distribution over the set of all
preferences/profiles: then we consider the probability that a profile
will be manipulable
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II.4 Minimal manipulability

According to the Gibbard-Satterthwaite Theorem, if the domain of
preferences is not very limited and the range of a social choice
function is at least three, then it is strategy-proof if and only if it is
dictatorial

Here, we accept this as a fact of life and look for social choice
functions that are least manipulable in some sense

We measure this by simply counting the number of manipulable
profiles. Equivalently, assume a uniform distribution over the set of all
preferences/profiles: then we consider the probability that a profile
will be manipulable

References include Kelly (SCW 1988, 1989); Maus et al (JME 2007,
JET 2007); Campbell and Kelly (ET 2009); Diss et al (2010);
Gehrlein and Lepelley (JME 1998); Pritchard and Wilson (MASS
2009); Peters et al (SCW 2012); Arribillaga and Massó (2014)
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manipulable if there is at least one agent i who can obtain a better
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R i
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Given a social choice function F : LN → A, a profile RN is
manipulable if there is at least one agent i who can obtain a better
alternative by reporting a preference Q i instead of his true preference
R i

MF ⊆ LN denotes the set of manipulable profiles (given F )
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Unanimous and nondictatorial social choice functions

A is finite, and we consider linear orderings.

Given a social choice function F : LN → A, a profile RN is
manipulable if there is at least one agent i who can obtain a better
alternative by reporting a preference Q i instead of his true preference
R i

MF ⊆ LN denotes the set of manipulable profiles (given F )

Hence, F is strategy-proof iff MF = ∅

F is almost dictatorial if there is (i) an agent d ∈ N, (ii) a profile QN ,
and (iii) an alternative x with xQ iz for all i 6= d where z is the top
alternative of Qd , such that

F (RN) =

{
top alternative of Rd if RN 6= QN

x if RN = QN
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Theorem: Unanimity and Minimal Manipulability

Let F : LN → A be unanimous and nondictatorial. Then:
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Theorem: Unanimity and Minimal Manipulability

Let F : LN → A be unanimous and nondictatorial. Then:

(a) If n = 2 and m = 3 then |Mf | ≥ 2

(b) If n = 2 and m ≥ 4 and if case n ≥ 3 and m ≥ 3 then
|Mf | ≥ (n − 1)

(
m!
2 − 1

)
+ 1
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Let F : LN → A be unanimous and nondictatorial. Then:

(a) If n = 2 and m = 3 then |Mf | ≥ 2

(b) If n = 2 and m ≥ 4 and if case n ≥ 3 and m ≥ 3 then
|Mf | ≥ (n − 1)

(
m!
2 − 1

)
+ 1

(c) If n ≥ 3 and m ≥ 3, then equality in (b) holds if and only if F is
almost dictatorial
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Theorem: Unanimity and Minimal Manipulability

Let F : LN → A be unanimous and nondictatorial. Then:

(a) If n = 2 and m = 3 then |Mf | ≥ 2

(b) If n = 2 and m ≥ 4 and if case n ≥ 3 and m ≥ 3 then
|Mf | ≥ (n − 1)

(
m!
2 − 1

)
+ 1

(c) If n ≥ 3 and m ≥ 3, then equality in (b) holds if and only if F is
almost dictatorial

This result was proved by Maus et al (JME 2007), building on earlier
partial results by Kelly (SCW 1988) and Fristrup and Keiding (SCW 1998)
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Anonymous, surjective and peaks-only social choice functions

A social choice function F is a unanimity rule with status quo if there
is a fixed alternative a ∈ A (the status quo) such that F (RN) = a

unless RN is a unanimous profile (i.e., R1 = . . . = Rn): in that case
F (RN) is the top alternative of (each) R i
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Anonymous, surjective and peaks-only social choice functions

A social choice function F is a unanimity rule with status quo if there
is a fixed alternative a ∈ A (the status quo) such that F (RN) = a

unless RN is a unanimous profile (i.e., R1 = . . . = Rn): in that case
F (RN) is the top alternative of (each) R i

As before, F is peaks-only if F (RN) = F (QN) whenever R i and Q i

have the same top alternative for each i ∈ N

Theorem: Anonymity, surjectivity, peaks-onliness

Let n > m ≥ 3. Let F : LN → A be anonymous, surjective and peaks-only.
Then |MF | ≤ |MG | for all anonymous, surjective and peaks-only social
choice functions G if and only if F is a unanimity rule with status quo.

See Maus et al (JET 2007). Unanimity with status quo is applied in the
European union!
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Some remarks on approval voting

Approval voting (Brams and Fishburn, 1983) means that each agent
approves of a number of alternatives (at his own discretion). Leads to
a social choice correspondence that picks the set of maximally
approved alternatives. Note: an agent submits a preference and a
cut-off point
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Some remarks on approval voting

Approval voting (Brams and Fishburn, 1983) means that each agent
approves of a number of alternatives (at his own discretion). Leads to
a social choice correspondence that picks the set of maximally
approved alternatives. Note: an agent submits a preference and a
cut-off point

One needs to extend preferences over sets in order to investigate
manipulability

Approval voting can still be manipulable with respect to the cut-off
point, depending on the way preferences are extended to sets. For
dichotomous preferences (which are weak orderings), approval voting
is strategy-proof

k-approval voting means that each agent approves of exactly k
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Some remarks on approval voting

Approval voting (Brams and Fishburn, 1983) means that each agent
approves of a number of alternatives (at his own discretion). Leads to
a social choice correspondence that picks the set of maximally
approved alternatives. Note: an agent submits a preference and a
cut-off point

One needs to extend preferences over sets in order to investigate
manipulability

Approval voting can still be manipulable with respect to the cut-off
point, depending on the way preferences are extended to sets. For
dichotomous preferences (which are weak orderings), approval voting
is strategy-proof

k-approval voting means that each agent approves of exactly k

alternatives (k = 1, . . . ,m − 1): this is an example of a scoring rule

If the number of agents n becomes large, then k ≈ m/2 approval
voting is minimally manipulable among all scoring rules (Pritchard
and Wilson, MASS 2009; Peters et al, SCW 2012)

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 40 /

70



Part III: Voting equilibria

III.1 Exactly and strongly consistent social choice functions

III.2 Effectivity functions and Nash consistent representation

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 41 /

70



III.1 Exactly and strongly consistent social choice functions

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 42 /

70



III.1 Exactly and strongly consistent social choice functions

N = {1, . . . , n}, A finite with |A| = m

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 42 /

70



III.1 Exactly and strongly consistent social choice functions

N = {1, . . . , n}, A finite with |A| = m

L is the set of linear orderings (strict preferences) over A

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 42 /

70



III.1 Exactly and strongly consistent social choice functions

N = {1, . . . , n}, A finite with |A| = m

L is the set of linear orderings (strict preferences) over A

F : LN → A is a social choice function

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 42 /

70



III.1 Exactly and strongly consistent social choice functions

N = {1, . . . , n}, A finite with |A| = m

L is the set of linear orderings (strict preferences) over A

F : LN → A is a social choice function

Given a profile RN ∈ LN , we can regard (F ,RN) as an ordinal
noncooperative game with player set N, strategy set L for each player
i ∈ N, outcome F (QN) for each strategy profile QN , evaluated by
each player i according to R i

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 42 /

70



III.1 Exactly and strongly consistent social choice functions

N = {1, . . . , n}, A finite with |A| = m

L is the set of linear orderings (strict preferences) over A

F : LN → A is a social choice function

Given a profile RN ∈ LN , we can regard (F ,RN) as an ordinal
noncooperative game with player set N, strategy set L for each player
i ∈ N, outcome F (QN) for each strategy profile QN , evaluated by
each player i according to R i

Then strategy-proofness of F is equivalent to the statement that RN

is a Nash equilibrium in (F ,RN) for each RN ∈ LN

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 42 /

70



III.1 Exactly and strongly consistent social choice functions

N = {1, . . . , n}, A finite with |A| = m

L is the set of linear orderings (strict preferences) over A

F : LN → A is a social choice function

Given a profile RN ∈ LN , we can regard (F ,RN) as an ordinal
noncooperative game with player set N, strategy set L for each player
i ∈ N, outcome F (QN) for each strategy profile QN , evaluated by
each player i according to R i

Then strategy-proofness of F is equivalent to the statement that RN

is a Nash equilibrium in (F ,RN) for each RN ∈ LN

If F is manipulable (not strategy-proof) then we could impose the
weaker requirement that there should be a Nash equilibrium QN ∈ LN

in the game (F ,RN) such that F (QN) = F (RN), for each RN ∈ LN
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Definition: ESC social choice function
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(a) For each S ⊆ N and each Q̃S ∈ LS there is an i ∈ S with
F (QN)R iF (Q̃S ,QN\S) (i.e., QN is a strong Nash equilibrium)

(b) F (QN) = F (RN)
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How to find ESC social choice functions?

We assume n + 1 ≥ m

We assign positive integer weights β(x) to the alternatives x ∈ A,
such that

∑
x∈A β(x) = n + 1

Consider a profile RN ∈ LN . We consider the following procedure:

◮ Find an alternative x that is at bottom for at least β(x) agents
◮ Delete β(x) of such preferences/agents, and delete x everywhere
◮ Repeat these steps for the remaining profile
◮ After m − 1 turns, one alternative is left: this is called an RN -maximal

alternative

Such a procedure is called a feasible elimination procedure (f.e.p.)

By M(RN) we denote the set of all RN -maximal alternatives; so M is
a social choice correspondence

A social choice correspondence is a map H : LN → P0(A), where
P0(A) is the set of all nonempty subsets of A.
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Example A = {a, b, c}; N = {1, . . . , 5}; β(a) = β(b) = β(c) = 2.
Consider RN in the following table.

R1 R2 R3 R4 R5

b c a c a

c b b a c

a a c b b

Then there exist two f.e.p.’s: (a, {1, 2}; b, {4, 5}; c) and
(b, {4, 5}; a, {1, 2}; c). So M(RN) = {c}.

Now consider R ′N in the following table.

R ′1 R ′2 R ′3 R ′4 R ′5

b c b c b

c b c a c

a a a b a

Then M(R ′N) = {b, c}.
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Theorem: selections from M and ESC

Let the social choice function F be a selection from M, i.e.,
F (RN) ∈ M(RN) for each RN ∈ LN . Then F is ESC.

See Peleg (1978) or Peleg and Peters (2010)

A selection F from M is also Pareto optimal

An anonymous selection F can easily be constructed (for instance,
select from M according to a fixed ordering R ∈ L)
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Every f.e.p. for RN results in b or in c , so M(RN) = {b, c}. Suppose
F (RN) = c . But at the right profile, F assigns b.
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Example A = {a, b, c}; N = {1, . . . , 5}; β(a) = β(b) = β(c) = 2.
Consider RN in the following table.

R1 R2 R3 R4 R5

b b c a b

c c b c a

a a a b c

R ′1 R ′2 R3 R4 R5

b b c a b

a a b c a

c c a b c

Every f.e.p. for RN results in b or in c , so M(RN) = {b, c}. Suppose
F (RN) = c . But at the right profile, F assigns b.

A strong Nash equilibrium QN for RN with F (QN) = c is:

Q1 Q2 Q3 Q4 Q5

b b c a b

c c a c a

a a b b c

(This is also the basic idea of the proof of the theorem)
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For a set D, P(D) is the set of all subsets of D and P0(D) is the set
of all nonempty subsets of D

With a surjective social choice function F : LN → A we associate an
effectivity function EF : P(N) → P(P0(A)) as follows: for every
S ∈ P0(N)

B ∈ EF (S) ⇔ ∃RS ∈ LS [F (RS ,QN\S) ∈ B ∀QN\S ∈ LN\S ]

and EF (∅) = ∅

Observe: EF (N) = P0(A) by surjectivity of F

Let n+ 1 ≥ m and let β(x) be positive integer weights with∑
x∈A β(x) = n + 1. We define an effectivity function

Eβ : P(N) → P(P0(A)) as follows: for every S ∈ P(N)

B ∈ Eβ(S) ⇔ |S | ≥
∑

x /∈B

β(x)
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Theorem: ESC social choice functions

Let F : LN → A be a social choice function, let n+1 ≥ m and let β(x) be
positive integer weights with

∑
x∈A β(x) = n + 1. Then equivalent are:

(a) F is ESC and EF = Eβ

(b) F is a selection from M
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Theorem: ESC social choice functions

Let F : LN → A be a social choice function, let n+1 ≥ m and let β(x) be
positive integer weights with

∑
x∈A β(x) = n + 1. Then equivalent are:

(a) F is ESC and EF = Eβ

(b) F is a selection from M

Theorem: more on ESC social choice functions

Let n+ 1 ≥ m. The following statements are equivalent:

(a) F : LN → A is an ESC social choice function with anonymous EF

such that EF ({i}) = {A} for each i ∈ N

(b) There are positive integer weights β(x) ≥ 2 with
∑

x∈A β(x) = n + 1,
such that F is a selection from M

See Polishchuk (1978), Peleg (1984), Peleg and Peters (SCW 2006),
Peleg and Peters (2010)
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Lemma x ∈ M(RN) if and only if there exist pairwise disjoint
coalitions S(y), y ∈ A \ {x}, such that

◮ |S(y)| = β(y) for all y ∈ A \ {x}
◮ xR iy for all y ∈ A \ {x} and i ∈ S(y)

To check if x ∈ M(RN), construct a bipartite graph with N as one set
of vertices, and with the other set of vertices consisting of β(y)
‘copies’ of y for each y 6= x . There is an edge between some copy of
y and some agent i if and only if xR iy

Then x ∈ M(RN) if and only if there is a maximal matching in this
graph

This can be checked in polynomial time: Hopcroft and Karp (SIAM
Journal on Computing, 1973)

See: Peleg and Peters, work in progress

Also studies the use of f.e.p.’s to select k out of m
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As we have seen, effectivity functions can be derived from social
choice functions

According to the same principle, they can be derived from social
choice correspondences, game forms, simple games, etc.

Definition: (general) effectivity function

An effectivity function is a map E : P(N) → P(P0(A)) such that

E (∅) = ∅

E (N) = P0(A)

A ∈ E (S) for every S ∈ P0(N)

An effectivity function E is

monotonic if [B ∈ E (S), B ⊆ B ′,S ⊆ S ′ ⇒ B ′ ∈ E (S ′)]

superadditive if
[B ∈ E (S), B ′ ∈ E (S ′), S ∩ S ′ 6= ∅ ⇒ B ∩ B ′ ∈ E (S ∪ S ′)]
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Effectivity functions can be considered as abstract coalitional game
forms
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constitutions: B ∈ E (S) means that (the members of) group S are
entitled to the social state being in B . See Gärdenfors (Noûs 1981)

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 52 /

70



Effectivity functions can be considered as abstract coalitional game
forms

Effectivity functions can also be interpreted as representing
constitutions: B ∈ E (S) means that (the members of) group S are
entitled to the social state being in B . See Gärdenfors (Noûs 1981)
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Effectivity functions can be considered as abstract coalitional game
forms

Effectivity functions can also be interpreted as representing
constitutions: B ∈ E (S) means that (the members of) group S are
entitled to the social state being in B . See Gärdenfors (Noûs 1981)

With these interpretations, we consider the following questions:

◮ Can a given effectivity function E be represented by a game form?
Interpretation: the game form provides the rules by which the members
of society can exercise their constitutional rights

◮ Can this be done in such a way that the game form always has a Nash
(or strong Nash) equilibrium?

Difference with implementation: for implementation the
representation issue is not important, but all “equilibria” should result
in the “desired” payoff
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N = {1, 2}, each person has two shirts (blue, white) and has the right
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N = {1, 2}, each person has two shirts (blue, white) and has the right
to choose the color he likes

“Rights” (effectiveness) of the individuals:
Person 1 : {(b, b), (b,w)}, {(w , b), (w ,w)}
Person 2 : {(b, b), (w , b)}, {(b,w), (w ,w)}

Can we find a “game form” that preserves these rights? For this
example there is an easy answer

Consider the game form

( b w

b (b, b) (b,w)
w (w , b) (w ,w)

)

where person 1 is the row player and person 2 the column player
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Example: the Gibbard paradox

N = {1, 2}, each person has two shirts (blue, white) and has the right
to choose the color he likes

“Rights” (effectiveness) of the individuals:
Person 1 : {(b, b), (b,w)}, {(w , b), (w ,w)}
Person 2 : {(b, b), (w , b)}, {(b,w), (w ,w)}

Can we find a “game form” that preserves these rights? For this
example there is an easy answer

Consider the game form

( b w

b (b, b) (b,w)
w (w , b) (w ,w)

)

where person 1 is the row player and person 2 the column player

For every preference profile, we would like the resulting game to have
a “stable” outcome, i.c., a Nash equilibrium
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Example: the Gibbard paradox continued

Suppose person 1 is a conformist and next prefers white. Suppose
person 2 is a nonconformist and next prefers white
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Example: the Gibbard paradox continued

Suppose person 1 is a conformist and next prefers white. Suppose
person 2 is a nonconformist and next prefers white

This can be represented as the (basically ordinal) game

( b w

b 3, 1 1, 4
w 2, 3 4, 2

)
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Clearly, this game has no Nash equilibrium (in pure strategies)
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This can be represented as the (basically ordinal) game

( b w

b 3, 1 1, 4
w 2, 3 4, 2

)

Clearly, this game has no Nash equilibrium (in pure strategies)

Can we find another game form, representing this situation (effectivity
function) that does always have a Nash equilibrium in pure strategies?
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Example: the Gibbard paradox continued

Suppose person 1 is a conformist and next prefers white. Suppose
person 2 is a nonconformist and next prefers white

This can be represented as the (basically ordinal) game

( b w

b 3, 1 1, 4
w 2, 3 4, 2

)

Clearly, this game has no Nash equilibrium (in pure strategies)

Can we find another game form, representing this situation (effectivity
function) that does always have a Nash equilibrium in pure strategies?

The answer for this situation (effectivity function) is: no

This example is based on Gibbard (JET 1974)
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Game form and effectivity function
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Game form and effectivity function

Definition: game form

A game form is an object Γ = (Σ1, . . . ,Σn;π;A), where Σi is the strategy

set of player i ∈ N and π : Σ1 × . . .× Σn → A is the surjective outcome

function
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set of player i ∈ N and π : Σ1 × . . .× Σn → A is the surjective outcome

function

With a game form Γ we associate an effectivity function EΓ as
follows: for S ∈ P0(N) and B ∈ P0(A)

B ∈ EΓ(S) ⇔ ∃σS ∈ ΣS [π(σS , τN\S ) ∈ B ∀τN\S ∈ ΣN\S ]

and EΓ(∅) = ∅
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We say that a game form Γ represents an effectivity function E if
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Game form and effectivity function

Definition: game form

A game form is an object Γ = (Σ1, . . . ,Σn;π;A), where Σi is the strategy

set of player i ∈ N and π : Σ1 × . . .× Σn → A is the surjective outcome

function

With a game form Γ we associate an effectivity function EΓ as
follows: for S ∈ P0(N) and B ∈ P0(A)

B ∈ EΓ(S) ⇔ ∃σS ∈ ΣS [π(σS , τN\S ) ∈ B ∀τN\S ∈ ΣN\S ]

and EΓ(∅) = ∅

We say that a game form Γ represents an effectivity function E if
EΓ = E

We call Γ a Nash consistent representation of E if

(a) Γ represents E , that is, E Γ = E

(b) The game (Γ,RN) has a Nash equilibrium for each RN ∈ LN
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Question: when does an effectivity function have a Nash consistent
representation?
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Question: when does an effectivity function have a Nash consistent
representation?

For any game form Γ, the associated effectivity function EΓ is
monotonic and superadditive. Hence, these conditions are necessary
for the existence of a Nash consistent representation Γ of an
effectivity function E
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Question: when does an effectivity function have a Nash consistent
representation?

For any game form Γ, the associated effectivity function EΓ is
monotonic and superadditive. Hence, these conditions are necessary
for the existence of a Nash consistent representation Γ of an
effectivity function E

For an effectivity function E and an agent i ∈ N we define

E ∗({i}) = {B ∈ P0(A) | B ∩ B ′ 6= ∅ ∀B ′ ∈ E (N \ {i})}

E ∗({i}) contains the sets of alternatives that i cannot be “kept from”

(“α-effectivity” versus “β-effectivity”; observe that E ({i}) ⊆ E ∗({i})
by superadditivity of E )

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 56 /

70



Back to the example
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N = {1, 2}, A = {a, b, c , d}
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N = {1, 2}, A = {a, b, c , d}
E : P(N) → P(P0(A)) is defined by E (∅) = ∅, E (N) = P0(A), and

E ({1}) = {{a, b}, {c , d}}+, E ({2}) = {{a, c}, {b, d}}+

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 57 /

70



Back to the example

N = {1, 2}, A = {a, b, c , d}
E : P(N) → P(P0(A)) is defined by E (∅) = ∅, E (N) = P0(A), and

E ({1}) = {{a, b}, {c , d}}+, E ({2}) = {{a, c}, {b, d}}+

Observe: E is monotonic and superadditive

E is represented by for instance the game form

(
a b

c d

)

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 57 /

70



Back to the example

N = {1, 2}, A = {a, b, c , d}
E : P(N) → P(P0(A)) is defined by E (∅) = ∅, E (N) = P0(A), and

E ({1}) = {{a, b}, {c , d}}+, E ({2}) = {{a, c}, {b, d}}+
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E ({1}) = {{a, b}, {c , d}}+, E ({2}) = {{a, c}, {b, d}}+

Observe: E is monotonic and superadditive

E is represented by for instance the game form

(
a b

c d

)

We consider E ∗({1}) and E ∗({2}), in particular

B1 := {a, d} ∈ E ∗({1}), B2 := {b, c} ∈ E ∗({2})

Consider preferences R1 = adbc and R2 = bcad and let Γ be any
game form representing E . Then the game (Γ,RN) cannot have a
Nash equilibrium!
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Back to the example

N = {1, 2}, A = {a, b, c , d}
E : P(N) → P(P0(A)) is defined by E (∅) = ∅, E (N) = P0(A), and

E ({1}) = {{a, b}, {c , d}}+, E ({2}) = {{a, c}, {b, d}}+

Observe: E is monotonic and superadditive

E is represented by for instance the game form

(
a b

c d

)

We consider E ∗({1}) and E ∗({2}), in particular

B1 := {a, d} ∈ E ∗({1}), B2 := {b, c} ∈ E ∗({2})

Consider preferences R1 = adbc and R2 = bcad and let Γ be any
game form representing E . Then the game (Γ,RN) cannot have a
Nash equilibrium!

Suppose that a strategy profile (σ1, σ2) results in a, so π(σ1, σ2) = a.
Note that in reaction to σ1, player 2 can make sure that the outcome
is in B2 = {b, c}, which he prefers. So a Nash equilibrium cannot
result in a. Etc.
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Theorem: Nash consistent representation

Let E : P(N) → P(P0(A)) be a monotonic and superadditive effectivity
function. Then E has a Nash consistent representation if and only if

[Bi ∈ E ∗({i}) for all i ∈ N] ⇔
n⋂

i=1

Bi 6= ∅
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Theorem: Nash consistent representation

Let E : P(N) → P(P0(A)) be a monotonic and superadditive effectivity
function. Then E has a Nash consistent representation if and only if

[Bi ∈ E ∗({i}) for all i ∈ N] ⇔
n⋂

i=1

Bi 6= ∅

Result was proved in Peleg et al (MASS 2002). See also Peleg and
Peters (2010)
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Theorem: Nash consistent representation

Let E : P(N) → P(P0(A)) be a monotonic and superadditive effectivity
function. Then E has a Nash consistent representation if and only if

[Bi ∈ E ∗({i}) for all i ∈ N] ⇔
n⋂

i=1

Bi 6= ∅

Result was proved in Peleg et al (MASS 2002). See also Peleg and
Peters (2010)

Only-if direction basically as in the example. For the if-direction a
special game form is constructed
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Game form Γ that works in general
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◮ a map mi which assigns to each S ⊆ N with i ∈ S , an element

B ∈ E (S)
◮ a selection function ϕi : P0(A) → A
◮ a number t i ∈ {1, . . . , n}

Given a strategy profile, the outcome of the game form is determined
as follows:
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◮ a selection function ϕi : P0(A) → A
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Given a strategy profile, the outcome of the game form is determined
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◮ start with the partitition (N) of N
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Game form Γ that works in general

For each player i ∈ N a strategy consists of the following ingredients:
◮ a map mi which assigns to each S ⊆ N with i ∈ S , an element

B ∈ E (S)
◮ a selection function ϕi : P0(A) → A
◮ a number t i ∈ {1, . . . , n}

Given a strategy profile, the outcome of the game form is determined
as follows:

◮ start with the partitition (N) of N
◮ make a next partition (S1, . . . , Sk), where i , i ′ ∈ Sj ⇔ mi (N) = mi ′(N)

for all j = 1, . . . , k
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Game form Γ that works in general

For each player i ∈ N a strategy consists of the following ingredients:
◮ a map mi which assigns to each S ⊆ N with i ∈ S , an element

B ∈ E (S)
◮ a selection function ϕi : P0(A) → A
◮ a number t i ∈ {1, . . . , n}

Given a strategy profile, the outcome of the game form is determined
as follows:

◮ start with the partitition (N) of N
◮ make a next partition (S1, . . . , Sk), where i , i ′ ∈ Sj ⇔ mi (N) = mi ′(N)

for all j = 1, . . . , k
◮ repeat the previous step for each element of the partition, until nothing

changes anymore
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Game form Γ that works in general

For each player i ∈ N a strategy consists of the following ingredients:
◮ a map mi which assigns to each S ⊆ N with i ∈ S , an element

B ∈ E (S)
◮ a selection function ϕi : P0(A) → A
◮ a number t i ∈ {1, . . . , n}

Given a strategy profile, the outcome of the game form is determined
as follows:

◮ start with the partitition (N) of N
◮ make a next partition (S1, . . . , Sk), where i , i ′ ∈ Sj ⇔ mi (N) = mi ′(N)

for all j = 1, . . . , k
◮ repeat the previous step for each element of the partition, until nothing

changes anymore
◮ for the resulting partitition (S1, . . . , Sk) with associated sets

B1 ∈ E (S1), . . . , Bk ∈ E (Sk), let B = ∩k
j=1Bj (nonempty by

superadditivity of E )
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Game form Γ that works in general

For each player i ∈ N a strategy consists of the following ingredients:
◮ a map mi which assigns to each S ⊆ N with i ∈ S , an element

B ∈ E (S)
◮ a selection function ϕi : P0(A) → A
◮ a number t i ∈ {1, . . . , n}

Given a strategy profile, the outcome of the game form is determined
as follows:

◮ start with the partitition (N) of N
◮ make a next partition (S1, . . . , Sk), where i , i ′ ∈ Sj ⇔ mi (N) = mi ′(N)

for all j = 1, . . . , k
◮ repeat the previous step for each element of the partition, until nothing

changes anymore
◮ for the resulting partitition (S1, . . . , Sk) with associated sets

B1 ∈ E (S1), . . . , Bk ∈ E (Sk), let B = ∩k
j=1Bj (nonempty by

superadditivity of E )
◮ the outcome is ϕi0(B) ∈ A, where i0 = (t1 + . . .+ tn) mod n
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It can then be shown that EΓ = E and (Γ,RN) has a Nash
equilibrium for each RN ∈ LN
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It can then be shown that EΓ = E and (Γ,RN) has a Nash
equilibrium for each RN ∈ LN

This game form is a variation on game forms that are used in
implementation theory
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It can then be shown that EΓ = E and (Γ,RN) has a Nash
equilibrium for each RN ∈ LN

This game form is a variation on game forms that are used in
implementation theory

The game form used above has the additional feature that there
always exists a Pareto optimal Nash equilibrium
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It can then be shown that EΓ = E and (Γ,RN) has a Nash
equilibrium for each RN ∈ LN

This game form is a variation on game forms that are used in
implementation theory

The game form used above has the additional feature that there
always exists a Pareto optimal Nash equilibrium

For specific effectivity functions E there can be simpler and more
natural game forms
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Strong Nash consistent representation: an additional necessary
condition for existence is maximality of E , that is E = E ∗. A sufficient
condition is stability of E (non-emptiness of the core of E for every
preference profile). See P & P (2010), also for relevant references
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Further extensions: infinite alternative sets (with some topological
structure); acceptable game forms (all Nash equilibrium outcomes are
Pareto optimal). See P & P (2010) for results and references
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Further extensions: infinite alternative sets (with some topological
structure); acceptable game forms (all Nash equilibrium outcomes are
Pareto optimal). See P & P (2010) for results and references

Recent work on incomplete information: Peleg and Zamir (ET 2014);
Peters et al (2014)
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Strong Nash consistent representation: an additional necessary
condition for existence is maximality of E , that is E = E ∗. A sufficient
condition is stability of E (non-emptiness of the core of E for every
preference profile). See P & P (2010), also for relevant references

Further extensions: infinite alternative sets (with some topological
structure); acceptable game forms (all Nash equilibrium outcomes are
Pareto optimal). See P & P (2010) for results and references

Recent work on incomplete information: Peleg and Zamir (ET 2014);
Peters et al (2014)

See Abdou and Keiding (1991) on effectivity functions in general

What happens if we allow lotteries over A as outcomes? See Peleg
and Peters (2009)
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THE END
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Öztürk M, Peters H, Storcken T (2013) Strategy-proof location of a public
bad on a disc. Economics Letters 119:14–16

Hans Peters () Strategic Social Choice
Summer school, July 2014, Caen 67 /

70
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