FAIR SHARING OF
EARTH OBSERVING SATELLITE RESOURCES
\rightarrow PLEIADES system

M. Lemaître

formerly ONERA Toulouse, France

FairDiv summer school, Grenoble, France, July 15, 2015

context

Studies: sharing the use of the PLEIADES system

driven by

Office National d'Études et de Recherches Aérospatiales (ONERA)
for
Centre National d'Etudes Spatiales (CNES)
from 2001 to 2004.

- M. Lemaître, M. Llibre, G. Verfaillie, ONERA
- N. Bataille, J.-M. Lachiver, CNES
- H. Fargier, J. Lang, CNRS / IRIT
plan of the talk

1. PLEIADES
2. basic sharing model
3. complications
4. feedback and impact

PLEIADES : a system of Earth Observing Satellites

Optical observation system of 2 satellites
Colour images 50 cm , mono, stereo
Daily visit on any point on the globe
Dual usage : defense and civilian

Launched in 2011 and 2012, operational since 2013
Co-funded by several space agencies (France / Italy / Spain)
Developed by CNES
build and operated by Airbus Defense and Space (ex Astrium)

Figures/prise_de_vue.mpeg
http://videos-en.astrium.eads.net/\#/video/iLyROoafzJzU
http://www.geo-airbusds.com/pleiades/

PLEIADES system mission
To acquire images, in response to requests from customers.

PLEIADES fair sharing problem (informal) $1 / 2$

Each 8 hours, build an acquisition plan for the next 8 hours
For each plan, select a subset of images to be programmed
Every day, hundreds of feasible images ...
All feasible images cannot be programmed in the same plan,
due to conflicts between them
(respect of physical constraints)
Each (plan) selection of programmed images is
an allocation of indivisible objects (images) to agents
subject to constraints

PLEIADES fair sharing problem (informal) 2/2

Each allocation must be

- admissible :
respect constraints
- efficient:
the system must not be under-exploited
- fair:
system co-funded by several countries (agents)
France/Italy/Spain
and exploited in common
The "returns on investment" should be, for the agents, proportional to their (unequal) financial contribution \rightarrow entitlements

1. understand, clarify needs and wishes
2. formalise
3. design methods/algorithms

We advocated a clear separation between
model (utilities, efficiency, fairness, ...) and resolution (algorithms)

Centralized resolution procedure

fair allocation problem: basic model (1/2)

agents and objects

- $N=\{1, \cdots, n\}$: agents
- \mathcal{O} : indivisible objects (images)
- $\Delta_{1}, \cdots, \Delta_{n}$, with $\Delta_{i} \subseteq \mathcal{O}$: demands of agents
(requested images)
$\Delta_{i} \cap \Delta_{j}=\emptyset$ for all $i \neq j$
$\Delta \stackrel{\text { def }}{=} \cup_{i} \Delta_{i}$
- $\mathrm{x}=\left\langle x_{1}, \cdots, x_{n}\right\rangle$: an allocation where $x_{i} \subseteq \Delta_{i}$ is the share of agent i in x
- $\operatorname{Adm}(\Delta)$: set of admissible allocations for Δ

fair allocation problem: basic model (2/2)

preferences and utilities

- $w(o) \in \mathbb{R}^{+*}$: weight given to object o (by the agent requesting it)
\rightarrow weights are set freely by agents
- $u\left(x_{i}, \Delta_{i}\right) \in \mathbb{R}^{+}$: individual utility of x for i, measure of individual satisfaction
- $u c(\mathbf{x}, \Delta) \in \mathbb{R}^{+}$: collective utility of \mathbf{x}, measure of collective satisfaction

Each agent i wants its individual utility $u\left(x_{i}, \Delta_{i}\right)$ maximized
"Best" allocation : maximize the collective utility $u c(\mathrm{x}, \Delta)$
\rightarrow How to define $u\left(x_{i}, \Delta_{i}\right)$ and $u c(\mathbf{x}, \Delta)$?

Agents' entitlements : $\mathbf{e}=\left\langle e_{1}, \cdots, e_{n}\right\rangle$
ex : 25, 11, 3
individual utilities

A simple approach :
additive utilities
\rightarrow first try :

$$
u\left(x_{i}, \Delta_{i}\right) \stackrel{\text { def }}{=} \sum_{o \in x_{i}} w(o)
$$

agents are indifferent to get 2 objects of weights (w_{1}, w_{2}) or 1 object of weight $\left(w_{1}+w_{2}\right)$
normalisation of individual utilities

We need to express individual utilities on a common scale
\rightarrow normalised individual utility (Kalai-Smorodinsky) :

$$
u\left(x_{i}, \Delta_{i}\right) \stackrel{\text { def }}{=} \frac{\sum_{o \in x_{i}} w(o)}{\max _{x \in \operatorname{Adm}\left(\Delta_{i}\right)} \sum_{o \in x} w(o)}
$$

$$
u\left(x_{i}, \Delta_{i}\right) \in[0,1]
$$

collective utility

$$
u c(\mathbf{x}, \Delta)=g\left(\left\langle u\left(x_{1}, \Delta_{1}\right), \cdots, u\left(x_{n}, \Delta_{n}\right)\right\rangle, \mathbf{e}\right)
$$

Desirable properties:

- monotonicity : $u c(\mathbf{x}, \Delta)$ should increase when $u\left(x_{i}, \Delta_{i}\right)$ increases \rightarrow Pareto-efficiency
- fairness
\rightarrow at least symetry (anonymicity)
\rightarrow ? «fair share», «inequality reduction (Pigou-Dalton)», ... ?

Many possibilities ..

collective utility function
«Ethical» choices

- egalitarianism
- classical utilitarianism
- compromises, Nash
egalitarianism
with equal entitlements : $u c(\mathrm{x}, \Delta) \stackrel{\text { def }}{=} \min _{i} u\left(x_{i}, \Delta_{i}\right)$
with unequal entitlements : $u c(\mathrm{x}, \Delta) \stackrel{\text { def }}{=} \min _{i} \frac{u\left(x_{i}, \Delta_{i}\right)}{e_{i}}$
\rightarrow tend to maximize the $u\left(x_{i}, \Delta_{i}\right)$ and make them proportional to e_{i}

Needs a small improvement to get monotonicity : the leximin social welfare preordering.

$$
\begin{array}{cc}
a=(2,9,2) & \rightarrow(2,2,9) \\
b=(3,2,3) & \rightarrow(2,3,3) \\
b>_{\text {leximin } a}
\end{array}
$$

classical utilitarianism

with equal entitlements : $u c(\mathrm{x}, \Delta)=\sum_{i} u\left(x_{i}, \Delta_{i}\right)$
with unequal entitlements: ?

$$
u c(\mathrm{x}, \Delta)=\sum_{i} e_{i} \cdot u\left(x_{i}, \Delta_{i}\right)
$$

(questionable)
\rightarrow in this approach, equity is not a strong concern but it can work either ...

Is it fair ? we are indifferent between giving δu_{j} to i or giving δu_{j} to j, if $q_{i} \cdot \delta u_{i}=q_{j} \cdot \delta u_{j}$, not considering whether i is already richer or poorer than j.

compromises: OWA

Ordered Weighted Averaging (OWA) operators [Yager 88]

$$
\begin{aligned}
& u(\mathrm{x}) \stackrel{\text { def }}{=}\left\langle u_{1}, u_{2}, \ldots, u_{n}\right\rangle \\
& u^{\star}(\mathrm{x}) \stackrel{\text { def }}{=}\left\langle u_{1}^{\star}, u_{2}^{\star}, \ldots, u_{n}^{\star}\right\rangle
\end{aligned}
$$

the same as $u(\mathrm{x})$ but sorted increasing. Then

$$
\left.\left.u c(\mathbf{x}) \stackrel{\text { def }}{=} \sum_{i} \alpha^{i-1} \cdot u_{i}^{\star}, \text { with } \alpha \in\right] 0,1\right] .
$$

- $\alpha=1 \rightarrow$ pure utilitarianism
- α small enough \rightarrow egalitarianism (leximin preordering).

compromises: SE

«Sum of Exponents» operators [Moulin 1988 / 2003] Additive family.

$$
\begin{gathered}
u c_{(p)}(\mathbf{x}) \stackrel{\text { def }}{=} \sum_{i} g_{(p)}\left(u_{i}\right), \quad p \leq 1 \\
\text { with } g_{(p)}(u) \stackrel{\text { def }}{=} \operatorname{sgn}(p) \cdot u^{p}, p \neq 0 \\
\operatorname{sgn}(p) \stackrel{\text { def }}{=} 1 \text { if } p>0, \operatorname{sgn}(p) \stackrel{\text { def }}{=}-1 \text { if } p<0 \\
g_{(0)}(u) \stackrel{\text { def }}{=} \log u \quad(\text { Nash })
\end{gathered}
$$

- $p=1$: pure utilitarianism
- $p \rightarrow-\infty$: egalitarianism (leximin preordering).
insights into the real problem
- each plan is built from 3 sequential "phases"

1 - defense : constrained number of images (ex : 25, 11, 5)
2 - civilian : idem (ex: 100, 44, 20)
3 - "routine" : entitlements

- repeated planification
- *big* and *difficult* optimisation problem in constrained time
other studied topics

Elicitation of preferences (weights)
Manipulations
Temporal regulation
Common requests
Planning, heuristics

feedback

Many of our propositions (not all) have been implemented into the operational ground system.

Accepted propositions

- separation model / resolution
- utility based model
- normalisation
- cooperative aspects : common requests
- preference elicitation

feedback (continued)

Rejected propositions:

- egalitarian sharing (min criteria)
was considered too favourable towards less entitled agents \rightarrow a weighted sum was actually chosen.

Refitted propositions :

- in the first sharing phase (defense)
a negotiation step was added :
- to define common requests (if any)
- a reference ("optimal") allocation is computed,
plus several "good" allocations,
on which they negotiate / vote.

impact

Research contributions on fair division of indivisible goods
(Sylvain Bouveret' thesis, articles)

- leximin optimisation
- unequal fair division (entitlements)
- complexity
- compact preference representation
- fair division of indivisible goods under risk (Charles Lumet's thesis)
- logical fairness criteria
https://sites.google.com/site/michellemaitre31/
http://recherche.noiraudes.net

Fair division problems do exist in the real world !

They are not simple and certainly not "pure" fairness problems

We (scientists) need good listening and pedagogical skills to make your propositions considered and accepted
H. Moulin, Axioms of Cooperative Decision Making, 1988
H. Moulin, Fair Division and Collective Welfare, 2003

6
egalitarian and classical utilitarian with equal entitlements

classical utilitarianism, egalitarianism and fairness with unequal entitlements

