Preferences for Fair Division

Jérôme Lang
LAMSADE, CNRS / Université Paris-Dauphine
COST Summer School on Fair Division
Grenoble, July 13-17, 2015

Plagiarizing:

- Sylvain Bouveret and Jérôme Lang, Tutorial on Graphical Preference Representation Languages, IJCAI-11.
- Jérôme Lang and Jörg Rothe, Fair Division of Indivisible Goods, Chapter 8 of Jörg Rothe (ed), Economics and Computation, Springer.

Outline

(1) Informal introduction to fair division

Resource allocation problems: six examples
Resource allocation and fair division: taxonomy
(2) Preferences

Preference structures
A brief incursion into multi-attribute utility theory
Combinatorial spaces and compact representation
(3) Languages for compact preference representation
(4) Ordinal preference representation

Ranking single objects
Conditional importance networks
Prioritized goals
(5) Cardinal preference representation
k-additive utilities
Generalized Additive Independence
Weighted Goals

```
Informal introduction to fair division - Resource allocation problems: six examples
```


Some resource allocation problems

- Problem 1: Allocating time slots to speakers
- Ulle has a slight preference for teaching on mornings, but above all prefers to have consecutive slots, that is, he prefers ($14-15$ and $15-16$) to ($9-10$ and 11-12).
- loannis has a preference for not teaching in the morning, and prefers to have his slots on two different days.
- Christian has a preference for not teaching on Monday, and wants all his slots in the same day.
- Jérôme's course should come before Ulle's and Christian's talks.

Once the agents have reported their preferences, the allocation decision will be made centrally, by the COST Fair Division Summer School Central Organization (FDSSCO).

Some resource allocation problems

- Problem 2: Divorcing
- George and Helena

George and Helena are engaged in a divorce settlement process.
They remain good friends and their divorce is not conflictual; therefore, they decide to do without a lawyer, and decide by themselves that Helena gets the books and George the bookshelves.

- John and Katia

John and Katia are unable to negotiate alone, and need to involve a lawyer, who helps them deciding that the children's custody will be shared equally between them, and that, in addition, Katia gets the house, while John gets the cat plus some monetary compensation from Katia.

Some resource allocation problems

- Problem 3: Earth observation satellites
- France and Germany have jointly bought a very expensive Earth observation satellite. Every day, each country's responsible committee expresses its preferences over the photos it wants to be made.
- There are some physical constraints on the satellite that restrict the set of photos that can be made on a single day, which needs a process to decide in a fair way which photos will be made.
- This may be complicated by the fact that France paid for two thirds of the satellite while Germany paid only for one third, which leads to different entitlements on the number of photos.
- Problem 4: Sport team formation

Two schoolchildren, Anna and David, have to form two sport teams. Resources are players. Anna chooses first one member of her team, then David one, then again Anna, then David, etc.

Informal introduction to fair division - Resource allocation problems: six examples

Some resource allocation problems

- Problem 5: House allocation
- Version 1: n houses have to be allocated to n agents (exactly one each!); each agent expresses a preference ranking over all houses.
- Version 2: n agents a_{1}, \ldots, a_{n} initially live in house h_{1}, \ldots, h_{n} respectively; each agent expresses a preference ranking over all houses; can we reallocate the houses so that some agent become happier but no agent becomes less happy?

Some resource allocation problems

- Problem 6: Combinatorial auction
$\mathcal{O}=\left\{o_{1}, \ldots, o_{p}\right\}$ set of objects
for each agent $i, V_{i}: 2^{\mathcal{O}} \rightarrow \mathbb{N}$
$V_{i}(X)=$ maximum price that i is ready to pay for the set of objects X.
if V_{i} additive for all i : then sell each object to its highest bidder
but V_{i} is generally non-additive :
- \{left shoe $\}$: $10 € ;\{$ right shoe $\}: 10 € ;\{$ left shoe, right shoe $\}: 50 €$
- \{lemonade\}: 2 €; \{beer\}: 3 €; \{lemonade, beer\}: $4 €$
optimal allocation π^{*} : maximizes the seller's revenue $\sum_{i=1}^{n} V_{i}(\pi(i))$ where $\pi(i)$ is the set of objects allocated to agent i

Resource allocation problem (informal)

- a set of resources to be allocated
- a set of agents
- agents have preferences over resources
- the final allocation is subject to some feasibility constraints
... a final allocation is found somehow

Resource allocation problem (informal)

- a set of resources to be allocated
- a set of agents
- agents have preferences over resources
- the final allocation is subject to some feasibility constraints
... a final allocation is found somehow
Without additional parameters being fixed it is difficult to give a more precise definition.

1. Centralized versus decentralized

- Finding the allocation requires the agents to express, in one way or another, their preferences.
- The process that consists in querying the agents about their preferences is called preference elicitation.

Centralized mechanism There is a central authority that elicits the agents' preferences, and then determines the output allocation.
Decentralized / distributed mechanism There is no central authority, and the agents themselves compute the allocation, revealing their preferences by certain specific (inter)actions.

2. Divisible versus indivisible resources

Divisible resources

- homogeneous
- heterogeneous

Indivisible resources

- coming in single units
- coming in multiple units

Cardinal preferences Agents associate numerical values with (sets of) resources
Ordinal preferences Agents are only allowed to rank with (sets of) resources

Informal introduction to fair division - Resource allocation and fair division: taxonomy

4. One-to-one versus many-to-one

One-to-one allocation
Each agent gets exactly one resource: matching problem
Many-to-one allocation
Each agent gets possibly several resources (bundles)

5. Money and initial endowments

Money or no money Is there any money involved in the mechanism? Do the agents pay and/or receive money?
Initial endowments Do the agents initially own resources?

6. Shareable versus nonshareable

Non-shareable resources Each resource is allocated to a single agent, who is the only one who can enjoy it.
Shareable resources Resources can be allocated to several (or even all) agents.

7. Fairness versus efficiency

Fairness What counts above all is to be fair and equitable to the agents: fair division
Efficiency What counts is the global efficiency of the outcome (for instance, monetary revenue)

Often: a mix of both.

Centralized fair division

Given

- a set of resources to be allocated
- a set of agents
- preferences of agents over resources
- the final allocation being subject to some feasibility constraints
- fairness (and efficiency) criteria for evaluating the quality of allocation
... determine a fair allocation of resources to agents

Informal introduction to fair division - Resource allocation and fair division: taxonomy

Given

- a set of resources to be allocated
- a set of agents
- some prior knowledge about agents' preferences over resources
- the final allocation being subject to some feasibility constraints
- fairness criteria for evaluating the quality of allocation
... find an interaction protocol between agents guaranteeing that the outcome will have certain level of fairness.

Outline

(1) Informal introduction to fair division

Resource allocation problems: six examples
Resource allocation and fair division: taxonomy
(2) Preferences

Preference structures
A brief incursion into multi-attribute utility theory
Combinatorial spaces and compact representation
(3) Languages for compact preference representation
(4) Ordinal preference representation

Ranking single objects
Conditional importance networks
Prioritized goals
(5) Cardinal preference representation
k-additive utilities
Generalized Additive Independence
Weighted Goals

Admissible bundles

From now on we focus on indivisible goods.

- $O=\left\{o_{1}, \ldots, o_{m}\right\}$ indivisible objects
- 2^{O} set of all bundles of objects
- $\mathcal{X} \subseteq 2^{O}$ set of admissible bundles that an agent may receive

Examples of admissible bundles:

- cardinality constraint: each agent receives exactly k objects:

$$
\mathcal{X}=\{S \subseteq O,|S| \leq k\}
$$

- categorized items (Mackin and Xia, 15): objects are clustered in categories and each agent receives exactly one item from each category:

$$
\mathcal{X}=D_{1} \times \ldots \times D_{p}
$$

where D_{i} is the set of all objects of category i.
Example: one first dish + one main dish + one drink per agent

Preferences over bundles

- N sets of agents
- $O=\left\{o_{1}, \ldots, o_{m}\right\}$ indivisible objects

Notation: $\left[\mathrm{O}_{1} \mathrm{O}_{2}\left|\mathrm{O}_{3}\right| \mathrm{O}_{4} \mathrm{O}_{5}\right]$ is the allocation where that agent 1 receives $\left\{o_{1} o_{2}\right\}, 2$ receives $\left\{o_{3}\right\}, 3$ receives $\left\{o_{4}, o_{5}\right\}$.
"No externality" assumption:
an agent's preferences bear only on the bundle she receives

- 1 is indifferent between $\left[o_{1} O_{2}\left|o_{3}\right| o_{4} O_{5}\right]$ and $\left[o_{1} O_{2}\left|o_{3} O_{5}\right| o_{4}\right]$
- 2 is indifferent between [$\mathrm{O}_{1} \mathrm{O}_{2}\left|\mathrm{O}_{3}\right| \mathrm{O}_{4} \mathrm{O}_{5}$] and [$\varnothing\left|\mathrm{O}_{3}\right| \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{4} \mathrm{O}_{5}$]
- etc.

Therefore: it is sufficient to know each agent's preferences over bundles (as opposed to her preferences over all allocations).

Specifying preferences on \mathcal{X} : comparing, ranking, evaluating bundles.

Preference structures

Ordinal preferences

Preference relation on \mathcal{X} : reflexive and transitive relation \succeq

$$
\begin{array}{rll}
x \succeq y & & x \text { is at least as good as } y \\
x \succ y & \Leftrightarrow & x \succeq y \text { and not } y \succeq x \\
& x \text { is preferred to } y \text { (strict preference) } \\
x \sim y & \Leftrightarrow & x \succeq y \text { and } y \succeq x \\
& & x \text { and } y \text { are equally preferred (indifference) } \\
x Q y & \Leftrightarrow & \text { neither } x \succeq y \text { nor } y \succeq x \\
& x \text { and } y \text { are (incomparable) }
\end{array}
$$

\succeq is often assumed to be complete (no incomparabilities)
More sophisticated models: interval orders, semi-orders etc.

Preferences - Preference structures

Preference structures

Cardinal preferences

- Utility function $u: \mathcal{X} \rightarrow \mathbb{R}$
- More generally $u: \mathcal{X} \rightarrow V$ ordered scale; example: $V=\{$ unacceptable, bad, medium, good, excellent $\}$

From cardinal preferences to ordinal preferences:

$$
x \succeq_{u} y \Leftrightarrow u(x) \geq u(y)
$$

Dichotomous preferences

- $A \subseteq \mathcal{X}$ set of acceptable bundles
- dichotomous preferences are cardinal preferences:

$$
V=\{0,1\} ; u(S)=1 \Leftrightarrow S \in A .
$$

- dichotomous preferences are ordinal preferences:

$$
S \succeq S^{\prime} \Leftrightarrow(S \in A) \text { or }\left(S^{\prime} \notin A\right) .
$$

Fuzzy preferences

- $\mu_{R}: \mathcal{X}^{2} \rightarrow[0,1]$
- $\mu_{R}(x, y)$ degree to which x is preferred to y.
- more general than both cardinal and ordinal preferences

Preferences - Preference structures

Preference structures

- $O=\left\{o_{1}, \ldots, o_{m}\right\}$ indivisible objects
- 2^{O} set of all bundles of objects
- $\mathcal{X} \subseteq 2^{O}$ set of admissible bundles that an agent may receive

Typically, preferences over bundles are monotonic: receiving one more good never makes an agent less happy.

- ordinal preferences: if $S \supseteq S^{\prime}$ then $S \succeq S^{\prime}$
- cardinal preferences: if $S \supseteq S^{\prime}$ then $u(S) \geq u\left(S^{\prime}\right)$

Strict monotonicity:

- ordinal preferences: if $S \supset S^{\prime}$ then $S \succ S^{\prime}$
- cardinal preferences: if $S \supset S^{\prime}$ then $u(S)>u\left(S^{\prime}\right)$

Preferences - Preference structures

Preferential dependencies

Existence of preferential dependencies between variables:

- I'd like to have two consecutive time slots for my lectures (but not three)
- if I don't get the shared custody of the children then at least I'd like to keep the cat
- I want Ann or Charles or Daphne in my team, each of whom would be an excellent goal keeper
- if I receive the left shoe then I'm ready to pay more for the right shoe

An incursion into multi-attribute utility theory

- $N=\{1,2, \ldots, n\}$ set of attributes
- D_{i} : set of values for the i th attribute
- $\mathcal{X}=D_{1} \times \ldots \times D_{n}$ set of all conceivable alternatives. Here:
- in general, $\mathcal{X}=2^{O}$: attribute X_{i} is object o_{i}, binary domains $\{i n$, out $\}$
- (in categorized domains) attributes are categories.
- $J \subseteq N$ subset of attributes
- $D_{J}=\Pi_{j \in J} D_{j}, D_{-J}=\Pi_{j \notin J} D_{j}$,
- $\left(x_{J}, y_{-J}\right) \in \mathcal{X}$: contains x_{j} for each $i \in J$ and y_{i} for each $i \notin J$
- $\left(x_{i}, y_{-i}\right) \in \mathcal{X}$: identical to y except for the value of attribute i.

Example:

- $\mathcal{X}=2^{\left\{o_{1}, o_{2}, o_{3}, o_{4}, o_{5}\right\}}$
- $x=($ in, out, out, in, in $)=\left\{o_{1}, o_{4}, o_{5}\right\}$;
- $y=(o u t$, in, in, in, out $)=\left\{o_{2}, o_{3}, o_{4}\right\}$;
- $\left(x_{1}, y_{-1}\right)=($ in, in, in, in, out $)=\left\{o_{1}, o_{2}, o_{3}, o_{4}\right\}$

Preferences - A brief incursion into multi-attribute utility theory

An incursion into multi-attribute utility theory

The simplest model: representing preferences via additively decomposable utilities
(a) for all $x, y \in \mathcal{X}, x \succeq y \Leftrightarrow u(x) \geq u(y)$
(b) for all $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}, u(x)=\sum_{i=1}^{n} u_{i}\left(x_{i}\right) \geq \sum_{i=1}^{n} u_{i}\left(y_{i}\right)$

- $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$: alternatives
- x_{i} value of x on attribute i
- $u_{i}\left(x_{i}\right)$ marginal utility value of x on attribute i

When does an agent have an additively decomposable utility function?

Additive decompositions

Start with two attributes: $\mathcal{X}=D_{1} \times D_{2}$
An agent's preference relation on \mathcal{X} is representable by an additively decomposable utility function iff

$$
\text { for all } x, y \in \mathcal{X}, x \succeq y \Leftrightarrow u_{1}\left(x_{1}\right)+u_{2}\left(x_{2}\right) \geq u_{1}\left(y_{1}\right)+u_{2}\left(y_{2}\right)
$$

where $u_{1}: D_{1} \rightarrow \mathbb{R} ; u_{2}: D_{2} \rightarrow \mathbb{R}$
A first necessary condition (Debreu, 1954): \succeq must be a weak order, i.e., a relation satisfying

- completeness: for all $x, y \in \mathcal{X}$, either $x \succeq y$ or $y \succeq x$.
- transitivity: for all $x, y \in \mathcal{X}, x \succeq y$ and $y \succeq z$ implies $x \succeq z$.

From now on we assume that \succeq is a weak order.

Preferences - A brief incursion into multi-attribute utility theory

Additive decompositions: 2-dimensional spaces

Assume there exists u representing \succeq. Then for every $x_{1}, y_{1} \in D_{1}$ and $x_{2}, y_{2} \in D_{2}$,

$$
\begin{aligned}
\left(x_{1}, x_{2}\right) \succeq\left(y_{1}, x_{2}\right) & \Leftrightarrow u_{1}\left(x_{1}\right)+u_{2}\left(x_{2}\right) \geq u_{1}\left(y_{1}\right)+u_{2}\left(x_{2}\right) \\
& \Leftrightarrow u_{1}\left(x_{1}\right) \geq u_{1}\left(y_{1}\right) \\
& \Leftrightarrow u_{1}\left(x_{1}\right)+u_{2}\left(y_{2}\right) \geq u_{1}\left(y_{1}\right)+u_{2}\left(y_{2}\right) \\
& \Leftrightarrow\left(x_{1}, y_{2}\right) \succeq\left(y_{1}, y_{2}\right)
\end{aligned}
$$

This property expresses some independence between the attributes: the decision maker takes into account the attributes separately.

Preferences - A brief incursion into multi-attribute utility theory

Preferential independence for two attributes

Preferential independence (Keeney \& Raiffa, 76):
Attribute 1 is preferentially independent from attribute 2 (w.r.t. \succeq) if for all $x_{1}, y_{1} \in D_{1}$ and $x_{2}, y_{2} \in D_{2}$,

$$
\left(x_{1}, x_{2}\right) \succeq\left(y_{1}, x_{2}\right) \Leftrightarrow\left(x_{1}, y_{2}\right) \succeq\left(y_{1}, y_{2}\right)
$$

The preferences over the possible values of D_{1} are independent from the value of D_{2}

Example

Two binary attributes A, B with domains $\{a, \bar{a}\},\{b, \bar{b}\}$
Preference relation: $a b \succ a \bar{b} \succ \bar{a} \bar{b} \succ \bar{a} b$

Preferences - A brief incursion into multi-attribute utility theory

Preferential independence for two attributes

Preferential independence (Keeney \& Raiffa, 76):
Attribute 1 is preferentially independent from attribute 2 (w.r.t. \succeq) if for all $x_{1}, y_{1} \in D_{1}$ and $x_{2}, y_{2} \in D_{2}$,

$$
\left(x_{1}, x_{2}\right) \succeq\left(y_{1}, x_{2}\right) \Leftrightarrow\left(x_{1}, y_{2}\right) \succeq\left(y_{1}, y_{2}\right)
$$

The preferences over the possible values of D_{1} are independent from the value of D_{2}

Example

Two binary attributes A, B with domains $\{a, \bar{a}\},\{b, \bar{b}\}$
Preference relation: $a b \succ a \bar{b} \succ \bar{a} \bar{b} \succ \bar{a} b$
A preferentially independent from B

Preferences - A brief incursion into multi-attribute utility theory

Preferential independence for two attributes

Preferential independence (Keeney \& Raiffa, 76):
Attribute 1 is preferentially independent from attribute 2 (w.r.t. \succeq) if for all $x_{1}, y_{1} \in D_{1}$ and $x_{2}, y_{2} \in D_{2}$,

$$
\left(x_{1}, x_{2}\right) \succeq\left(y_{1}, x_{2}\right) \Leftrightarrow\left(x_{1}, y_{2}\right) \succeq\left(y_{1}, y_{2}\right)
$$

The preferences over the possible values of D_{1} are independent from the value of D_{2}

Example

Two binary attributes A, B with domains $\{a, \bar{a}\},\{b, \bar{b}\}$
Preference relation: $a b \succ a \bar{b} \succ \bar{a} \bar{b} \succ \bar{a} b$
A preferentially independent from B
B preferentially dependent on A

Preferences - A brief incursion into multi-attribute utility theory

Separability for two attributes

Separability A preference relation \succeq on $\mathcal{X}=D_{1} \times D_{2}$ is separable if 1 is independent from 2 and 2 is independent from 1 w.r.t. \succeq.

- $a b \succ a \bar{b} \succ \bar{a} \bar{b} \succ \bar{a} b$ not separable
- $a b \succ a \bar{b} \succ \bar{a} b \succ \bar{a} \bar{b}$ separable

Preferential independence for n attributes

N set of attributes; $\{U, V, W\}$ partition of N.
$D_{U}=x_{i \in U} D_{i}$ etc.
Conditional preferential independence (Keeney \& Raiffa, 76)
U is preferentially independent from V (given W) iff

$$
\begin{aligned}
& \text { for all } u, u^{\prime} \in D_{U}, v, v^{\prime} \in D_{V}, w, w^{\prime} \in D_{W} \\
& (u, v, w) \succeq\left(u^{\prime}, v, w\right) \text { iff }\left(u, v^{\prime}, w\right) \succeq\left(u^{\prime}, v^{\prime}, w\right)
\end{aligned}
$$

given any fixed value w of W, the preferences over the possible values of U are independent from the value of V

$$
a b c \succ a b \bar{c} \succ a \bar{b} \bar{c} \succ a \bar{b} c \succ \bar{a} \bar{b} \bar{c} \succ \bar{a} \bar{b} c \succ \bar{a} b c \succ \bar{a} b \bar{c}
$$

Preferential independence for n attributes

N set of attributes; $\{U, V, W\}$ partition of N.
$D_{U}=x_{i \in U} D_{i}$ etc.
Conditional preferential independence (Keeney \& Raiffa, 76)
U is preferentially independent from V (given W) iff

$$
\begin{aligned}
& \text { for all } u, u^{\prime} \in D_{U}, v, v^{\prime} \in D_{V}, w, w^{\prime} \in D_{W} \\
& (u, v, w) \succeq\left(u^{\prime}, v, w\right) \text { iff }\left(u, v^{\prime}, w\right) \succeq\left(u^{\prime}, v^{\prime}, w\right)
\end{aligned}
$$

given any fixed value w of W, the preferences over the possible values of U are independent from the value of V

$$
a b c \succ a b \bar{c} \succ a \bar{b} \bar{c} \succ a \bar{b} c \succ \bar{a} \bar{b} \bar{c} \succ \bar{a} \bar{b} c \succ \bar{a} b c \succ \bar{a} b \bar{c}
$$

- a independent from $\{b, c\}$?

Preferential independence for n attributes

N set of attributes; $\{U, V, W\}$ partition of N.
$D_{U}=x_{i \in U} D_{i}$ etc.
Conditional preferential independence (Keeney \& Raiffa, 76)
U is preferentially independent from V (given W) iff

$$
\begin{aligned}
& \text { for all } u, u^{\prime} \in D_{U}, v, v^{\prime} \in D_{V}, w, w^{\prime} \in D_{W} \\
& (u, v, w) \succeq\left(u^{\prime}, v, w\right) \text { iff }\left(u, v^{\prime}, w\right) \succeq\left(u^{\prime}, v^{\prime}, w\right)
\end{aligned}
$$

given any fixed value w of W, the preferences over the possible values of U are independent from the value of V

$$
a b c \succ a b \bar{c} \succ a \bar{b} \bar{c} \succ a \bar{b} c \succ \bar{a} \bar{b} \bar{c} \succ \bar{a} \bar{b} c \succ \bar{a} b c \succ \bar{a} b \bar{c}
$$

- a independent from $\{b, c\}$? yes
- $\{b, c\}$ independent from a ?

Preferential independence for n attributes

N set of attributes; $\{U, V, W\}$ partition of N.
$D_{U}=x_{i \in U} D_{i}$ etc.
Conditional preferential independence (Keeney \& Raiffa, 76)
U is preferentially independent from V (given W) iff

$$
\begin{aligned}
& \text { for all } u, u^{\prime} \in D_{U}, v, v^{\prime} \in D_{V}, w, w^{\prime} \in D_{W} \\
& (u, v, w) \succeq\left(u^{\prime}, v, w\right) \text { iff }\left(u, v^{\prime}, w\right) \succeq\left(u^{\prime}, v^{\prime}, w\right)
\end{aligned}
$$

given any fixed value w of W, the preferences over the possible values of U are independent from the value of V

$$
a b c \succ a b \bar{c} \succ a \bar{b} \bar{c} \succ a \bar{b} c \succ \bar{a} \bar{b} \bar{c} \succ \bar{a} \bar{b} c \succ \bar{a} b c \succ \bar{a} b \bar{c}
$$

- a independent from $\{b, c\}$? yes
- $\{b, c\}$ independent from a ? no
- b independent from $\{a, c\}$?

Preferential independence for n attributes

N set of attributes; $\{U, V, W\}$ partition of N.
$D_{U}=x_{i \in U} D_{i}$ etc.
Conditional preferential independence (Keeney \& Raiffa, 76)
U is preferentially independent from V (given W) iff

$$
\begin{aligned}
& \text { for all } u, u^{\prime} \in D_{U}, v, v^{\prime} \in D_{V}, w, w^{\prime} \in D_{W} \\
& (u, v, w) \succeq\left(u^{\prime}, v, w\right) \text { iff }\left(u, v^{\prime}, w\right) \succeq\left(u^{\prime}, v^{\prime}, w\right)
\end{aligned}
$$

given any fixed value w of W, the preferences over the possible values of U are independent from the value of V

$$
a b c \succ a b \bar{c} \succ a \bar{b} \bar{c} \succ a \bar{b} c \succ \bar{a} \bar{b} \bar{c} \succ \bar{a} \bar{b} c \succ \bar{a} b c \succ \bar{a} b \bar{c}
$$

- a independent from $\{b, c\}$? yes
- $\{b, c\}$ independent from a ? no
- b independent from $\{a, c\}$? no
- b independent from a given c ?

Preferential independence for n attributes

N set of attributes; $\{U, V, W\}$ partition of N.
$D_{U}=x_{i \in U} D_{i}$ etc.
Conditional preferential independence (Keeney \& Raiffa, 76)
U is preferentially independent from V (given W) iff

$$
\begin{aligned}
& \text { for all } u, u^{\prime} \in D_{U}, v, v^{\prime} \in D_{V}, w, w^{\prime} \in D_{W} \\
& (u, v, w) \succeq\left(u^{\prime}, v, w\right) \text { iff }\left(u, v^{\prime}, w\right) \succeq\left(u^{\prime}, v^{\prime}, w\right)
\end{aligned}
$$

given any fixed value w of W, the preferences over the possible values of U are independent from the value of V

$$
a b c \succ a b \bar{c} \succ a \bar{b} \bar{c} \succ a \bar{b} c \succ \bar{a} \bar{b} \bar{c} \succ \bar{a} \bar{b} c \succ \bar{a} b c \succ \bar{a} b \bar{c}
$$

- a independent from $\{b, c\}$? yes
- $\{b, c\}$ independent from a ? no
- b independent from $\{a, c\}$? no
- b independent from a given c ? no
- b independent from c given a ?

Preferential independence for n attributes

N set of attributes; $\{U, V, W\}$ partition of N.
$D_{U}=x_{i \in U} D_{i}$ etc.
Conditional preferential independence (Keeney \& Raiffa, 76)
U is preferentially independent from V (given W) iff

$$
\begin{aligned}
& \text { for all } u, u^{\prime} \in D_{U}, v, v^{\prime} \in D_{V}, w, w^{\prime} \in D_{W} \\
& (u, v, w) \succeq\left(u^{\prime}, v, w\right) \text { iff }\left(u, v^{\prime}, w\right) \succeq\left(u^{\prime}, v^{\prime}, w\right)
\end{aligned}
$$

given any fixed value w of W, the preferences over the possible values of U are independent from the value of V

$$
a b c \succ a b \bar{c} \succ a \bar{b} \bar{c} \succ a \bar{b} c \succ \bar{a} \bar{b} \bar{c} \succ \bar{a} \bar{b} c \succ \bar{a} b c \succ \bar{a} b \bar{c}
$$

- a independent from $\{b, c\}$? yes
- $\{b, c\}$ independent from a ? no
- b independent from $\{a, c\}$? no
- b independent from a given c ? no
- b independent from c given a ? yes

Preferences - A brief incursion into multi-attribute utility theory

Separability and weak separability

- $U \subseteq N$ is independent for \succeq if U is preferentially independent from $N \backslash U$
- \succeq is separable if for every $U \subseteq N, U$ is independent for \succeq
- \succeq is weakly separable if for every $i \in N,\{i\}$ is independent for \succeq
(Remark: both notions coincide for $n=2$)
- $a b c \succ a b \bar{c} \succ a \bar{b} c \succ \bar{a} b c \succ \bar{a} \bar{b} c \succ a \bar{b} \bar{c} \succ \bar{a} \bar{b} \bar{c} \succ \bar{a} b \bar{c}$

Preferences - A brief incursion into multi-attribute utility theory

Separability and weak separability

- $U \subseteq N$ is independent for \succeq if U is preferentially independent from $N \backslash U$
- \succeq is separable if for every $U \subseteq N, U$ is independent for \succeq
- \succeq is weakly separable if for every $i \in N,\{i\}$ is independent for \succeq
(Remark: both notions coincide for $n=2$)
- $a b c \succ a b \bar{c} \succ a \bar{b} c \succ \bar{a} b c \succ \bar{a} \bar{b} c \succ a \bar{b} \bar{c} \succ \bar{a} \bar{b} \bar{c} \succ \bar{a} b \bar{c}$
- \succeq is not weakly separable (b not independent from c given a)
- $a b c \succ a b \bar{c} \succ a \bar{b} c \succ \bar{a} b c \succ \bar{a} \bar{b} c \succ a \bar{b} \bar{c} \succ \bar{a} b \bar{c} \succ \bar{a} \bar{b} \bar{c}$

Preferences - A brief incursion into multi-attribute utility theory

Separability and weak separability

- $U \subseteq N$ is independent for \succeq if U is preferentially independent from $N \backslash U$
- \succeq is separable if for every $U \subseteq N, U$ is independent for \succeq
- \succeq is weakly separable if for every $i \in N,\{i\}$ is independent for \succeq
(Remark: both notions coincide for $n=2$)
- $a b c \succ a b \bar{c} \succ a \bar{b} c \succ \bar{a} b c \succ \bar{a} \bar{b} c \succ a \bar{b} \bar{c} \succ \bar{a} \bar{b} \bar{c} \succ \bar{a} b \bar{c}$
- \succeq is not weakly separable (b not independent from c given a)
- $a b c \succ a b \bar{c} \succ a \bar{b} c \succ \bar{a} b c \succ \bar{a} \bar{b} c \succ a \bar{b} \bar{c} \succ \bar{a} b \bar{c} \succ \bar{a} \bar{b} \bar{c}$
- \succeq is weakly separable

Preferences - A brief incursion into multi-attribute utility theory

Separability and weak separability

- $U \subseteq N$ is independent for \succeq if U is preferentially independent from $N \backslash U$
- \succeq is separable if for every $U \subseteq N, U$ is independent for \succeq
- \succeq is weakly separable if for every $i \in N,\{i\}$ is independent for \succeq
(Remark: both notions coincide for $n=2$)
- $a b c \succ a b \bar{c} \succ a \bar{b} c \succ \bar{a} b c \succ \bar{a} \bar{b} c \succ a \bar{b} \bar{c} \succ \bar{a} \bar{b} \bar{c} \succ \bar{a} b \bar{c}$
- \succeq is not weakly separable (b not independent from c given a)
- $a b c \succ a b \bar{c} \succ a \bar{b} c \succ \bar{a} b c \succ \bar{a} \bar{b} c \succ a \bar{b} \bar{c} \succ \bar{a} b \bar{c} \succ \bar{a} \bar{b} \bar{c}$
- \succeq is weakly separable
- \succeq is not strongly separable

Additive decompositions

Question: is a strongly separable weak order \succeq always representable by an additively decomposable utility function?

- $\mathcal{X}=D_{1} \times D_{2}$ with $D_{1}=\{a, b, c\}$ and $D_{2}=\{d, e, f\}$
- $a d \succ b d \succ a e \succ a f \succ b e \succ c d \succ c e \succ b f \succ c f$
- \succeq separable
- however \succeq cannot be represented bu $u=u_{1}+u_{2}$

$$
\begin{array}{ll}
(1) & a f \succ b e \Rightarrow u_{1}(a)+u_{2}(f)>u_{1}(b)+u_{2}(e) \\
(2) & b e \succ c d \Rightarrow u_{1}(b)+u_{2}(e)>u_{1}(c)+u_{2}(d) \\
(3) & c e \succ b f \Rightarrow u_{1}(c)+u_{2}(e)>u_{1}(b)+u_{2}(f) \\
(4) & b d \succ a e \Rightarrow u_{1}(b)+u_{2}(d)>u_{1}(a)+u_{2}(e) \\
\hline(1)+(2) & u_{1}(a)+u_{2}(f)>u_{1}(c)+u_{2}(d) \\
(3)+(4) & u_{1}(c)+u_{2}(d)>u_{1}(a)+u_{2}(f)
\end{array}
$$

Preferences - A brief incursion into multi-attribute utility theory

Additive independence

We need a stronger notion of independence.
$N=\{1, \ldots, n\}$ attributes
Von Neumann - Morgenstern lottery over \mathcal{X} :

$$
\left[(p, x) ;\left(1-p, x^{\prime}\right)\right]
$$

where $x, x^{\prime} \in \mathcal{X}$
Additive independence
\succ satisfies additive independence if for every pair of lotteries L, L^{\prime} over \mathcal{X} such that for every attribute i, L and L^{\prime} have the same marginal probabilities over D_{i}, we have $L \sim L^{\prime}$.

Additive independence

$n=2 ; \mathcal{X}=D_{A} \times D_{B}$.
Example : let \succeq on the set of lotteries over \mathcal{X} defined by $L \succeq L^{\prime}$ if $\bar{u}(L) \geq \bar{u}\left(L^{\prime}\right)$ where u defined as follows:

$$
\begin{array}{lll}
u\left(a_{0}, b_{0}\right)=10 & u\left(a_{0}, b_{1}\right)=7 & u\left(a_{0}, b_{2}\right)=5 \\
u\left(a_{1}, b_{0}\right)=9 & u\left(a_{1}, b_{1}\right)=6 & u\left(a_{1}, b_{2}\right)=4 \\
u\left(a_{2}, b_{0}\right)=5 & u\left(a_{2}, b_{1}\right)=2 & u\left(a_{2}, b_{2}\right)=0
\end{array}
$$

- $\left[0.5,\left(a_{1}, b_{1}\right) ; 0.5,\left(a_{0}, b_{0}\right)\right] \sim\left[0.5,\left(a_{1}, b_{0}\right) ; 0.5,\left(a_{0}, b_{1}\right)\right]$
- $\left[0.5,\left(a_{2}, b_{1}\right) ; 0.5,\left(a_{0}, b_{0}\right)\right] \sim\left[0.5,\left(a_{2}, b_{0}\right) ; 0.5,\left(a_{0}, b_{1}\right)\right]$
- etc.
\succeq satisfies additive independence.

Additive independence

$n=2 ; \mathcal{X}=D_{A} \times D_{B}$. Let \succeq satisfying additive independence.
For any $a, a^{\prime} \in D_{A}, b, b^{\prime} \in D_{B}$ we have

$$
0.5 u(a, b)+0.5 u\left(a^{\prime}, b^{\prime}\right)=0.5 u\left(a, b^{\prime}\right)+0.5 u\left(a^{\prime}, b\right)
$$

therefore

- fix $a_{0} \in D_{A}, b_{0}, b_{1} \in D_{B} ;$
- $u\left(a, b_{0}\right)-u\left(a, b_{1}\right)=u\left(a_{0}, b_{0}\right)-u\left(a_{0}, b_{1}\right)=C$
- $u\left(a, b_{0}\right)=u\left(a, b_{1}\right)+\left(u\left(a_{0}, b_{0}\right)-u\left(a_{0}, b_{1}\right)\right)=u\left(a, b_{1}\right)+C$

All marginal utility functions $u_{A}(., b): D_{A} \rightarrow \mathbb{R}$ are the same up to a translation.

- fix $u\left(a_{0}, b_{0}\right)=0$.
- $u(a, b)=u\left(a, b_{0}\right)+u\left(a_{0}, b\right)=u_{A}(a)+u_{B}(b)$
- u is additively decomposable!

Additive independence

Characterization of additively decomposable utilities (Fishburn):
A weak order \succeq satisfies additive independence if and only if there exists an additively decomposable utility function u such that for all lotteries

$$
L, L^{\prime} \text { over } X \text {, we have } L \succeq L^{\prime} \text { if and only if } \bar{u}(L) \geq \bar{u}\left(L^{\prime}\right)
$$

$\bar{u}(L)$ expected utility of L
Remark: this is a characterization theorem for preference relations over lotteries. Can we find a characterization theorem for preferences over alternatives?

Additive independence

A characterization when \mathcal{X} is finite. $\mathcal{X}=D_{1} \times \ldots \times D_{n}$ where each D_{i} is a finite set.
Let m be an integer ≥ 2 and let $x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{m} \in \mathcal{X}$. We say that

$$
\left(x^{1}, \ldots, x^{m}\right) E^{m}\left(y^{1}, \ldots, y^{m}\right)
$$

if for all attributes $i \in N,\left(x_{i}^{1}, \ldots, x_{i}^{m}\right)$ is a permutation of $\left(y_{i}^{1}, \ldots, y_{i}^{m}\right)$. Suppose that $\left(x^{1}, \ldots, x^{m}\right) E^{m}\left(y^{1}, \ldots, y^{m}\right) ; u$ is additively decomposable then

$$
\sum_{j=1}^{m} \sum_{i=1}^{n} u_{i}\left(x_{i}^{j}\right)=\sum_{j=1}^{m} \sum_{i=1}^{n} u_{i}\left(y_{i}^{j}\right)
$$

Therefore, if $x^{j} \succeq y^{j}$ for all $j=1, \ldots, m-1$ then $x^{m} \preceq y^{m}$.
Condition C^{m} Let $m \geq 2$. C^{m} holds if for all $x^{1}, \ldots, x^{m}, y^{1}, \ldots, y^{m} \in \mathcal{X}$ such that $\left(x^{1}, \ldots, x^{m}\right) E^{m}\left(y^{1}, \ldots, y^{m}\right)$, we have

$$
x^{j} \succeq y^{j} \text { for all } j=1, \ldots, m-1 \text { implies } x^{m} \preceq y^{m}
$$

Preferences - A brief incursion into multi-attribute utility theory

Additive independence

Theorem (Fishburn)

Let \succeq be a weak order on a finite set $\mathcal{X}=D_{1} \times \ldots D_{n}$. There are real-valued functions u_{i} on D_{i} such that $u(x)=\sum_{i=1}^{n} u_{i}\left(x_{i}\right)$ for all $x \in \mathcal{X}$ if and only if \succeq satisfies C^{m} for all m.

Remark: for a set \mathcal{X} of given cardinality, only a finite number of values of m have to be checked.

Preferences - Combinatorial spaces and compact representation

Combinatorial spaces.

- $O=\left\{o_{1}, \ldots, o_{m}\right\}$ indivisible objects
- 2^{O} set of all bundles of objects
- $\mathcal{X} \subseteq 2^{O}$ set of admissible bundles that an agent may receive

Each agent has to express her preferences over \mathcal{X} :

- Sometimes, this is not a problem (for instance: one-to-one allocation)
- However, generally \mathcal{X} has a heavy combinatorial structure

Preferences - Combinatorial spaces and compact representation

The combinatorial trap...
Two objects...
$o_{1} o_{2} \succ o_{2} \succ o_{1} \succ \varnothing \rightarrow 4$ subsets to compare

Preferences - Combinatorial spaces and compact representation

Combinatorial spaces.

The combinatorial trap...

Four objects...
$\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4} \succ \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{4} \succ \mathrm{O}_{1} \mathrm{O}_{3} \mathrm{O}_{4} \succ \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4} \succ \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \succ \mathrm{O}_{1} \mathrm{O}_{3} \succ \mathrm{O}_{2} \mathrm{O}_{4} \succ$ $\mathrm{O}_{3} \mathrm{O}_{4} \succ \mathrm{O}_{1} \mathrm{O}_{4} \succ \mathrm{O}_{1} \succ \mathrm{O}_{2} \succ \mathrm{O}_{4} \succ \mathrm{O}_{3} \succ \varnothing \rightarrow 16$ subsets

Combinatorial spaces. . .

The combinatorial trap...

Twenty binary variables. . .

$$
\begin{aligned}
& \mathrm{O}_{8} \mathrm{O}_{5} \succ \mathrm{O}_{5} \mathrm{O}_{3} \mathrm{O}_{9} \succ \mathrm{O}_{8} \succ \varnothing \succ \mathrm{O}_{5} \succ \mathrm{O}_{8} \mathrm{O}_{5} \mathrm{O}_{3} \mathrm{O}_{9} \succ \mathrm{O}_{8} \mathrm{O}_{3} \succ \mathrm{O}_{5} \mathrm{O}_{9} \succ \mathrm{O}_{3} \mathrm{O}_{9} \succ \\
& \mathrm{O}_{8} \mathrm{O}_{9} \succ \mathrm{O}_{8} \mathrm{O}_{3} \mathrm{O}_{9} \succ \mathrm{O}_{5} \mathrm{O}_{3} \succ \mathrm{O}_{9} \succ \mathrm{O}_{3} \succ \mathrm{O}_{8} \mathrm{O}_{5} \mathrm{O}_{9} \succ \mathrm{O}_{8} \mathrm{O}_{5} \mathrm{O}_{3} \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{5} \mathrm{O}_{8} \mathrm{O}_{9} \succ \\
& \mathrm{O}_{1} \mathrm{O}_{5} \mathrm{O}_{6} \succ \mathrm{O}_{7} \succ \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4} \mathrm{O}_{5} \mathrm{O}_{6} \mathrm{O}_{7} \mathrm{O}_{8} \succ \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4} \mathrm{O}_{5} \succ \mathrm{O}_{1} \mathrm{O}_{3} \succ \mathrm{O}_{2} \succ \\
& \mathrm{O}_{1} \mathrm{O}_{3} \mathrm{O}_{7} \mathrm{O}_{9} \succ \mathrm{O}_{1} \mathrm{O}_{5} \succ \mathrm{O}_{1} \mathrm{O}_{7} \mathrm{O}_{8} \mathrm{O}_{9} \succ \mathrm{O}_{2} \succ \mathrm{O}_{4} \succ \mathrm{O}_{6} \succ \mathrm{O}_{1} \mathrm{O}_{7} \succ \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \succ \\
& \mathrm{O}_{1} \mathrm{O}_{2} \succ \mathrm{O}_{2} \mathrm{O}_{5} \mathrm{O}_{4} \succ \mathrm{O}_{1} \succ \mathrm{O}_{2} \succ \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{5} \mathrm{O}_{4} \succ \mathrm{O}_{1} \mathrm{O}_{5} \succ \mathrm{O}_{2} \mathrm{O}_{4} \succ \mathrm{O}_{5} \mathrm{O}_{4} \succ \\
& \mathrm{O}_{1} \mathrm{O}_{4} \succ \mathrm{O}_{1} \mathrm{O}_{5} \mathrm{O}_{4} \succ \mathrm{O}_{2} \mathrm{O}_{5} \succ \mathrm{O}_{4} \succ \mathrm{O}_{5} \succ \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{4} \succ \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{5} \succ \mathrm{O}_{1} \mathrm{O}_{5} \succ \\
& \mathrm{O}_{5} \mathrm{O}_{3} \mathrm{O}_{9} \succ \mathrm{O}_{1} \succ \varnothing \succ \mathrm{O}_{5} \succ \mathrm{O}_{1} \mathrm{O}_{5} \mathrm{O}_{3} \mathrm{O}_{9} \succ \mathrm{O}_{1} \mathrm{O}_{3} \succ \mathrm{O}_{5} \mathrm{O}_{9} \succ \mathrm{O}_{3} \mathrm{O}_{9} \succ \mathrm{O}_{1} \mathrm{O}_{9} \succ \\
& \mathrm{O}_{1} \mathrm{O}_{3} \mathrm{O}_{9} \succ \mathrm{O}_{5} \mathrm{O}_{3} \succ \mathrm{O}_{9} \succ \mathrm{O}_{3} \succ \mathrm{O}_{1} \mathrm{O}_{5} \mathrm{O}_{9} \succ \mathrm{O}_{1} \mathrm{O}_{5} \mathrm{O}_{3} \mathrm{O}_{9} \mathrm{O}_{6} \mathrm{O}_{5} \mathrm{O}_{1} \mathrm{O}_{9} \succ \mathrm{O}_{9} \mathrm{O}_{5} \mathrm{O}_{6} \succ \\
& \mathrm{O}_{7} \succ \mathrm{O}_{6} \mathrm{O}_{3} \mathrm{O}_{4} \mathrm{O}_{5} \mathrm{O}_{6} \mathrm{O}_{7} \mathrm{O}_{1} \succ \mathrm{O}_{9} \mathrm{O}_{6} \mathrm{O}_{3} \mathrm{O}_{4} \mathrm{O}_{5} \succ \mathrm{O}_{9} \mathrm{O}_{3} \succ \mathrm{O}_{6} \succ \mathrm{O}_{9} \mathrm{O}_{3} \mathrm{O}_{7} \mathrm{O}_{9} \succ \\
& \mathrm{Og}_{9} \mathrm{O}_{5} \succ \mathrm{O}_{9} \mathrm{O}_{7} \mathrm{O}_{1} \mathrm{O}_{9} \succ \mathrm{O}_{6} \succ \mathrm{O}_{4} \succ \mathrm{O}_{6} \succ \mathrm{O}_{9} \mathrm{O}_{7} \succ \mathrm{OgO}_{6} \mathrm{O}_{3} \succ \mathrm{O}_{9} \mathrm{O}_{6} \succ
\end{aligned}
$$

$\rightarrow 1048575$ subsets \rightarrow the expression takes more than 12 days.

Preferences - Combinatorial spaces and compact representation

- The expression of preferential dependencies is often necessary.
- but ... Representing and eliciting \succeq or u in extenso is unfeasible in practice.

Outline

(1) Informal introduction to fair division

Resource allocation problems: six examples
Resource allocation and fair division: taxonomy
(2) Preferences

Preference structures
A brief incursion into multi-attribute utility theory
Combinatorial spaces and compact representation
(3) Languages for compact preference representation
(4) Ordinal preference representation

Ranking single objects
Conditional importance networks
Prioritized goals
(5) Cardinal preference representation
k-additive utilities
Generalized Additive Independence
Weighted Goals

Combinatorial spaces: the dilemma

n attributes, each with d possible values $\Rightarrow d^{n}$ alternatives
[In fair division: alternatives are bundles of objects]
Way 1 Assume preferential independence

- elicitation and optimization are made easier (e.g. using decomposable utilities)
- but weak expressivity (impossibility to express preferential dependencies).
Way 2 Allow the user to express any possible preference over the alternatives
- full expressivity
- but representing and eliciting \succeq or u in extenso is unfeasible in practice.

Combinatorial spaces: the dilemma

n attributes, each with d possible values $\Rightarrow d^{n}$ alternatives
[In fair division: alternatives are bundles of objects]
Way 1 Assume preferential independence

- elicitation and optimization are made easier (e.g. using decomposable utilities)
- but weak expressivity (impossibility to express preferential dependencies).
Way 2 Allow the user to express any possible preference over the alternatives
- full expressivity
- but representing and eliciting \succeq or u in extenso is unfeasible in practice.

Half-way: languages for compact preference representation

Languages for compact preference representation

Representation languages for fair division

- $O=\left\{o_{1}, \ldots, o_{m}\right\}$ set of objects
- $\mathcal{X}=2^{O}$

Representation language: $\left\langle L, I_{L}\right\rangle$, where

- L language
- $I_{L}: \Phi \in L \mapsto$ preference relation \succeq_{Φ} or utility function u_{Φ} induced by Φ

Representation languages for fair division

Example 1: a language for dichotomous preferences:

- $L_{\text {prop }}$ set of all propositional formulas built from the propositional symbols $\left\{o_{1}, \ldots, o_{n}\right\}$
- $\varphi \in L \mapsto u_{\Phi}$ defined by $u(S)=1$ if $S \vDash \varphi,=0$ otherwise.

Representation languages for fair division

Example 1: a language for dichotomous preferences:

- $L_{\text {prop }}$ set of all propositional formulas built from the propositional symbols $\left\{o_{1}, \ldots, o_{n}\right\}$
- $\varphi \in L \mapsto u_{\Phi}$ defined by $u(S)=1$ if $S \vDash \varphi,=0$ otherwise.

Example

- Goal: $\circ \wedge((\square \wedge$ 国 $) \vee)$
- $O=\left\{o_{1}, \ldots, o_{m}\right\}$ set of objects
- $\mathcal{X}=2^{O}$

Representation language: $\left\langle L, I_{L}\right\rangle$, where

- Llanguage
- $I_{L}: \Phi \in L \mapsto$ preference relation \succeq_{Φ} or utility function u_{Φ} induced by Φ

Example 2: (obvious) language for additive utility functions:

- $L_{\text {add }}$: set of all collections of real numbers

$$
\begin{gathered}
W=\left\{u_{i}, 1 \leq i \leq m\right\} \\
\text { for all } S \subseteq O, u_{W}(S)=\sum_{i, o_{i} \in S} u_{i}
\end{gathered}
$$

Representation languages for fair division

- $O=\left\{o_{1}, \ldots, o_{m}\right\}$ set of objects
- $\mathcal{X}=2^{O}$

Representation language: $\left\langle L, I_{L}\right\rangle$, where

- Llanguage
- $I_{L}: \Phi \in L \mapsto$ preference relation \succeq_{Φ} or utility function u_{Φ} induced by Φ

Example 3: "explicit" representations

- for utility functions: $L_{\exp }=$ set of all collections of pairs

$$
\{\langle S, u(S)\rangle \mid S \in \mathcal{X}\}
$$

- for preference relations: $L_{\text {exp }}^{\prime}=$ list

$$
S_{1} \succ S_{2} \succ S_{3} \succ \ldots
$$

representing a ranking over \mathcal{X}.

On which criteria can we evaluate the different languages?

- Expressive power: what is the set of all preference structures expressible in the language?

Representation languages

On which criteria can we evaluate the different languages?

- Expressive power: what is the set of all preference structures expressible in the language?
- Succinctness: (informally) $\left\langle L_{1}, I_{L_{1}}\right\rangle$ is at least as succinct as language $\left\langle L_{2}, I_{L_{2}}\right\rangle$ is any preference structure expressible in $\left\langle L_{2}, I_{L_{2}}\right\rangle$ can be expressed in $\left\langle L_{1}, I_{L_{1}}\right\rangle$ without any exponential growth of size.

Representation languages

On which criteria can we evaluate the different languages?

- Expressive power: what is the set of all preference structures expressible in the language?
- Succinctness: (informally) $\left\langle L_{1}, I_{L_{1}}\right\rangle$ is at least as succinct as language $\left\langle L_{2}, I_{L_{2}}\right\rangle$ is any preference structure expressible in $\left\langle L_{2}, I_{L_{2}}\right\rangle$ can be expressed in $\left\langle L_{1}, I_{L_{1}}\right\rangle$ without any exponential growth of size.
- Computational complexity: how hard is it to compare two alternatives or to find an optimal alternative when the preferences are represented in $\left\langle L, I_{L}\right\rangle$?

Representation languages

On which criteria can we evaluate the different languages?

- Expressive power: what is the set of all preference structures expressible in the language?
- Succinctness: (informally) $\left\langle L_{1}, I_{L_{1}}\right\rangle$ is at least as succinct as language $\left\langle L_{2}, I_{L_{2}}\right\rangle$ is any preference structure expressible in $\left\langle L_{2}, I_{L_{2}}\right\rangle$ can be expressed in $\left\langle L_{1}, L_{L_{1}}\right\rangle$ without any exponential growth of size.
- Computational complexity: how hard is it to compare two alternatives or to find an optimal alternative when the preferences are represented in $\left\langle L, I_{L}\right\rangle$?
- Easiness of elicitation

Preference elicitation = interaction with a user, so as to acquire her preferences, encoded in a language $\left\langle L, I_{L}\right\rangle$.
Is it easy to construct protocols for eliciting the agent's preferences in $\left\langle L, I_{L}\right\rangle$?

Languages for compact preference representation

Expressive power

Representation language: $\left\langle L, I_{L}\right\rangle$
Expressive power of a language $=$ set of all preference structures that can be expressed in the language $=I_{L}(L)$.

$$
\left\langle L, I_{L}\right\rangle \text { at least as expressive as }\left\langle L^{\prime}, I_{L^{\prime}}\right\rangle \text { iff } I_{L}(L) \supseteq I_{L^{\prime}}\left(L^{\prime}\right) \text {. }
$$

Examples :

- expressive power of $L_{\text {add }}$: all additive utility functions over \mathcal{X};
- expressive power of $L_{\text {exp }}$: all utility functions over \mathcal{X}.
$\left\langle L_{\text {exp }}, I_{L_{\text {exp }}}\right\rangle$ is more expressive than $\left\langle L_{\text {add }}, I_{L_{\text {add }}}\right\rangle$.

Succinctness

Relative notion:

$\left\langle L_{1}, I_{L_{1}}\right\rangle$ is at least as succinct as $\left\langle L_{2}, I_{L_{2}}\right\rangle$ if there exists $F: L_{2} \rightarrow L_{1}$ and a polynomial function p such that for all $\Phi \in L_{2}$:

- $I_{L 2}(\Phi)=I_{L 1}(F(\Phi)): \Phi$ and $F(\Phi)$ induce the same preferences
- $|F(\Phi)| \leq p(|\Phi|)$: the translation is succinct

Example:

- $\left\langle L_{\text {exp }, \text { add }}, l_{\text {exp }, \text { add }}\right\rangle=$ explicit representation restricted to additive utility functions $=$ set of all collections of pairs

$$
U=\{\langle x, u(x)\rangle \mid x \in \mathcal{X}\}
$$

such that u is additively decomposable

- $\left\langle L_{\text {add }}, I_{L_{\text {add }}}\right\rangle$ is strictly more succinct than $L_{\text {exp }, \text { add }}$;
- but $\left\langle L_{\text {exp }}, I_{L_{\text {exp }}}\right\rangle$ and $\left\langle L_{\text {add }}, I_{L_{\text {add }}}\right\rangle$ are incomparable because $\left\langle L_{\text {exp }}, I_{L_{\text {exp }}}\right\rangle$ is more expressive than $\left\langle L_{a d d}, I_{L_{\text {add }}}\right\rangle$.

Computational complexity

What is the computational complexity of the following problems when the preferences on \mathcal{X} are represented in the language $\left\langle L, I_{L}\right\rangle$:

Given an input Φ in the language $\left\langle L, I_{L}\right\rangle, \ldots$

- DOminance: and $x, y \in X$, do we have $x \succeq_{\phi} y$?
- optimisation: find the preferred alternative (or one of the preferred alternatives)
(trivial for monotonic preferences)
- constrained optimisation: and a subset C, possibly defined succinctly, find the preferred option (or one of the preferred options) $x \in C$.
Measuring hardness uses computational complexity notions.

Languages for compact preference representation

Elicitation

Preference elicitation $=$ interaction with a user, so as to acquire her preferences, encoded in a language L (or more generally, so as to acquire enough information about her preferences)
Construction of elicitation protocols for some families of languages:

- exploiting preferential independencies so as to reduce the amount of information to elicit and the cognitive effort spent in communication;
- trade-off expressivity vs. elicitation complexity.

Outline

(1) Informal introduction to fair division

Resource allocation problems: six examples
Resource allocation and fair division: taxonomy
(2) Preferences

Preference structures
A brief incursion into multi-attribute utility theory
Combinatorial spaces and compact representation
(3) Languages for compact preference representation
(4) Ordinal preference representation

Ranking single objects
Conditional importance networks
Prioritized goals
(5) Cardinal preference representation
k-additive utilities
Generalized Additive Independence
Weighted Goals

Ordinal preference representation - Ranking single objects

Ranking single objects

- $O=\left\{o_{1}, \ldots, o_{m}\right\}$ set of objects
- $\mathcal{X}=2^{O}$
- $L_{\text {sing }}$: set of all rankings over O
- for each ranking \triangleright over $O, I(\triangleright)=\succ$ is the monotonic and separable extension of \triangleright to 2°, that is, the smallest preference relation \succ over 2° such that
- \succ extends \triangleright : for all $o_{i}, o_{j} \in O, o_{i} \triangleright o_{j}$ implies $\left\{o_{i}\right\} \succ^{\prime}\left\{o_{j}\right\}$
- \succ is separable
- \succ is monotonic
- \succ sometimes called the Bossong-Schweigert extension, or the responsive extension of \triangleright.

Ordinal preference representation - Ranking single objects

Ranking single objects

$$
m=2, o_{1} \triangleright o_{2}
$$

Ordinal preference representation - Ranking single objects

Ranking single objects

$$
m=3, o_{1} \triangleright o_{2} \triangleright o_{3}
$$

Ordinal preference representation - Ranking single objects

Ranking single objects

$$
m=3, o_{1} \triangleright o_{2} \triangleright o_{3} \triangleright o_{4}
$$

Pros:

- communication complexity: $O(m \cdot \log m)$.

Cons:

- assumes separability: what will an agent report if she prefers o_{2} over o_{3} when she has o_{1} and o_{3} over o_{2} if not?

$$
\begin{gathered}
o_{1} o_{2} o_{3} \succ o_{1} o_{2} \succ o_{2} o_{3} \succ o_{1} \succ o_{3} \succ o_{2} \succ \varnothing \\
o_{1} \triangleright o_{3} \triangleright o_{2} \text { or } o_{1} \triangleright o_{2} \triangleright o_{3} ?
\end{gathered}
$$

- produces a (very) partial order
(Bouveret, Endriss, Lang, 09)
- allow to express conditional importance statements such as

$$
a \bar{b}: c d e \triangleright f g
$$

if I have a and I do not have b then I prefer to have $\{c, d, e\}$ rather than $\{f, g\}$ all other things being equal

Conditional importance networks

Conditional importance statement

$\mathcal{S}^{+}, \mathcal{S}^{-}: \mathcal{S}_{1} \triangleright \mathcal{S}_{2}$ (with $\mathcal{S}^{+}, \mathcal{S}^{-}, \mathcal{S}_{1}$ and \mathcal{S}_{2} pairwise-disjoint).
\succ is compatible with $\mathcal{S}^{+}, \mathcal{S}^{-}: \mathcal{S}_{1} \triangleright \mathcal{S}_{2}$ if for every $A, B \subseteq O$ such that

- $A \supseteq \mathcal{S}^{+}$and $B \supseteq \mathcal{S}^{+}$
- $A \cap \mathcal{S}^{-}=\varnothing$ and $B \cap \mathcal{S}^{-}=\varnothing$
- $A \supseteq \mathcal{S}_{1}$ and $B \nsupseteq \mathcal{S}_{1}$
- $B \supseteq \mathcal{S}_{2}$ and $A \nsupseteq \mathcal{S}_{2}$
- for each $o \in O \backslash\left(\mathcal{S}^{+} \cup \mathcal{S}^{-} \cup \mathcal{S}_{1} \cup \mathcal{S}_{2}\right)$, we have $o \in A$ iff $o \in B$ then $A \succ B$

Example: $a \bar{d}: b \triangleright c e$ implies for example $a b \succ a c e, a b f g \succ a c e f g, \ldots$

CI-net

A CI-net is a set \mathcal{N} of conditional importance statements.

Ordinal preference representation - Conditional importance networks

Conditional importance networks

Conditional importance statement
$\mathcal{S}^{+}, \mathcal{S}^{-}: \mathcal{S}_{1} \triangleright \mathcal{S}_{2}$ (with $\mathcal{S}^{+}, \mathcal{S}^{-}, \mathcal{S}_{1}$ and \mathcal{S}_{2} pairwise-disjoint).

CI-net

A CI-net is a set \mathcal{N} of conditional importance statements on \mathcal{V}.
Preference relation induced from a CI -net
$\succ_{\mathcal{N}}$ is the smallest preference relation over 2° such that

- $\succ_{\mathcal{N}}$ is compatible with every conditional importance statement in \mathcal{N}
- $\succ_{\mathcal{N}}$ is monotonic

Ordinal preference representation - Conditional importance networks

Conditional importance networks

A Cl-net of 4 objects $\{a, b, c, d\}:\{a: d \triangleright b c, a \bar{d}: b \triangleright c, d: c \triangleright b\}$

Ordinal preference representation - Conditional importance networks

Conditional importance networks

A CI-net of 4 objects $\{a, b, c, d\}:\{a: d \triangleright b c, a \bar{d}: b \triangleright c, d: c \triangleright b\}$

Induced preference relation $\succ \mathcal{N}$: the smallest preference monotonic relation compatible with all Cl -statements.

Ordinal preference representation - Conditional importance networks

Conditional importance networks

- we recover the singleton ranking form when the Cl -net is of the form

$$
\begin{aligned}
& \varnothing, \varnothing: o_{1} \triangleright o_{2} \\
& \varnothing, \varnothing: o_{2} \triangleright o_{3} ; \\
& \ldots \\
& \varnothing, \varnothing: o_{m-1} \triangleright o_{m}
\end{aligned}
$$

- Cl -nets can express all strict monotonic preference relations on 2°.
- dominance and satisfiability: PSPACE-complete (existence of exponentially long irreducible dominance sequences)
- in P for precondition-free, singleton-comparing Cl -statements (such as $\{a \triangleright c, b \triangleright c, e \triangleright d\})$.

Prioritized goals

- $\Phi=\left\{\varphi_{1}, \ldots, \varphi_{q}\right\}+$ a weak order \unrhd on $\left\{\varphi_{1}, \ldots, \varphi_{q}\right\}$
- equivalently, $\Phi=\left\langle\Phi_{1}, \ldots, \Phi_{q}\right\rangle$ where Φ_{1} is the set of highest priority formulas, etc.
leximin semantics $A \succ B$ if there is a $k \leq q$ such that
- $\left|\left\{\varphi \in \Phi_{i}, A \vDash \Phi_{k}\right\}\right|=\left|\left\{\varphi \in \Phi_{i}, B \vDash \Phi_{k}\right\}\right| ;$
- for each $i<k$: $\left|\left\{\varphi \in \Phi_{i}, A \vDash \Phi_{i}\right\}\right|=\left|\left\{\varphi \in \Phi_{i}, B \vDash \Phi_{i}\right\}\right|$.
discriimin semantics $A \succ B$ if there is a $k \leq q$ such that
- $\left\{\varphi \in \Phi_{i}, A \vDash \Phi_{k}\right\} \supset\left\{\varphi \in \Phi_{i}, B \vDash \Phi_{k}\right\}$;
- for each $i<k$: $\left\{\varphi \in \Phi_{i}, A \vDash \Phi_{i}\right\}=\left\{\varphi \in \Phi_{i}, B \vDash \Phi_{i}\right\}$.

Particular case: conditionally lexicographic preferences

Outline

(1) Informal introduction to fair division

Resource allocation problems: six examples
Resource allocation and fair division: taxonomy
(2) Preferences

Preference structures
A brief incursion into multi-attribute utility theory
Combinatorial spaces and compact representation
(3) Languages for compact preference representation
(4) Ordinal preference representation

Ranking single objects
Conditional importance networks
Prioritized goals
(5) Cardinal preference representation
k-additive utilities
Generalized Additive Independence
Weighted Goals

k-additive utilities

- A utility function over $\mathcal{X}=2^{0}$ is k-additive if it can be expressed as the sum of sub-utilities over subsets of objects of cardinality $\leq k$.
- $\Phi: u:\{S \subseteq O,|S| \leq k\} \rightarrow \mathbb{R}$

$$
u(x)=\sum_{S \subseteq O,|S| \leq k} u(S)
$$

Example: $O=\{a, b, c, d\}, k=2$

$$
u(a, b, d)=u(a b)+u(a d)+u(b d)+u(a)+u(b)+u(d)
$$

Cardinal preference representation - k-additive utilities

- u is 1 -additive $\Leftrightarrow u$ is additive
- every utility function is m-additive $(m=|O|)$
- a k-additive function can be also expressed as the sum of sub-utilities over subsets of attributes of cardinality exactly k.

$$
u(x)=\sum_{S \subseteq O,|S|=k} v(S)
$$

- can be specified by values $v(S)$ for all $|S|=k$: $\binom{m}{k}$ values
- polynomially large if k is a constant, otherwise exponentially large

Cardinal preference representation - k-additive utilities

An example

- O consists of 10 pairs of shoes
- $u(S)=10 p+s$ if S contains a total of p matching pairs and in addition s single shoes
- u is 2-additive:

$$
\begin{aligned}
& \text { - } u\left(\left\{\text { left }_{i}\right\}\right)=u\left(\left\{\text { right }_{i}\right\}\right)=1 \text { for all } i \\
& \text { - } u\left(\left\{\text { left }_{i}, \text { right }_{i}\right\}\right)=8 \text { for all } i
\end{aligned}
$$

- Exercise: express u as the sum of local values of sets of exactly two shoes.

k-additive utilities

Another example
Categorized domain: three attributes $N=\{$ main, dessert, wine $\}$, and

$$
\mathcal{X}=\{\text { Meat }, \text { Fish }, \text { Veggie }\} \times\{\text { Apple, Cake }\} \times\{\text { Red }, \text { White }\}
$$

	ain	$u_{\text {des }}$	sert	u_{w}			main,		$u_{\text {main }}$,de			ert	
							r	w		a	c			
m	8					m	5	-1	m	2	0		0	0
f	10		1	r w	0		-1	5	f	0	0	r	0	0
v	12					v	0	0	v	0	3	w	0	
$u(v r c)$		$\begin{aligned} & =u_{M}(v)+u_{D}(c)+u_{W}(r)+u_{M W}(v r)+u_{M D}(v c)+u_{W D}(r c) \\ & =12+5+0+0+3+0=18 \end{aligned}$												

- Exercise: find the optimal alternative

Incursion into computational complexity

Two key notions from computational complexity theory:

- a problem is in the class P if it can be solved by an algorithm running in an amount of time bounded by a polynomial function of the size of the input data.
- a decision problem (= checking that a property holds) is in NP (nondeterministic polynomial time) if given a solution of the problem, this solution can be verified in polynomial time
- a problem is NP-hard if it is "at least as difficult" as all problems in NP
- a decision problem is NP-complete if (a) it is in NP and (b) it is NP-hard
- is is strongly believed that P is strictly contained in NP (therefore: for solving an NP-complete problem, so far we only have exponential-time algorithms).

Cardinal preference representation - k-additive utilities

k-additive form: complexity

For any $k \geq 2$:
given a k-additive representation...

- and an alternative x, computing $u(x)$ is in P
- and a number α, checking that there exists an alternative x such that $u(x) \geq \alpha$ is NP-complete
- finding x with $u(x)$ maximal is NP-hard (except of course if we know beforehand that preference are monotonic...)

GAI-decomposability

Let $\mathcal{X}_{1}, \ldots, \mathcal{X}_{k}$ be a family of subsets of N such that $\bigcup_{i} \mathcal{X}_{i}=N$. u is GAI-decomposable with respect to $\mathcal{X}_{1}, \ldots, \mathcal{X}_{k}$ if there exist k subutility functions

$$
u_{i}: \mathcal{X}_{i} \rightarrow \mathbb{R}
$$

such that

$$
u(x)=\sum_{i=1}^{k} u_{i}\left(x_{\mathcal{X}_{i}}\right)
$$

- k-additivity $=$ GAI-decomposability, with $\left|\mathcal{X}_{i}\right| \leq k$ for all i.

Generalized Additive Independence

$$
\begin{gathered}
N=\{\text { first }, \text { main }, \text { dessert }, \text { wine }\} \\
X=\{\text { Soup }, \text { Pasta }\} \times\{\text { Meat }, \text { Fish }, \text { Veggie }\} \times\{\text { Apple, Cake }\} \times\{\text { Red }, \text { White }\}
\end{gathered}
$$

$$
\mathcal{X}_{1}, \ldots, \mathcal{X}_{k}=\{\{\text { first }\},\{\text { main, wine }\},\{\text { main }, \text { dessert }\}\}
$$

$u_{\text {first }}$		$u_{\text {main, wine }}$			$u_{\text {main, dessert }}$		
			r	w		a	c
		m	13	7	m	2	0
s	1	f	9	15	f	0	0
p		v	12	12	v	0	3

- Dominance is in P
- Optimisation is NP-hard in the general case

Background on propositional logic

Let $A T M$ be a set of propositional symbols. The propositional language generated from $P S$ is the set of formulas $L_{P S}$ defined as follows:

- every propositional symbol is a formula;
- \top and \perp are formulas;
- if φ is a formula then $\neg \varphi$ is a formula;
- if φ and ψ are formulas then $\varphi \wedge \psi, \varphi \vee \psi, \varphi \rightarrow \psi$, and $\varphi \leftrightarrow \psi$ are formula;
\top (true) and \perp (false): logical constants
\neg (not): unary connective
\wedge (and), \vee (or), \rightarrow (implies), \leftrightarrow (equivalent) : binary connectives.

Background on propositional logic

An interpretation (or valuation) is a mapping from $P S$ to $\{0,1\}$. An interpretation I is extended to formulas by the following rules:

- $I(T)=1$;
- $\quad I(\perp)=0$;
- $I(\neg \varphi)=1-I(\varphi)$;
- $I(\varphi \vee \psi)=\max (I(\varphi), I(\psi))$;
- $I(\varphi \wedge \psi)=\min (I(\varphi), I(\psi))$;
- $\quad I(\varphi \rightarrow \psi)=I(\neg \varphi \vee \psi)$;
- $I(\varphi \leftrightarrow \psi)=I((\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi))$.
I is a model of φ, denoted $I \vDash \varphi$, iff $I(\varphi)=1$
$\operatorname{Mod}(\varphi)=\{I \mid I \vDash \varphi\}$

Background on propositional logic

Validity φ is valid if $I(\varphi)=1$ for every interpretation I $\vDash \varphi$
Satisfiability φ is satisfiable if $I(\varphi)=1$ for at least one interpretation I Logical consequence
ψ is a logical consequence of φ if every model of φ is a model of ψ
$\varphi \vDash \psi$
Logical equivalence φ and ψ are equivalent if they are logical consequences of each other

$$
\varphi \equiv \psi
$$

Background on propositional logic

Some classes of formulas:

- literals: atomic formulas or negations of atomic formulas

$$
a \quad \neg b \quad \ldots
$$

- clauses: disjunctions of literals, including the empty clause \perp

$$
a \vee \neg b \vee c \quad d \vee \neg d \quad \perp \quad \ldots
$$

- k-clauses: disjunctions of at most k literals
- cubes: conjunctions of literals, including the empty cube T

$$
a \wedge \neg b \wedge c \quad d \wedge \neg d \quad\lceil\quad \ldots
$$

- k-clauses: conjunctions of at most k literals
- positive formulas: formulas in which the only connectives appearing are \wedge and \vee

$$
a \wedge(b \vee c) \quad a \vee(b \wedge c)
$$

Cardinal preference representation - Weighted Goals

Binary variables

Particular case: binary variables $\rightarrow D_{i}=\{T, \perp\}$ for all i.
Can be used to represent subsets of elements.

Cardinal preference representation - Weighted Goals

Binary variables

Particular case: binary variables $\rightarrow D_{i}=\{T, \perp\}$ for all i.
Can be used to represent subsets of elements.

A set of elements $\mathcal{O}=\left\{o_{1}, \ldots, o_{m}\right\} \rightarrow$ binary variables $\left\{o_{1}, \ldots, o_{m}\right\}$, where each variable O_{i} stands for the presence or absence of o_{i}.
\rightarrow each instantiation / interpretation represents a subset π of \mathcal{O}
Example of application: allocation of indivisible goods

Example: $\overline{o_{1}} \overline{o_{2}} \overline{o_{3}} o_{4} \overline{o_{5}}$ represents the subset $\left\{o_{1}, o_{4}\right\}$.

Of logic and goals

Logic-based languages suit well when we have to deal with binary variables (e.g. resource allocation problems).

- A propositional syntax $L_{\mathcal{O}} \ldots$
- set of propositional symbols \mathcal{O},
- usual connectives

Of logic and goals

Logic－based languages suit well when we have to deal with binary variables（e．g．resource allocation problems）．
－A propositional syntax $L_{\mathcal{O}} \ldots$
－set of propositional symbols \mathcal{O} ，
－usual connectives

Example

－ $\mathcal{O}=\{$ 完，目，园，日，
－Set of requests for one agent：

－

Dichotomous preferences...

What to do with all these goals ?

Dichotomous preferences..

What to do with all these goals ?

A first (simplistic) example: dichotomous preferences.

Example

Variables $\mathcal{O}=\left\{o_{1}, o_{2}, o_{3}\right\}$

$$
o_{2} \wedge\left(o_{1} \vee o_{3}\right)
$$

represents the dichotomous preference relation

$$
\left\{o_{1}, o_{2}, o_{3}\right\} \sim\left\{o_{1}, o_{2}\right\} \sim\left\{o_{2}, o_{3}\right\} \succ \text { all others subsets }
$$

Language L_{W} :

- $G=$ a set of pairs $\left\langle\varphi_{i}, w_{i}\right\rangle$ where
- φ_{i} is a propositional formula;
- w_{i} is a real number
- $I_{L}(G)=u_{G}$ defined by: for all $x \in 2^{P S}$,

$$
u_{G}(x)=\bigoplus\left\{w_{i} \mid\left\langle\varphi_{i}, w_{i}\right\rangle \in G \text { and } x \vDash \varphi\right\}
$$

- \oplus non-decreasing, symmetric function
- two usual choices: $\oplus=+$ and $\oplus=$ max.
- rest of the talk: $\oplus=+$

Binary variables fit well to resource allocation problems with indivisible goods

- an attribute $i=$ an indivisible object o_{i}
- $O=\left\{o_{1}, \ldots, o_{n}\right\}$
- an alternative $=$ a bundle of goods $b_{i} \subseteq O$

$$
o_{i} \in b \text { iff } b_{i}=1
$$

- each agent has to express a utility function over the set of possible bundles 2^{O}

Expressing preferences over sets of goods

Binary variables fit well to resource allocation problems with indivisible goods

- an attribute $i=$ an indivisible object o_{i}
- $O=\left\{o_{1}, \ldots, o_{n}\right\}$
- an alternative $=$ a bundle of goods $b_{i} \subseteq O$

$$
o_{i} \in b \text { iff } b_{i}=1
$$

- each agent has to express a utility function over the set of possible bundles 2^{O}

Example

- Set of requests for one agent:

0

Expressing preferences over sets of goods

Example

－Agent 1＇s requests：

$$
\begin{aligned}
& \text { - }\langle\varnothing \wedge((\square \wedge \square) \vee \square), 110\rangle \text {, } \\
& \text { - }\langle 0,-10\rangle \text {, } \\
& \text { - 〈㜢 } \wedge, 50\rangle \text {. }
\end{aligned}
$$

Computation of individual utility $(\oplus=+)$ ：

$$
\pi_{1}=\{\infty, \square, \square,\}
$$

Expressing preferences over sets of goods

Example

－Agent 1＇s requests：

$$
\begin{aligned}
& \text { - }\langle\varnothing \wedge((\square \wedge \square) \vee \square), 110\rangle \text {, } \\
& \text { - }\langle 0,-10\rangle \text {, } \\
& \text { - 〈㜢 } \wedge, 50\rangle \text {. }
\end{aligned}
$$

Computation of individual utility $(\oplus=+)$ ：

Expressing preferences over sets of goods

Example

－Agent 1＇s requests：

$$
\begin{aligned}
& \text { - }\langle\varnothing \wedge((\square \wedge \square) \vee \square), 110\rangle \text {, } \\
& \text { - }\langle 0,-10\rangle \text {, } \\
& \text { - 〈㜢 } \wedge, 50\rangle \text {. }
\end{aligned}
$$

Computation of individual utility $(\oplus=+)$ ：

$$
\pi_{1}=\left\{\Omega, \square, \square, \square u_{1}\left(\pi_{1}\right)=110-10\right.
$$

Expressing preferences over sets of goods

Example

－Agent 1＇s requests：

$$
\begin{aligned}
& \text { - }\langle\varnothing \wedge((\square \wedge \square) \vee \square), 110\rangle \text {, } \\
& \text { - }\langle 0,-10\rangle \text {, } \\
& \text { - 〈㜢 } \wedge, 50\rangle \text {. }
\end{aligned}
$$

Computation of individual utility $(\oplus=+)$ ：

$$
\pi_{1}=\{\Omega, \square, \Xi, \square\} \Rightarrow u_{1}\left(\pi_{1}\right)=110-10+\quad 0
$$

Expressing preferences over sets of goods

Example

－Agent 1＇s requests：

$$
\begin{aligned}
& \text { - }\langle\varnothing \wedge((\square \wedge \square) \vee \square), 110\rangle \text {, } \\
& \text { - }\langle 0,-10\rangle \text {, } \\
& \text { - 〈㜢 } \wedge, 50\rangle \text {. }
\end{aligned}
$$

Computation of individual utility $(\oplus=+)$ ：

$$
\pi_{1}=\left\{\propto, \square, \square,<u_{1}\left(\pi_{1}\right)=110-10+0=100\right.
$$

Weighted goals: expressive power

Depends on the formulas and the weights allowed in the pairs $\langle\varphi, w\rangle$. Examples:

- positive cubes + all weights: fully expressive
- literals + all weights: additive functions
- 2-cubes + all weights: 2-additive functions
- cubes + positive weights: non-negative functions
- clauses + positive weights: a proper subset of all nonnegative functions

$$
\text { Hint } u\left(\left\{o_{1}, o_{2}\right\}\right)=1, u\left(\left\{o_{1}\right\}\right)=u\left(\left\{o_{2}\right\}\right)=0 \text { : not expressible! }
$$

- positive formulas + positive weights: monotonic non-negative functions
- positive cubes + positive weights: a proper subset of all monotonic non-negative functions
- all formulas + all weights: fully expressive
- positive cubes + all weights: fully expressive

But

$$
\begin{gathered}
\text { all formulas }+ \text { all weights } \\
\text { more succinct than } \\
\text { positive cubes }+ \text { all weights }
\end{gathered}
$$

Hint: try to express u defined by

$$
u(x)=\max _{i=1, \ldots, n} x_{i}
$$

Cardinal preference representation - Weighted Goals

Weighted goals: computational complexity

- comparing two alternatives: can be solved in polynomial time
- finding an optimal alternative: NP-complete in the general case, even for dichotomous utilities
- finding an optimal alternative: polynomial for some restrictions of the language
- monotonic fragment (no negation, positive weights)
- additive fragment (literals only)

