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Informal introduction to fair division – Resource allocation problems: six examples

Some resource allocation problems

Problem 1: Allocating time slots to speakers
Ulle has a slight preference for teaching on mornings, but above all prefers
to have consecutive slots, that is, he prefers (14–15 and 15–16) to (9–10
and 11–12).
Ioannis has a preference for not teaching in the morning, and prefers to
have his slots on two different days.
Christian has a preference for not teaching on Monday, and wants all his
slots in the same day.
Jérôme’s course should come before Ulle’s and Christian’s talks.

Once the agents have reported their preferences, the allocation decision
will be made centrally, by the COST Fair Division Summer School Central
Organization (FDSSCO).
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Informal introduction to fair division – Resource allocation problems: six examples

Some resource allocation problems

Problem 2: Divorcing
George and Helena
George and Helena are engaged in a divorce settlement process.
They remain good friends and their divorce is not conflictual; therefore,
they decide to do without a lawyer, and decide by themselves that Helena
gets the books and George the bookshelves.
John and Katia
John and Katia are unable to negotiate alone, and need to involve a
lawyer, who helps them deciding that the children’s custody will be shared
equally between them, and that, in addition, Katia gets the house, while
John gets the cat plus some monetary compensation from Katia.
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Informal introduction to fair division – Resource allocation problems: six examples

Some resource allocation problems

Problem 3: Earth observation satellites
France and Germany have jointly bought a very expensive Earth
observation satellite. Every day, each country’s responsible committee
expresses its preferences over the photos it wants to be made.
There are some physical constraints on the satellite that restrict the set of
photos that can be made on a single day, which needs a process to decide
in a fair way which photos will be made.
This may be complicated by the fact that France paid for two thirds of the
satellite while Germany paid only for one third, which leads to different
entitlements on the number of photos.
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Informal introduction to fair division – Resource allocation problems: six examples

Some resource allocation problems

Problem 4: Sport team formation
Two schoolchildren, Anna and David, have to form two sport teams.
Resources are players. Anna chooses first one member of her team, then
David one, then again Anna, then David, etc.
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Informal introduction to fair division – Resource allocation problems: six examples

Some resource allocation problems

Problem 5: House allocation
Version 1: n houses have to be allocated to n agents (exactly one each!);
each agent expresses a preference ranking over all houses.
Version 2: n agents a1, . . . ,an initially live in house h1, . . . ,hn respectively;
each agent expresses a preference ranking over all houses; can we
reallocate the houses so that some agent become happier but no agent
becomes less happy?
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Informal introduction to fair division – Resource allocation problems: six examples

Some resource allocation problems

Problem 6: Combinatorial auction
O = {o1, . . . ,op} set of objects

for each agent i , Vi : 2O→ N

Vi (X) = maximum price that i is ready to pay for the set of objects X .

if Vi additive for all i : then sell each object to its highest bidder

but Vi is generally non-additive :
{left shoe}: 10 e; {right shoe}: 10 e; {left shoe, right shoe}: 50 e
{lemonade}: 2 e; {beer}: 3 e; {lemonade, beer}: 4 e

optimal allocation π∗: maximizes the seller’s revenue
∑n

i=1Vi (π(i))
where π(i) is the set of objects allocated to agent i
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Informal introduction to fair division – Resource allocation and fair division: taxonomy

Resource allocation problem (informal)

a set of resources to be allocated
a set of agents
agents have preferences over resources
the final allocation is subject to some feasibility constraints

... a final allocation is found somehow

Without additional parameters being fixed it is difficult to give a more
precise definition.
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Informal introduction to fair division – Resource allocation and fair division: taxonomy

1. Centralized versus decentralized

Finding the allocation requires the agents to express, in one way or
another, their preferences.
The process that consists in querying the agents about their preferences is
called preference elicitation.

Centralized mechanism There is a central authority that elicits the
agents’ preferences, and then determines the output
allocation.

Decentralized / distributed mechanism There is no central authority, and
the agents themselves compute the allocation, revealing
their preferences by certain specific (inter)actions.
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Informal introduction to fair division – Resource allocation and fair division: taxonomy

2. Divisible versus indivisible resources

Divisible resources
homogeneous
heterogeneous

Indivisible resources
coming in single units
coming in multiple units
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Informal introduction to fair division – Resource allocation and fair division: taxonomy

3. Ordinal versus cardinal preferences

Cardinal preferences Agents associate numerical values with (sets of)
resources

Ordinal preferences Agents are only allowed to rank with (sets of)
resources
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Informal introduction to fair division – Resource allocation and fair division: taxonomy

4. One-to-one versus many-to-one

One-to-one allocation
Each agent gets exactly one resource: matching problem

Many-to-one allocation
Each agent gets possibly several resources (bundles)
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Informal introduction to fair division – Resource allocation and fair division: taxonomy

5. Money and initial endowments

Money or no money Is there any money involved in the mechanism? Do
the agents pay and/or receive money?

Initial endowments Do the agents initially own resources?
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Informal introduction to fair division – Resource allocation and fair division: taxonomy

6. Shareable versus nonshareable

Non-shareable resources Each resource is allocated to a single agent,
who is the only one who can enjoy it.

Shareable resources Resources can be allocated to several (or even all)
agents.
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Informal introduction to fair division – Resource allocation and fair division: taxonomy

7. Fairness versus efficiency

Fairness What counts above all is to be fair and equitable to the
agents: fair division

Efficiency What counts is the global efficiency of the outcome (for
instance, monetary revenue)

Often: a mix of both.
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Informal introduction to fair division – Resource allocation and fair division: taxonomy

Centralized fair division

Given
a set of resources to be allocated
a set of agents
preferences of agents over resources
the final allocation being subject to some feasibility constraints
fairness (and efficiency) criteria for evaluating the quality of allocation

... determine a fair allocation of resources to agents
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Informal introduction to fair division – Resource allocation and fair division: taxonomy

Decentralized fair division

Given
a set of resources to be allocated
a set of agents
some prior knowledge about agents’ preferences over resources
the final allocation being subject to some feasibility constraints
fairness criteria for evaluating the quality of allocation

... find an interaction protocol between agents guaranteeing that the
outcome will have certain level of fairness.
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Preferences – Preference structures

Admissible bundles
From now on we focus on indivisible goods.

O = {o1, . . . ,om} indivisible objects
2O set of all bundles of objects
X ⊆ 2O set of admissible bundles that an agent may receive

Examples of admissible bundles:
cardinality constraint: each agent receives exactly k objects:

X = {S ⊆ O, |S| ≤ k}

categorized items (Mackin and Xia, 15): objects are clustered in
categories and each agent receives exactly one item from each category:

X = D1× . . .×Dp

where Di is the set of all objects of category i .
Example: one first dish + one main dish + one drink per agent
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Preferences – Preference structures

Preferences over bundles

N sets of agents
O = {o1, . . . ,om} indivisible objects

Notation: [o1o2|o3|o4o5] is the allocation where that agent 1 receives
{o1o2}, 2 receives {o3}, 3 receives {o4,o5}.

“No externality” assumption:

an agent’s preferences bear only on the bundle she receives

1 is indifferent between [o1o2|o3|o4o5] and [o1o2|o3o5|o4]

2 is indifferent between [o1o2|o3|o4o5] and [∅|o3|o1o2o4o5]

etc.

Therefore: it is sufficient to know each agent’s preferences over bundles
(as opposed to her preferences over all allocations).
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Preferences – Preference structures

Preference structures

Specifying preferences on X : comparing, ranking, evaluating bundles.
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Preferences – Preference structures

Preference structures

Ordinal preferences
Preference relation on X : reflexive and transitive relation �
x � y x is at least as good as y

x � y ⇔ x � y and not y � x
x is preferred to y (strict preference)

x ∼ y ⇔ x � y and y � x
x and y are equally preferred (indifference)

x Q y ⇔ neither x � y nor y � x
x and y are (incomparable)

� is often assumed to be complete (no incomparabilities)

More sophisticated models: interval orders, semi-orders etc.
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Preferences – Preference structures

Preference structures

Cardinal preferences
Utility function u : X → R

More generally u : X → V ordered scale; example:
V = {unacceptable,bad ,medium,good ,excellent}

From cardinal preferences to ordinal preferences:

x �u y ⇔ u(x)≥ u(y)
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Preferences – Preference structures

Preference structures

Dichotomous preferences
A⊆X set of acceptable bundles
dichotomous preferences are cardinal preferences:

V = {0,1}; u(S) = 1⇔ S ∈ A.

dichotomous preferences are ordinal preferences:

S � S′⇔ (S ∈ A) or (S′ /∈ A).
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Preferences – Preference structures

Preference structures

Fuzzy preferences
µR : X 2→ [0,1]

µR(x ,y) degree to which x is preferred to y .
more general than both cardinal and ordinal preferences
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Preferences – Preference structures

Preference structures

dichotomous preferences

fuzzy preferences

cardinal preferences ordinal preferences
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Preferences – Preference structures

Monotonicity

O = {o1, . . . ,om} indivisible objects
2O set of all bundles of objects
X ⊆ 2O set of admissible bundles that an agent may receive

Typically, preferences over bundles are monotonic: receiving one more
good never makes an agent less happy.

ordinal preferences: if S ⊇ S′ then S � S′

cardinal preferences: if S ⊇ S′ then u(S)≥ u(S′)

Strict monotonicity:
ordinal preferences: if S ⊃ S′ then S � S′

cardinal preferences: if S ⊃ S′ then u(S)> u(S′)
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Preferences – Preference structures

Preferential dependencies

Existence of preferential dependencies between variables:

I’d like to have two consecutive time slots for my lectures (but not three)
if I don’t get the shared custody of the children then at least I’d like to
keep the cat
I want Ann or Charles or Daphne in my team, each of whom would be an
excellent goal keeper
if I receive the left shoe then I’m ready to pay more for the right shoe
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Preferences – A brief incursion into multi-attribute utility theory

An incursion into multi-attribute utility theory
N = {1,2, . . . ,n} set of attributes
Di : set of values for the ith attribute
X = D1× . . .×Dn set of all conceivable alternatives. Here:

in general, X = 2O : attribute Xi is object oi , binary domains {in,out}
(in categorized domains) attributes are categories.

J ⊆ N subset of attributes
DJ = Πj∈JDj , D−J = Πj 6∈JDj ,
(xJ ,y−J ) ∈ X : contains xj for each i ∈ J and yi for each i /∈ J
(xi ,y−i ) ∈ X : identical to y except for the value of attribute i .

Example:
X = 2{o1,o2,o3,o4,o5}

x = (in,out,out, in, in) = {o1,o4,o5};
y = (out, in, in, in,out) = {o2,o3,o4};
(x1,y−1) = (in, in, in, in,out) = {o1,o2,o3,o4}
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Preferences – A brief incursion into multi-attribute utility theory

An incursion into multi-attribute utility theory

The simplest model: representing preferences via additively decomposable
utilities

(a) for all x ,y ∈ X , x � y ⇔ u(x)≥ u(y)

(b) for all x = (x1, . . . ,xn) ∈ X , u(x) =
∑n

i=1 ui (xi )≥
∑n

i=1 ui (yi )

x = (x1, . . . ,xn),y = (y1, . . . ,yn): alternatives
xi value of x on attribute i
ui (xi ) marginal utility value of x on attribute i

When does an agent have an additively decomposable utility function?
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Preferences – A brief incursion into multi-attribute utility theory

Additive decompositions

Start with two attributes: X = D1×D2

An agent’s preference relation on X is representable by an additively
decomposable utility function iff

for all x ,y ∈ X , x � y ⇔ u1(x1) +u2(x2)≥ u1(y1) +u2(y2)

where u1 : D1→ R; u2 : D2→ R

A first necessary condition (Debreu, 1954): � must be a weak order, i.e.,
a relation satisfying

completeness: for all x ,y ∈ X , either x � y or y � x .
transitivity: for all x ,y ∈ X , x � y and y � z implies x � z.

From now on we assume that � is a weak order.
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Preferences – A brief incursion into multi-attribute utility theory

Additive decompositions: 2-dimensional spaces

Assume there exists u representing �. Then for every x1,y1 ∈ D1 and
x2,y2 ∈ D2,

(x1,x2)� (y1,x2) ⇔ u1(x1) +u2(x2)≥ u1(y1) +u2(x2)
⇔ u1(x1)≥ u1(y1)
⇔ u1(x1) +u2(y2)≥ u1(y1) +u2(y2)
⇔ (x1,y2)� (y1,y2)

This property expresses some independence between the attributes: the
decision maker takes into account the attributes separately.

33 / 92Preferences for Fair Division
N



Preferences – A brief incursion into multi-attribute utility theory

Preferential independence for two attributes

Preferential independence (Keeney & Raiffa, 76):
Attribute 1 is preferentially independent from attribute 2
(w.r.t. �) if for all x1,y1 ∈ D1 and x2,y2 ∈ D2,

(x1,x2)� (y1,x2)⇔ (x1,y2)� (y1,y2)

The preferences over the possible values of D1 are independent from the
value of D2

Example
Two binary attributes A, B with domains {a, ā}, {b, b̄}
Preference relation: ab � ab̄ � āb̄ � āb

A preferentially independent from B
B preferentially dependent on A
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Preferences – A brief incursion into multi-attribute utility theory

Separability for two attributes

Separability A preference relation � on X = D1×D2 is separable if 1 is
independent from 2 and 2 is independent from 1 w.r.t. �.

ab � ab̄ � āb̄ � āb not separable
ab � ab̄ � āb � āb̄ separable
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Preferences – A brief incursion into multi-attribute utility theory

Preferential independence for n attributes
N set of attributes; {U,V ,W } partition of N.
DU =×i∈UDi etc.

Conditional preferential independence (Keeney & Raiffa, 76)
U is preferentially independent from V (given W ) iff

for all u,u′ ∈ DU , v ,v ′ ∈ DV , w ,w ′ ∈ DW ,
(u,v ,w)� (u′,v ,w) iff (u,v ′,w)� (u′,v ′,w)

given any fixed value w of W , the preferences over the
possible values of U are independent from the value of V

abc � abc̄ � ab̄c̄ � ab̄c � āb̄c̄ � āb̄c � ābc � ābc̄

a independent from {b,c}? yes
{b,c} independent from a? no
b independent from {a,c}? no
b independent from a given c? no
b independent from c given a? yes
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Preferences – A brief incursion into multi-attribute utility theory

Separability and weak separability

U ⊆ N is independent for � if U is preferentially independent from N \U
� is separable if for every U ⊆ N, U is independent for �
� is weakly separable if for every i ∈ N, {i} is independent for �

(Remark: both notions coincide for n = 2)
abc � abc̄ � ab̄c � ābc � āb̄c � ab̄c̄ � āb̄c̄ � ābc̄

� is not weakly separable (b not independent from c given a)

abc � abc̄ � ab̄c � ābc � āb̄c � ab̄c̄ � ābc̄ � āb̄c̄
� is weakly separable
� is not strongly separable
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� is separable if for every U ⊆ N, U is independent for �
� is weakly separable if for every i ∈ N, {i} is independent for �

(Remark: both notions coincide for n = 2)
abc � abc̄ � ab̄c � ābc � āb̄c � ab̄c̄ � āb̄c̄ � ābc̄

� is not weakly separable (b not independent from c given a)

abc � abc̄ � ab̄c � ābc � āb̄c � ab̄c̄ � ābc̄ � āb̄c̄
� is weakly separable
� is not strongly separable
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Preferences – A brief incursion into multi-attribute utility theory

Additive decompositions

Question: is a strongly separable weak order � always representable by
an additively decomposable utility function?

X = D1×D2 with D1 = {a,b,c} and D2 = {d ,e, f }
ad � bd � ae � af � be � cd � ce � bf � cf
� separable
however � cannot be represented bu u = u1 +u2

(1) af � be⇒ u1(a) +u2(f )> u1(b) +u2(e)
(2) be � cd ⇒ u1(b) +u2(e)> u1(c) +u2(d)
(3) ce � bf ⇒ u1(c) +u2(e)> u1(b) +u2(f )
(4) bd � ae⇒ u1(b) +u2(d)> u1(a) +u2(e)
(1) + (2) u1(a) +u2(f )> u1(c) +u2(d)
(3) + (4) u1(c) +u2(d)> u1(a) +u2(f )
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Preferences – A brief incursion into multi-attribute utility theory

Additive independence

We need a stronger notion of independence.

N = {1, . . . ,n} attributes
Von Neumann - Morgenstern lottery over X :

[(p,x); (1−p,x ′)]

where x ,x ′ ∈ X
Additive independence

� satisfies additive independence if for every pair of
lotteries L,L′ over X such that for every attribute i , L and
L′ have the same marginal probabilities over Di , we have
L∼ L′.
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Preferences – A brief incursion into multi-attribute utility theory

Additive independence

n = 2; X = DA×DB .
Example : let � on the set of lotteries over X defined by L� L′ if
ū(L)≥ ū(L′) where u defined as follows:

u(a0,b0) = 10 u(a0,b1) = 7 u(a0,b2) = 5
u(a1,b0) = 9 u(a1,b1) = 6 u(a1,b2) = 4
u(a2,b0) = 5 u(a2,b1) = 2 u(a2,b2) = 0

[0.5,(a1,b1);0.5,(a0,b0)]∼ [0.5,(a1,b0);0.5,(a0,b1)]

[0.5,(a2,b1);0.5,(a0,b0)]∼ [0.5,(a2,b0);0.5,(a0,b1)]

etc.

� satisfies additive independence.
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Preferences – A brief incursion into multi-attribute utility theory

Additive independence
n = 2; X = DA×DB . Let � satisfying additive independence.
For any a,a′ ∈ DA,b,b′ ∈ DB we have

0.5u(a,b) +0.5u(a′,b′) = 0.5u(a,b′) +0.5u(a′,b)

therefore
fix a0 ∈ DA, b0,b1 ∈ DB ;
u(a,b0)−u(a,b1) = u(a0,b0)−u(a0,b1) = C
u(a,b0) = u(a,b1) + (u(a0,b0)−u(a0,b1)) = u(a,b1) +C

All marginal utility functions uA(.,b) : DA→ R are the same up to a
translation.

fix u(a0,b0) = 0.
u(a,b) = u(a,b0) +u(a0,b) = uA(a) +uB(b)

u is additively decomposable!
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Preferences – A brief incursion into multi-attribute utility theory

Additive independence

Characterization of additively decomposable utilities (Fishburn):

A weak order � satisfies additive independence if and only if there exists
an additively decomposable utility function u such that for all lotteries

L,L′ over X, we have L� L′ if and only if ū(L)≥ ū(L′)

ū(L) expected utility of L

Remark: this is a characterization theorem for preference relations over
lotteries. Can we find a characterization theorem for preferences over
alternatives?
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Preferences – A brief incursion into multi-attribute utility theory

Additive independence
A characterization when X is finite.
X = D1× . . .×Dn where each Di is a finite set.
Let m be an integer ≥ 2 and let x1, . . . ,xm,y1, . . . ,ym ∈ X . We say that

(x1, . . . ,xm)Em(y1, . . . ,ym)

if for all attributes i ∈ N, (x1i , . . . ,xmi ) is a permutation of (y1i , . . . ,ymi ).
Suppose that (x1, . . . ,xm)Em(y1, . . . ,ym); u is additively decomposable
then

m∑
j=1

n∑
i=1

ui (x ji ) =
m∑
j=1

n∑
i=1

ui (y ji )

Therefore, if x j � y j for all j = 1, . . . ,m−1 then xm � ym.
Condition Cm Let m ≥ 2. Cm holds if for all x1, . . . ,xm,y1, . . . ,ym ∈ X

such that (x1, . . . ,xm)Em(y1, . . . ,ym), we have

x j � y j for all j = 1, . . . ,m−1 implies xm � ym
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Preferences – A brief incursion into multi-attribute utility theory

Additive independence

Theorem (Fishburn)

Let � be a weak order on a finite set X = D1× . . .Dn. There are
real-valued functions ui on Di such that u(x) =

∑n
i=1 ui (xi ) for all x ∈ X

if and only if � satisfies Cm for all m.

Remark: for a set X of given cardinality, only a finite number of values of
m have to be checked.

44 / 92Preferences for Fair Division
N



Preferences – Combinatorial spaces and compact representation

Combinatorial spaces. . .

O = {o1, . . . ,om} indivisible objects
2O set of all bundles of objects
X ⊆ 2O set of admissible bundles that an agent may receive

Each agent has to express her preferences over X :
Sometimes, this is not a problem (for instance: one-to-one allocation)
However, generally X has a heavy combinatorial structure
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Preferences – Combinatorial spaces and compact representation

Combinatorial spaces. . .

The combinatorial trap. . .
Two objects. . .
o1o2 � o2 � o1 �∅ → 4 subsets to compare
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Preferences – Combinatorial spaces and compact representation

Combinatorial spaces. . .

The combinatorial trap. . .
Four objects. . .
o1o2o3o4 � o1o2o4 � o1o3o4 � o2o3o4 � o1o2o3 � o1o3 � o2o4 �
o3o4 � o1o4 � o1 � o2 � o4 � o3 �∅ → 16 subsets
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Preferences – Combinatorial spaces and compact representation

Combinatorial spaces. . .

The combinatorial trap. . .
Twenty binary variables. . .
o8o5 � o5o3o9 � o8 �∅� o5 � o8o5o3o9 � o8o3 � o5o9 � o3o9 �
o8o9 � o8o3o9 � o5o3 � o9 � o3 � o8o5o9 � o8o5o3o1o2o5o8o9 �
o1o5o6 � o7 � o2o3o4o5o6o7o8 � o1o2o3o4o5 � o1o3 � o2 �
o1o3o7o9 � o1o5 � o1o7o8o9 � o2 � o4 � o6 � o1o7 � o1o2o3 �
o1o2 � o2o5o4 � o1 � o2 � o1o2o5o4 � o1o5 � o2o4 � o5o4 �
o1o4 � o1o5o4 � o2o5 � o4 � o5 � o1o2o4 � o1o2o5 � o1o5 �
o5o3o9 � o1 �∅� o5 � o1o5o3o9 � o1o3 � o5o9 � o3o9 � o1o9 �
o1o3o9 � o5o3 � o9 � o3 � o1o5o9 � o1o5o3o9o6o5o1o9 � o9o5o6 �
o7 � o6o3o4o5o6o7o1 � o9o6o3o4o5 � o9o3 � o6 � o9o3o7o9 �
o9o5 � o9o7o1o9 � o6 � o4 � o6 � o9o7 � o9o6o3 � o9o6 �
o6o5o4 � o9 � o6 � o9o6o5o4 � o9o5 � o6o4 � o5o4 � o9o4 �
→ 1048575 subsets → the expression takes more than 12 days.
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Preferences – Combinatorial spaces and compact representation

The dilemma

The expression of preferential dependencies is often necessary.
but . . . Representing and eliciting � or u in extenso is unfeasible in
practice.
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Languages for compact preference representation

Outline
1 Informal introduction to fair division

Resource allocation problems: six examples
Resource allocation and fair division: taxonomy

2 Preferences
Preference structures
A brief incursion into multi-attribute utility theory
Combinatorial spaces and compact representation

3 Languages for compact preference representation
4 Ordinal preference representation

Ranking single objects
Conditional importance networks
Prioritized goals

5 Cardinal preference representation
k-additive utilities
Generalized Additive Independence
Weighted Goals
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Languages for compact preference representation

Combinatorial spaces: the dilemma
n attributes, each with d possible values ⇒ dn alternatives
[In fair division: alternatives are bundles of objects]

Way 1 Assume preferential independence
elicitation and optimization are made easier (e.g. using
decomposable utilities)
but weak expressivity (impossibility to express preferential
dependencies).

Way 2 Allow the user to express any possible preference over the
alternatives

full expressivity
but representing and eliciting � or u in extenso is
unfeasible in practice.

⇓

Half-way: languages for compact preference representation
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[In fair division: alternatives are bundles of objects]

Way 1 Assume preferential independence
elicitation and optimization are made easier (e.g. using
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Languages for compact preference representation

Representation languages for fair division

O = {o1, . . . ,om} set of objects
X = 2O

Representation language : 〈L, IL〉, where
L language
IL : Φ ∈ L 7→ preference relation �Φ or utility function uΦ induced by Φ
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Languages for compact preference representation

Representation languages for fair division

Example 1: a language for dichotomous preferences:
Lprop : set of all propositional formulas built from the propositional
symbols {o1, . . . ,on}
ϕ ∈ L 7→ uΦ defined by u(S) = 1 if S � ϕ, = 0 otherwise.
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Languages for compact preference representation

Representation languages for fair division

Example 1: a language for dichotomous preferences:
Lprop : set of all propositional formulas built from the propositional
symbols {o1, . . . ,on}
ϕ ∈ L 7→ uΦ defined by u(S) = 1 if S � ϕ, = 0 otherwise.

Example
O = { , , , , , , }.

Goal: ∧
(

( ∧ )∨
)
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Languages for compact preference representation

Representation languages for fair division

O = {o1, . . . ,om} set of objects
X = 2O

Representation language : 〈L, IL〉, where
L language
IL : Φ ∈ L 7→ preference relation �Φ or utility function uΦ induced by Φ

Example 2: (obvious) language for additive utility functions:
Ladd : set of all collections of real numbers

W = {ui ,1≤ i ≤m}

for all S ⊆ O, uW (S) =
∑

i,oi∈S ui
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Languages for compact preference representation

Representation languages for fair division

O = {o1, . . . ,om} set of objects
X = 2O

Representation language : 〈L, IL〉, where
L language
IL : Φ ∈ L 7→ preference relation �Φ or utility function uΦ induced by Φ

Example 3: “explicit” representations
for utility functions: Lexp = set of all collections of pairs

{〈S,u(S)〉|S ∈ X}

for preference relations: L′exp = list

S1 � S2 � S3 � . . .

representing a ranking over X .
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Languages for compact preference representation

Representation languages

On which criteria can we evaluate the different languages?
Expressive power: what is the set of all preference structures expressible
in the language?

Succinctness: (informally) 〈L1, IL1〉 is at least as succinct as language
〈L2, IL2〉 is any preference structure expressible in 〈L2, IL2〉 can be
expressed in 〈L1, IL1〉 without any exponential growth of size.
Computational complexity: how hard is it to compare two alternatives or
to find an optimal alternative when the preferences are represented in
〈L, IL〉?
Easiness of elicitation
Preference elicitation = interaction with a user, so as to acquire her
preferences, encoded in a language 〈L, IL〉.
Is it easy to construct protocols for eliciting the agent’s preferences in
〈L, IL〉?
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Languages for compact preference representation

Representation languages

On which criteria can we evaluate the different languages?
Expressive power: what is the set of all preference structures expressible
in the language?
Succinctness: (informally) 〈L1, IL1〉 is at least as succinct as language
〈L2, IL2〉 is any preference structure expressible in 〈L2, IL2〉 can be
expressed in 〈L1, IL1〉 without any exponential growth of size.
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Languages for compact preference representation

Representation languages

On which criteria can we evaluate the different languages?
Expressive power: what is the set of all preference structures expressible
in the language?
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Languages for compact preference representation

Representation languages

On which criteria can we evaluate the different languages?
Expressive power: what is the set of all preference structures expressible
in the language?
Succinctness: (informally) 〈L1, IL1〉 is at least as succinct as language
〈L2, IL2〉 is any preference structure expressible in 〈L2, IL2〉 can be
expressed in 〈L1, IL1〉 without any exponential growth of size.
Computational complexity: how hard is it to compare two alternatives or
to find an optimal alternative when the preferences are represented in
〈L, IL〉?
Easiness of elicitation
Preference elicitation = interaction with a user, so as to acquire her
preferences, encoded in a language 〈L, IL〉.
Is it easy to construct protocols for eliciting the agent’s preferences in
〈L, IL〉?
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Languages for compact preference representation

Expressive power

Representation language: 〈L, IL〉

Expressive power of a language = set of all preference structures that can
be expressed in the language =IL(L).

〈L, IL〉 at least as expressive as 〈L′, IL′〉 iff IL(L)⊇ IL′(L′).

Examples :
expressive power of Ladd : all additive utility functions over X ;
expressive power of Lexp : all utility functions over X .

〈Lexp, ILexp 〉 is more expressive than 〈Ladd , ILadd 〉.
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Languages for compact preference representation

Succinctness
Relative notion:
〈L1, IL1〉 is at least as succinct as 〈L2, IL2〉 if there exists F : L2→ L1 and
a polynomial function p such that for all Φ ∈ L2:

IL2(Φ) = IL1(F (Φ)): Φ and F (Φ) induce the same preferences
|F (Φ)| ≤ p(|Φ|): the translation is succinct

Example:
〈Lexp,add , Iexp,add 〉 = explicit representation restricted to additive utility
functions = set of all collections of pairs

U = {〈x ,u(x)〉|x ∈ X}

such that u is additively decomposable

〈Ladd , ILadd 〉 is strictly more succinct than Lexp,add ;
but 〈Lexp , ILexp 〉 and 〈Ladd , ILadd 〉 are incomparable because 〈Lexp , ILexp 〉 is
more expressive than 〈Ladd , ILadd 〉.
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Languages for compact preference representation

Computational complexity

What is the computational complexity of the following problems when
the preferences on X are represented in the language 〈L, IL〉:
Given an input Φ in the language 〈L, IL〉, ...

dominance: and x ,y ∈ X , do we have x �Φ y?
optimisation: find the preferred alternative (or one of the preferred
alternatives)

(trivial for monotonic preferences)

constrained optimisation: and a subset C , possibly defined succinctly,
find the preferred option (or one of the preferred options) x ∈ C .

Measuring hardness uses computational complexity notions.
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Languages for compact preference representation

Elicitation

Preference elicitation = interaction with a user, so as to acquire her
preferences, encoded in a language L (or more generally, so as to acquire
enough information about her preferences)
Construction of elicitation protocols for some families of languages:

exploiting preferential independencies so as to reduce the amount of
information to elicit and the cognitive effort spent in communication;
trade-off expressivity vs. elicitation complexity.
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Ordinal preference representation

Outline
1 Informal introduction to fair division

Resource allocation problems: six examples
Resource allocation and fair division: taxonomy

2 Preferences
Preference structures
A brief incursion into multi-attribute utility theory
Combinatorial spaces and compact representation

3 Languages for compact preference representation
4 Ordinal preference representation

Ranking single objects
Conditional importance networks
Prioritized goals

5 Cardinal preference representation
k-additive utilities
Generalized Additive Independence
Weighted Goals
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Ordinal preference representation – Ranking single objects

Ranking single objects

O = {o1, . . . ,om} set of objects
X = 2O

Lsing : set of all rankings over O
for each ranking B over O, I(B) =� is the monotonic and separable
extension of B to 2O , that is, the smallest preference relation � over 2O
such that

� extends B: for all oi ,oj ∈ O, oi B oj implies {oi} �′ {oj}
� is separable
� is monotonic

� sometimes called the Bossong-Schweigert extension, or the responsive
extension of B.
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Ordinal preference representation – Ranking single objects

Ranking single objects

m = 2, o1 B o2

∅

o2

o1

o1o2
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Ordinal preference representation – Ranking single objects

Ranking single objects
m = 3, o1 B o2 B o3

∅

o3

o2

o1 o2o3

o1o3

o1o2

o1o2o3
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Ordinal preference representation – Ranking single objects

Ranking single objects
m = 3, o1 B o2 B o3 B o4

o1o2o3o4

o1o2o3

o1o2o4

o1o2 o1o3o4

o1o3 o2o3o4

o2o4

o2o3o1o4

o3o4

o1

o2

o3

o4

∅
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Ordinal preference representation – Ranking single objects

Ranking single objects

Pros:
communication complexity: O(m. logm).

Cons:
assumes separability: what will an agent report if she prefers o2 over o3
when she has o1 and o3 over o2 if not?

o1o2o3 � o1o2 � o2o3 � o1 � o3 � o2 �∅

o1 B o3 B o2 or o1 B o2 B o3 ?

produces a (very) partial order
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Ordinal preference representation – Conditional importance networks

Conditional importance networks

(Bouveret, Endriss, Lang, 09)
allow to express conditional importance statements such as

ab : cde . fg

if I have a and I do not have b
then I prefer to have {c,d ,e} rather than {f ,g}

all other things being equal
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Ordinal preference representation – Conditional importance networks

Conditional importance networks

Conditional importance statement
S+,S− : S1 .S2 (with S+, S−, S1 and S2 pairwise-disjoint).

� is compatible with S+,S− : S1 .S2 if for every A,B ⊆ O such that
A⊇ S+ and B ⊇ S+

A∩S− = ∅ and B∩S− = ∅
A⊇ S1 and B 6⊇ S1
B ⊇ S2 and A 6⊇ S2
for each o ∈ O \ (S+∪S−∪S1∪S2), we have o ∈ A iff o ∈ B

then A� B

Example: ad : b . ce implies for example ab � ace, abfg � acefg , . . .

CI-net
A CI-net is a set N of conditional importance statements.
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Ordinal preference representation – Conditional importance networks

Conditional importance networks

Conditional importance statement
S+,S− : S1 .S2 (with S+, S−, S1 and S2 pairwise-disjoint).

CI-net
A CI-net is a set N of conditional importance statements on V.

Preference relation induced from a CI-net
�N is the smallest preference relation over 2O such that

�N is compatible with every conditional importance statement in N
�N is monotonic
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Ordinal preference representation – Conditional importance networks

Conditional importance networks
A CI-net of 4 objects {a,b,c,d}: {a : d .bc,ad : b . c,d : c .b}

∅

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

Induced preference relation �N : the smallest preference monotonic relation compatible with
all CI-statements.
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Ordinal preference representation – Conditional importance networks

Conditional importance networks
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Ordinal preference representation – Conditional importance networks

Conditional importance networks

we recover the singleton ranking form when the CI-net is of the form

∅,∅ : o1 .o2
∅,∅ : o2 .o3;
. . .
∅,∅ : om−1 .om

CI-nets can express all strict monotonic preference relations on 2O .
dominance and satisfiability: PSPACE-complete (existence of
exponentially long irreducible dominance sequences)
in P for precondition-free, singleton-comparing CI-statements (such as
{a . c,b . c,e .d}).
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Ordinal preference representation – Prioritized goals

Prioritized goals

Φ = {ϕ1, . . . ,ϕq} + a weak order D on {ϕ1, . . . ,ϕq}
equivalently, Φ = 〈Φ1, . . . ,Φq〉 where Φ1 is the set of highest priority
formulas, etc.

leximin semantics A� B if there is a k ≤ q such that
|{ϕ ∈ Φi ,A � Φk}|= |{ϕ ∈ Φi ,B � Φk}|;
for each i < k: |{ϕ ∈ Φi ,A � Φi}|= |{ϕ ∈ Φi ,B � Φi}|.

discriimin semantics A� B if there is a k ≤ q such that
{ϕ ∈ Φi ,A � Φk} ⊃ {ϕ ∈ Φi ,B � Φk};
for each i < k: {ϕ ∈ Φi ,A � Φi}= {ϕ ∈ Φi ,B � Φi}.

Particular case: conditionally lexicographic preferences
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Cardinal preference representation

Outline
1 Informal introduction to fair division

Resource allocation problems: six examples
Resource allocation and fair division: taxonomy

2 Preferences
Preference structures
A brief incursion into multi-attribute utility theory
Combinatorial spaces and compact representation

3 Languages for compact preference representation
4 Ordinal preference representation

Ranking single objects
Conditional importance networks
Prioritized goals

5 Cardinal preference representation
k-additive utilities
Generalized Additive Independence
Weighted Goals
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Cardinal preference representation – k-additive utilities

k-additive utilities

A utility function over X = 2O is k-additive if it can be expressed as the
sum of sub-utilities over subsets of objects of cardinality ≤ k.
Φ: u : {S ⊆ O, |S| ≤ k}→ R

u(x) =
∑

S⊆O,|S|≤k

u(S)

Example: O = {a,b,c,d},k = 2

u(a,b,d) = u(ab) +u(ad) +u(bd) +u(a) +u(b) +u(d)
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Cardinal preference representation – k-additive utilities

k-additive utilities

u is 1-additive ⇔ u is additive
every utility function is m-additive (m = |O|)
a k-additive function can be also expressed as the sum of sub-utilities over
subsets of attributes of cardinality exactly k.

u(x) =
∑

S⊆O,|S|=k

v(S)

can be specified by values v(S) for all |S|= k:
(

m
k

)
values

polynomially large if k is a constant, otherwise exponentially large
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Cardinal preference representation – k-additive utilities

k-additive utilities

An example
O consists of 10 pairs of shoes
u(S) = 10p+ s if S contains a total of p matching pairs and in addition s
single shoes
u is 2-additive:

u({lefti}) = u({righti}) = 1 for all i
u({lefti , righti}) = 8 for all i

Exercise: express u as the sum of local values of sets of exactly two shoes.
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Cardinal preference representation – k-additive utilities

k-additive utilities
Another example

Categorized domain: three attributes N = {main,dessert,wine}, and

X = {Meat,Fish,Veggie}×{Apple,Cake}×{Red ,White}

umain udessert uwine umain,wine umain,dessert udessert,wine

m 8
f 10
v 12

a 1
c 5

r 1
w 0

r w
m 5 −1
f −1 5
v 0 0

a c
m 2 0
f 0 0
v 0 3

a c
r 0 0
w 0 0

u(vrc) = uM(v) +uD(c) +uW (r) +uMW (vr) +uMD(vc) +uWD(rc)
= 12+5+0+0+3+0 = 18

Exercise: find the optimal alternative
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Cardinal preference representation – k-additive utilities

Incursion into computational complexity

Two key notions from computational complexity theory:
a problem is in the class P if it can be solved by an algorithm running in
an amount of time bounded by a polynomial function of the size of the
input data.
a decision problem (= checking that a property holds) is in NP
(nondeterministic polynomial time) if given a solution of the problem, this
solution can be verified in polynomial time
a problem is NP-hard if it is “at least as difficult” as all problems in NP
a decision problem is NP-complete if (a) it is in NP and (b) it is NP-hard
is is strongly believed that P is strictly contained in NP (therefore: for
solving an NP-complete problem, so far we only have exponential-time
algorithms).

76 / 92Preferences for Fair Division
N



Cardinal preference representation – k-additive utilities

k-additive form: complexity

For any k ≥ 2:
given a k-additive representation...

and an alternative x , computing u(x) is in P
and a number α, checking that there exists an alternative x such that
u(x)≥ α is NP-complete
finding x with u(x) maximal is NP-hard (except of course if we know
beforehand that preference are monotonic...)
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Cardinal preference representation – Generalized Additive Independence

Generalized Additive Independence

GAI-decomposability
Let X1, . . . ,Xk be a family of subsets of N such that

⋃
i Xi = N.

u is GAI-decomposable with respect to X1, . . . ,Xk if there exist k subu-
tility functions

ui : Xi → R

such that

u(x) =
k∑
i=1

ui (xXi )

k-additivity = GAI-decomposability, with |Xi | ≤ k for all i .
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Cardinal preference representation – Generalized Additive Independence

Generalized Additive Independence

N = {first,main,dessert,wine}

X = {Soup,Pasta}×{Meat,Fish,Veggie}×{Apple,Cake}×{Red ,White}

X1, . . . ,Xk = {{first},{main,wine},{main,dessert}}

ufirst umain,wine umain,dessert

s 3
p 1

r w
m 13 7
f 9 15
v 12 12

a c
m 2 0
f 0 0
v 0 3

Dominance is in P
Optimisation is NP-hard in the general case
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Cardinal preference representation – Weighted Goals

Background on propositional logic

Let ATM be a set of propositional symbols. The propositional language
generated from PS is the set of formulas LPS defined as follows:

every propositional symbol is a formula;
> and ⊥ are formulas;
if ϕ is a formula then ¬ϕ is a formula;
if ϕ and ψ are formulas then ϕ∧ψ, ϕ∨ψ, ϕ→ ψ, and ϕ↔ ψ are formula;

> (true) and ⊥ (false): logical constants
¬ (not): unary connective
∧ (and), ∨ (or), → (implies), ↔ (equivalent) : binary connectives.
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Cardinal preference representation – Weighted Goals

Background on propositional logic

An interpretation (or valuation) is a mapping from PS to {0,1}. An
interpretation I is extended to formulas by the following rules:

I(>) = 1;
I(⊥) = 0;
I(¬ϕ) = 1− I(ϕ);
I(ϕ∨ψ) = max(I(ϕ), I(ψ));
I(ϕ∧ψ) = min(I(ϕ), I(ψ));
I(ϕ→ ψ) = I(¬ϕ∨ψ);
I(ϕ↔ ψ) = I((ϕ→ ψ)∧ (ψ→ ϕ)).

I is a model of ϕ, denoted I � ϕ, iff I(ϕ) = 1

Mod(ϕ) = {I | I � ϕ}
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Cardinal preference representation – Weighted Goals

Background on propositional logic

Validity ϕ is valid if I(ϕ) = 1 for every interpretation I
� ϕ

Satisfiability ϕ is satisfiable if I(ϕ) = 1 for at least one interpretation I
Logical consequence

ψ is a logical consequence of ϕ if every model of ϕ is a
model of ψ
ϕ � ψ

Logical equivalence
ϕ and ψ are equivalent if they are logical consequences of
each other
ϕ≡ ψ
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Cardinal preference representation – Weighted Goals

Background on propositional logic
Some classes of formulas:

literals: atomic formulas or negations of atomic formulas

a ¬b . . .

clauses: disjunctions of literals, including the empty clause ⊥

a∨¬b∨ c d ∨¬d ⊥ . . .

k-clauses: disjunctions of at most k literals

cubes: conjunctions of literals, including the empty cube >

a∧¬b∧ c d ∧¬d > . . .

k-clauses: conjunctions of at most k literals

positive formulas: formulas in which the only connectives appearing are ∧
and ∨

a∧ (b∨ c) a∨ (b∧ c) . . .
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Cardinal preference representation – Weighted Goals

Binary variables

Particular case: binary variables → Di = {>,⊥} for all i .
Can be used to represent subsets of elements.

A set of elements O = {o1, . . . ,om} → binary variables {o1, . . . ,om},
where each variable Oi stands for the presence or absence of oi .

→ each instantiation / interpretation represents a subset π of O

Example of application: allocation of indivisible goods

Example: o1ō2ō3o4ō5 represents the subset {o1,o4}.
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Binary variables

Particular case: binary variables → Di = {>,⊥} for all i .
Can be used to represent subsets of elements.

A set of elements O = {o1, . . . ,om} → binary variables {o1, . . . ,om},
where each variable Oi stands for the presence or absence of oi .

→ each instantiation / interpretation represents a subset π of O

Example of application: allocation of indivisible goods

Example: o1ō2ō3o4ō5 represents the subset {o1,o4}.

84 / 92Preferences for Fair Division
N



Cardinal preference representation – Weighted Goals

Of logic and goals
Logic-based languages suit well when we have to deal with binary
variables (e.g. resource allocation problems).

A propositional syntax LO. . .
set of propositional symbols O,
usual connectives
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Cardinal preference representation – Weighted Goals

Of logic and goals
Logic-based languages suit well when we have to deal with binary
variables (e.g. resource allocation problems).

A propositional syntax LO. . .
set of propositional symbols O,
usual connectives

Example
O = { , , , , , , }.
Set of requests for one agent:

∧
(

( ∧ )∨
)
,

∧ .
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Cardinal preference representation – Weighted Goals

Dichotomous preferences...

What to do with all these goals ?

A first (simplistic) example: dichotomous preferences.

Example
Variables O = {o1,o2,o3}

o2∧ (o1∨o3)

represents the dichotomous preference relation

{o1,o2,o3} ∼ {o1,o2} ∼ {o2,o3} � all others subsets
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Cardinal preference representation – Weighted Goals

Weighted logics

Language LW :
G = a set of pairs 〈ϕi ,wi 〉 where

ϕi is a propositional formula;
wi is a real number

IL(G) = uG defined by: for all x ∈ 2PS ,

uG (x) =
⊕
{wi | 〈ϕi ,wi 〉 ∈ G and x � ϕ}

⊕ non-decreasing, symmetric function
two usual choices: ⊕= + and ⊕= max.
rest of the talk: ⊕= +
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Cardinal preference representation – Weighted Goals

Expressing preferences over sets of goods
Binary variables fit well to resource allocation problems with indivisible
goods

an attribute i = an indivisible object oi
O = {o1, . . . ,on}
an alternative = a bundle of goods bi ⊆ O

oi ∈ b iff bi = 1

each agent has to express a utility function over the set of possible
bundles 2O
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Expressing preferences over sets of goods
Binary variables fit well to resource allocation problems with indivisible
goods

an attribute i = an indivisible object oi
O = {o1, . . . ,on}
an alternative = a bundle of goods bi ⊆ O

oi ∈ b iff bi = 1

each agent has to express a utility function over the set of possible
bundles 2O

Example
O = { , , , , , , }.
Set of requests for one agent:

∧
(

( ∧ )∨
)
,

∧ .
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Cardinal preference representation – Weighted Goals

Expressing preferences over sets of goods

Example
O = { , , , , , , }.
Agent 1’s requests:〈

∧
(

( ∧ )∨
)

,110
〉
,〈

,−10
〉
,〈

∧ ,50
〉
.

Computation of individual utility (⊕= +) :

π1 = { , , , }
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Expressing preferences over sets of goods

Example
O = { , , , , , , }.
Agent 1’s requests:〈

∧
(

( ∧ )∨
)

,110
〉
,〈

,−10
〉
,〈

∧ ,50
〉
.

Computation of individual utility (⊕= +) :

π1 = { , , , }⇒ u1(π1) =
∧(( ∧ )∨ )
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Cardinal preference representation – Weighted Goals

Expressing preferences over sets of goods

Example
O = { , , , , , , }.
Agent 1’s requests:〈

∧
(

( ∧ )∨
)

,110
〉
,〈

,−10
〉
,〈

∧ ,50
〉
.

Computation of individual utility (⊕= +) :

π1 = { , , , }⇒ u1(π1) = 110−10
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Expressing preferences over sets of goods

Example
O = { , , , , , , }.
Agent 1’s requests:〈

∧
(

( ∧ )∨
)

,110
〉
,〈

,−10
〉
,〈

∧ ,50
〉
.

Computation of individual utility (⊕= +) :

π1 = { , , , }⇒ u1(π1) = 110−10+

∧
0
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Cardinal preference representation – Weighted Goals

Expressing preferences over sets of goods

Example
O = { , , , , , , }.
Agent 1’s requests:〈

∧
(

( ∧ )∨
)

,110
〉
,〈

,−10
〉
,〈

∧ ,50
〉
.

Computation of individual utility (⊕= +) :

π1 = { , , , }⇒ u1(π1) = 110−10+0 = 100
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Cardinal preference representation – Weighted Goals

Weighted goals: expressive power

Depends on the formulas and the weights allowed in the pairs 〈ϕ,w〉.
Examples:

positive cubes + all weights: fully expressive
literals + all weights: additive functions
2-cubes + all weights: 2-additive functions
cubes + positive weights: non-negative functions
clauses + positive weights: a proper subset of all nonnegative functions

Hint u({o1,o2}) = 1, u({o1}) = u({o2}) = 0: not expressible!
positive formulas + positive weights: monotonic non-negative functions
positive cubes + positive weights: a proper subset of all monotonic
non-negative functions
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Cardinal preference representation – Weighted Goals

Weighted goals: succinctness

all formulas + all weights: fully expressive
positive cubes + all weights: fully expressive

But

all formulas + all weights
more succinct than

positive cubes + all weights

Hint: try to express u defined by

u(x) = max
i=1,...,n

xi
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Cardinal preference representation – Weighted Goals

Weighted goals: computational complexity

comparing two alternatives: can be solved in polynomial time
finding an optimal alternative: NP-complete in the general case, even for
dichotomous utilities
finding an optimal alternative: polynomial for some restrictions of the
language

monotonic fragment (no negation, positive weights)
additive fragment (literals only)

92 / 92Preferences for Fair Division
N


	Informal introduction to fair division
	Resource allocation problems: six examples
	Resource allocation and fair division: taxonomy

	Preferences
	Preference structures
	A brief incursion into multi-attribute utility theory
	Combinatorial spaces and compact representation

	Languages for compact preference representation
	Ordinal preference representation
	Ranking single objects
	Conditional importance networks
	Prioritized goals

	Cardinal preference representation
	k-additive utilities
	Generalized Additive Independence
	Weighted Goals


