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BASIC SETTIN G Possible applications:

A is the set of m agents, e tenants and houses

C' is the set of n objects. .
e workers and positions
FEach agents

e consumes at most one object e researchers and offices

e has strict preferences over ob jects@ents and cou@

I = (A,C,P) is an instance e ice-hockey teams and players
of the matching problem.

(a1) : ¢ CS:@C77 5 Which matching is optimal?
((12) C3,Ce, C7

IIEEZS% ?’ 25 54’ “ A matching M’ dominates a matching M

4) - ¢ &3 @ 2 if at least one applicant prefers M’ to M
P(as) : ¢4, 1,62 : /

and no applicant prefers M to M.

Plas) : 1, & A matching M is Pareto optimal if
P(as) : e1,(a) ca matching M is Pareto optimal i

it is not dominated by any other matching.
Matching: M,

(), (), (2, (), () O
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SERIAL DICTATORSHIP SD

Agents are ordered into a picking sequence (policy) o.
Each agent on her turn according to o picks her most preferred available object.

S
.—l

. @ C3,C2,C7,Cs

: @ C3, Cg, C7

o

Q
N

P(ay)

P(az)

P(ag) : C5,C6,C4, C1
P(ay) : cl,@04,cQ
P(as) : ¢cq4,C1,Co

P(aﬁ) . C4,C9

P(azr) : c1,c3,¢4

Policy 01 = a1,a9,...,ar

Matching: Mgp1
{062, (), ¢}

Size of MSDl: 4

P(al) : 647637629@05
P(as) : c1,c3,(ce)cr
P(a3) : c2cs) cs, ca, 1
P(ay) : c1{C3) ca, 2
P(as) : ¢y, c1,

P(aﬁ) . Co

P(az) :\c1) c3, ¢4

Policy 09 = a7, ag,...,a1
Matching: Mgpo

{6, (2, (22), (). (22 (29). (D) ]

Size of MSDQI 7
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PROPERTIES OF SERIAL DICTATORSHIP

Theorem 1. SD produces a POM for any policy.
Theorem 2. SD is strategy-proof.

Theorem 3. SD can produce any POM.

Proved by:
Svensson 1994, Abdulkadiroglu & Sonmez 1998, Abraham, KC, Manlove &

Mehlhorn 2004, Brams & King 2005

Characterization of POM:

e maximal
e trade-in free

e coalition-free
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MINITUTORIAL ON GRAPHS 1

Graph is a pair (V, E); V is the set of vertices and F is the set of edges (arcs).

U2
Undirected graph: U3
edges are unordered pairs of vertices U1

U4

Bipartite graph: Y1
vertices partitioned into sets V, U,
edges are only between V and U v2
U2
Directed graph:
: : U3
arcs are ordered pairs of vertices '
Vg
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MINITUTORIAL ON GRAPHS 2

U2

U4

U4

Path Cycle

A directed graph that contains no cycle is called acyclic

An acyclic graph contains:

a source: vertex with no incomming arcs
a sink: vertex with no outgoing arcs

An acyclic directed graph admits a topological labelling of vertices o : V — N:
if there is an arc ¢ — j then o (i) > o ()

Algorithm: give a sink v the minimum possible label; delete its incomming arcs
and repeat.
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CHARACTERIZATION OF POM

@ — no pair can be added

: Acceptability graph G(I): vertices are agents and objects
e trade-in free . . .
Matching: set of edges; no two have a vertex in common
e coalition-free Maximal matching: no edge can be added

Maximum matching: matching with maximum cardinality

ai
P(ay) : 04@ C2, C7, Cs s
P(as) :@03,06,07
P(ag) . 62,65 C4,C1 as
P(ay) 61,03,64@
P(as) : ¢4, 1,2 a4
P(ag) : ¢4, co as
P(a7) : e, (33,
Matching: M, ag

{69,626, . D} o

Katarina Cechlarova, Pareto optimal matchings




CHARACTERIZATION OF POM

e maximal
o — no matched agent can move to a preferred free object

e coalition-free

P(ay) : C4@ Ca, C7,C5 M, is

P(as) :@c?,7 ce, C7 not trade-in free:
P(a3) : c3 , 4, Cq as can move to cs
P(ay) : c1,C3, ¢4

P(as) : ¢4, 1,2

P(ag) : ¢4,

P(a7) : e, (33,

Matching: Mo

{6,262, 6. ()}
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CHARACTERIZATION OF POM

e maximal

e trade-in free

@ahtion—free — no coalition of agents can exchange their objects
Envy graph G(Ms): vertices are agents
Arc a; — a; if a; has an object that a; prefers to M (a;)

P(ay) : ¢ ’@ ¢y, C7, Cs M admits a coalition if and only if G(M) contains a cycle.
P(az) {c1) c3, c6, 7

P(a3) : 627@66704,01

P(CL4) - €1,C€3,C4

P(a’5) - C4,C1,C2

P(ag) : c4, 2

P(a’7) : 617639

Matching: Mo
{6, (), (2. (.}
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CHARACTERIZATION OF POM

e maximal

e trade-in free
@ahtion—free — no coalition of agents can exchange their objects
Envy graph G(Ms): vertices are agents
Arc a; — a; if a; has an object that a; prefers to M (a;)

M admits a coalition if and only if G(M) contains a cycle.
% c2,C7,C5

Q
[EY

P(ay)

P(az) . C3, Cg, C7

P(a3) : 027@66704,(31 Q

P(ay) : c1,¢3,¢4 '\ o 2
P(as) : cq,c1,Co

P(aﬁ) . Cq,C2

P(a7)

as

S’-’
ﬂ

.1 @, a’6

Matching: Mjs as

{00,629, ¢ D} Coalition (ar, an)
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CHARACTERIZATION OF POM

e maximal

e trade-in free

@ahtion@ — no coalition can profitably exchange their houses
Envy graph G(M3) — is acyclic

P(aq) 2@63,62,67,65
P(az) {c1) cs3, cg, C7
P(ag) . CQ,@66,04,61
P(as) : c1,¢3,¢c4
P(as) : cq,c1,Co
P(aﬁ) . Cq,C2

P(ar)

S’-’
ﬂ

: Cl)@ Cq
Matching: M3y
{52, (). 0, ()}
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CHARACTERIZATION OF POM

e maximal

e trade-in free
@ahtion—free — no coalition can profitably exchange their houses

Envy graph G(Ms) — is acyclic
—> (G(M3) admits a topological ordering o

P(a’l) : Cc3,C2,C7,C5
P(az) : é%ﬂ? ay @ 1
P((Ig) - C2, C6, C4,C1

3 as | 2
P(CL4) - €1,C€3,C4 a7 @ 2
P(as) : ¢y, 01,9
P(aﬁ) . Cq,C2 ag

az | o

P(ar)

S’-’
ﬂ

. Cl,@ Cyq !

Matching: M3y

{(2)’ (zf)’ (CCL;))’ (ij)’ (g)} — o gives a policy to obtain M3

0 = (ala az, ar, a4, a3, ds, CL6)
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ALTERNATIVE TESTING FOR COALITIONS

Aziz et al., Optimal Reallocation under Additive and Ordinal Preferences, 2016

Object improvement graph G(Ms): vertices are objects

Arc ¢; — ¢; if there exists an agent a who prefers ¢; to ¢; = M(a)

M admits a coalition if and only if G(M) contains a cycle.

P(ai): c ,@62707905

P(az) {c1) cs3, cg, C7

P(ag) . CQ,@CG,C4,61

P(a’4) - €1,C3,C4 C7r @
P(as) : cq,c1,Co

P(aﬁ) . Cq,C2

P(a7) : 61,63, 6 @

Matching: Mo
{6, (), (2. (.}
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FINDING A MAXIMUM CARDINALITY POM

1. Find a maximum cardinality matching M; in acceptability graph G(I).

2. Use all possible trade-ins to get a matching Ms.

3. Satisfy all coalitions to get a matching Ms.

P(ay) : 64503502,@05 P(ay) : 04,03502,@05
P(as) : 01,63,'07 P(as) : 1 03,‘C7
P(a3) : c2cs) 66764701 P(a3) : c2,cs) e, ca, 1
P(ay) : c1{c3)c P(ayg) : c @ Cq,Co
P(as) : ¢g, 1, P(as) :(cq) c1,co
P(ag) :(gg) o5 P(ag) : afe2)

P(CL7) . C3,Cy P(CL7) @03, Cq

Given an agent a and object c:

Steps 2,3:
size of matching cannot decrease
Pareto optimality is ensured

POS(a, c): Does there exist a policy o such that Mgp(s)(a) = c?
NEC(a,c): Is it true that Mgp(s)(a) = ¢ for each policy o?

Saban & Sethuraman 2013:

POS(a, c) is NP-complete and NEC(a,c) is polynomial if each agent finds all

objects acceptable.
Further results:

Aziz, Brand, Brill, Mestre 2014
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MANY-TO-MANY MATCHINGS

Course allocation problem: applicants+courses, various feasibility constraints

EXISTENCE OF A POM

Take the set of all feasible matchings M.

Create a partial order = on M:

M = M’ if M(a) = M'(a) each agent a and M'(a) > M (a) for no agent a.

As M is finite, (M, =) has =-maximal elements = they correspond to POM.

TESTING FOR PARETO OPTIMALITY

coNP-complete in many settings
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EXTENDING PREFERENCES

Agents have preferences over individual objects, need to compare sets.
Agent a: (strictly) prefers object ¢ to object ¢’: notation ¢ >, ¢
is indifferent between objects ¢ and ¢’: notation ¢ ~ ¢
weakly prefers object ¢ to object ¢’: notation ¢ =, ¢
Minimal requirement for the preference extension: responsiveness

/

Two most common set preferences:

Additive:  agent a has utility u,(c) for each object ¢ € C

a prefers set S toset T'if ) _gquqa(c) > D cpualc)
Lexicographic: agent a prefers set S to set T if the most preferred object
in the symmetric difference S @& T' belongs to S

Characteristic vector x2: entries ordered according to a’ preferences

1 if ce S
Co={5 b

otherwise

a prefers set S to set T if x2 is lexicographically greater than xI.
Example: P(a) :©), c2,C), C5, C3 S={ea,alx =(1,0,1,0,0) | — , prefers
P(CE) :@’ €2, C4, @@ = {61305963}; X:{ — (130701 ]-a 1) S to L
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EXAMPLES OF FEASIBILITY CONSTRAINTS

(/) Capacity constraints. A bundle of courses is feasible for applicant a
with capacity ¢(a) if and only if its size does not exceed this capacity.

(77) Partition constraints. Suppose applicant a partitions the set of courses

into disjoint classes C{,Cg, ..., C? and applicant a has nonnegative partial
quotas ¢, (a),...,q.(a) that denote the maximum number of courses from

each class that she is willing to attend.
(7i1) Conflict-free constraints. Applicant cannot attend courses scheduled

in the same time. This can be modelled by a conflict graph: vertices=courses,
edge between two courses if their times overlap. Feasible bundles of courses
correspond to independent sets of vertices of this graph.

(iv) Price-budget constraints. Each course ¢ has a nonnegative price p(c),
applicant a has a budget b(a). Set of courses is feasible if its total price

does not exceed the budget.

Downward closed feasible sets: a matching with lexicographic preferences is a
POM iff it can be obtained by a modified sequential allocation mechanism.

KC, Eirinakis, Fleiner, Magos, Mourtos, Potpinkova: Pareto optimality in
many-to-many matching problems, Discrete Optimization 14 (2014), 160-169.
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INDIFFERENCES

Svenson 1994: Serial dictatorship may output a matching that is not a POM.

P(ay) : (c1,c2) Policy 0 = a1, az

P(az) : 1 Matching: M = {(a1,c1)} is dominated by: M’ = {(a1,¢c2), (az,c1)}
Krysta, Manlove, Rastegari, Zhang, Size versus truthfulness in the House Allo-

cation problem, 2015: combination of SD with augmenting paths technique

We shall deal with the many-to-many generalization.

K. C., P. Eirinakis, T. Fleiner, D. Magos, D. Manlove, I. Mourtos, E. Oceldkov4,
B. Rastegari, Pareto optimal matchings in many-to-many markets with ties,
Algorithmic Game Theory, SAGT 2015, LNCS 9347, 27-42, 2015.

An instance of many-to-many matching problem: I = (A, C,P) where
A is the set of agents, each has quota ¢(a)
C' is the set of objects, each has quota ¢(c)
P are the preferences of agents over objects, may contain indifferences

agent quota preference | object quota
list
a 2 (c1,c2),c3 c1 3
a9 3 co, (c1,c3) Co 1
as 2 c3, Ca,C1 c3 1
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LEXICOGRAPHIC PREFERENCES

If basic preferences are strict, then so are lexicographic preferences over sets.

What about indifferences?

agent quota preference ' quo
lis,t/,-.__//—N
2 3 : .

“ Lepe “ Indifference classes (ties)

o2 AL e Pla): (O.CF. . )

as 2 C3,C2,C1 c3 1
Generalized characteristic vector x7: entries are (|C{N S|, |C§NS|,...,|CENS])
Agent a prefers set S to set T if x5 is lexicographically greater than x..
Example: P(a) : (cl,®, (04,@),03 S = {ca,c5}: x5 = (1,1,0)

P(a) : (c1,c2), @@)7@ T = {61764765}5 XZ — (0, 2, 1)
— a prefers set S to set T’

Algorithm Generalized Serial Dictatorship with Ties GSDT uses network flows.
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MINITUTORIAL ON NETWORK FLOWS

Network is a pair N = (G,w) where G = (V, E) is a directed graph with a
source s and sink ¢ and w : E — N are capacities of arcs.

Flow in N:
function f: E — R™ that fulfils:

capacity constraints:
f(e) < w(e) for each arc e

flow conservation:
inflow=outflow for each vertex # s,t
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MINITUTORIAL ON NETWORK FLOWS

Network is a pair N = (G,w) where G = (V, E) is a directed graph with a
source s and sink ¢ and w : E — N are capacities of arcs.

Flow in N:
function f: E — R™ that fulfils:

capacity constraints:
f(e) < w(e) for each arc e

flow conservation:
inflow=outflow for each vertex # s,t

Size of flow v(f):
sum of outflows from s

Each flow f can be partitioned into v(f) s — ¢ paths

Maximum flow: flow with maximum size
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MINITUTORIAL ON NETWORK FLOWS

Network is a pair N = (G,w) where G = (V, E) is a directed graph with a
source s and sink ¢ and w : E — N are capacities of arcs.

Flow in N:
function f: E — R™ that fulfils:

capacity constraints:
f(e) < w(e) for each arc e

flow conservation:
inflow=outflow for each vertex # s,t

Size of flow v(f):
sum of outflows from s

Each flow f can be partitioned into v(f) s — ¢ paths

Maximum flow: flow with maximum size
Flow f is maximum if and only if it admits no f-augmenting path.

Forward arcs: f(e) < w(e)
Backward arcs: f(e) > 0
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MINITUTORIAL ON NETWORK FLOWS

Network is a pair N = (G,w) where G = (V, E) is a directed graph with a
source s and sink ¢ and w : E — N are capacities of arcs.

Flow in N:
function f: E — R™ that fulfils:

capacity constraints:
f(e) < w(e) for each arc e

flow conservation:
inflow=outflow for each vertex # s,t

Size of flow v(f):
sum of outflows from s

Each flow f can be partitioned into v(f) s — ¢ paths

Maximum flow: flow with maximum size

Cut in network: partition of vertices into X,Y sothat s€ X andt €Y
Capacity of a cut (X,Y): w(d°(X) = > {w(e); e goes from X to Y}
For each flow f and each cut (X,Y): v(f) < w(5°**(X))

Theorem (Maxflow-mincut). A flow f is maximum if and only if]
its size is equal to the capacity of some cut. "
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ALGORITHM FOR MANY-TO-MANY
MATCHINGS WITH INDIFFERENCES

agent quota preference | object quota
list
a 2 (c1,¢9),c3 c1 3
a9 3 o, (€1, ¢3) Co 1
as 2 c3,C2, C1 c3 1

Lexicographic preferences
The algorithm uses network N (7).

Vertices: s, t, agents,ties, objects
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ALGORITHM FOR MANY-TO-MANY
MATCHINGS WITH INDIFFERENCES

agent quota preference | object quota
list
aq 2 (c1,¢9),c3 c1 3
a9 3 o, (€1, ¢3) Co 1
as 2 c3,C2, C1 c3 1

Lexicographic preferences

The algorithm uses network N (7).
Vertices: s,t, agents,ties, objects
Arcs:

(c,t): capacity is ¢(c)

(tie,object): capacity is 1

(s, agent) and (agent,tie):
capacity increases during algorithm
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ALGORITHM FOR MANY-TO-MANY
MATCHINGS WITH INDIFFERENCES

agent quota preference | object quota
list
aq 2 (Cl, Cz), C3 C1 3
as 3 ca, (€1, c3) Co
as 2 C3,C2,Cq C3

Lexicographic preferences
The algorithm uses network N (7).
Vertices: s,t, agents,ties, objects
Arcs:

(c,t): capacity is ¢(c)

(tie,object): capacity is 1

(s, agent) and (agent,tie):

capacity increases during algorithm
Policy o = aq,a2,a3,as,a9,a1,as
The algorithm works in stages.

Stage i: applicant a’ increases her capacity by 1

increases capacity of tie C7

a’ can get an object from tie Cf iff network in N** admits augmenting path. @
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ALGORITHM FOR MANY-TO-MANY
MATCHINGS WITH INDIFFERENCES

agent quota preference | object quota
list
aq 2 (c1,¢9),c3 c1 3
a9 3 o, (€1, ¢3) Co 1
as 2 c3,C2, C1 c3 1

Lexicographic preferences

The algorithm uses network N (7).
Vertices: s,t, agents,ties, objects
Arcs:

(c,t): capacity is ¢(c)

(tie,object): capacity is 1

(s, agent) and (agent,tie):
capacity increases during algorithm

Stage 2: applicant a® = as increases her capacity by 1
increases capacity of her first tie
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LOWER QUOTAS OF COURSES

Applicant a has capacity q(a);
course ¢ has lower quota ¢(c¢) and upper quota u(c).

applicant  capacity preference | course lower upper | [f 5 course does not achieve
list quota  quota | g |ower quota then it stays
@ 3 €1, €2, €3 “ 3 s closed.
a2 2 €3,C1,C4 €2 1 1 Matchings with project closures:
as 1 Co, C3 3 2 3 Monte & Tumenassan 2013,
a4 1 4,01 C4 2 2 Kamiyama 2013,

C. & Fleiner 2016

An assignment M is a matching if:

(1) M(a) C P(a), |M(a)| < q(a) for each a € A;

(ii) £(c) < |M(c)| < u(c) or M(c) =0 for each ¢ € C.

An assignment M is called a partial matching if it fulfils (¢) and

(17") | M(c)| < u(c) for each c € C.

A partial matching M has a set Z(M ) of demanding courses: 0 < |M(c)| < ¢(c)

Residual demand of a partial matching M: RD(M) = Z (4(c) — |M(c)|).

cED(M)
A partial matching M is a matching ifft RD(M) = 0. @
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LOWER QUOTAS: ALGORITHM GSDPC

Applicants’ clones are ordered into a picking sequence o = a',a?, ..., a%.
Algorithm GSDPC works in rounds. Round £ starts with a partial matching Mj_;.
applicant capacity preference | course lower upper
list quota quota
aq 3 c1,C2,C3 c1 3 3
as 2 €3, C1,C4 Co 1 1
as 1 Co, C3 C3 2 3
a4 1 C4,C1 Cy 2 2

Round k: assign applicant a® the best possible course ¢ on conditions that:
e no course will exceed its upper quota

e all courses from Z(My_1 U (a¥,¢)} can still fulfil their lower quotas.

To check these conditions we use network flows.

Network N(M):

e applicant vertices,course vertices, s,t

e capacity of (sa)=residual capacity of aplicant a

e arc (a;cy) if ¢ € P(a;) and a; has not yet considered cy,
e capacity of arc (cxt) is £(ck) — | M (ck)| if ¢, € D(M)
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LOWER QUOTAS: ALGORITHM GSDPC

Picking sequence o = a1, a4, as,as, as,at,ai.

applicant capacity preference | course lower upper
list quota quota RD (M )
aq 3 % 2,03 C1 3 3 ﬁ 2
a9 2 C3,C1,C4 C2 1 1 O
as 1 Co,C3 c3 2 3 0
a4 1 C4,C1 Cq 2 2 0

Round 1: My =10
Applicant a; is treated, she considers c;.

Provisional partial matching M; = {(a‘l)}
Modify the network N (My) — N(My).

Flow of value 2 is needed.

M, = {(""1)} becomes fixed.

&1
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LOWER QUOTAS: ALGORITHM GSDPC

Picking sequence o0 = 8, &, as, as, as,ai, ai.

applicant capacity preference | course lower upper
list quota quota RD (M )
aq 3 2,3 c1 3 3 ® 2
a9 2 C3,C1,C4 C2 1 1 O
as 1 Co, C3 Cs 2 3 0
ay 1 % Cq 2 2 1
Round 2: M; = {(2)}

Applicant a4 is treated, she considers c,.
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LOWER QUOTAS: ALGORITHM GSDPC

Picking sequence o0 = 8, &, as, a3, as,ai,ai.

applicant capacity preference | course lower upper
list quota quota RD (M )
ai 3 2,3 c1 3 3 ® 2
ao 2 c3,C1,Cy4 Co 1 1 0
as 1 Co,C3 c3 2 3 0
a4 1 % o Cy 2 2 1

Round 2: M; = {(

)

Applicant a4 is treated, she considers c,.

Provisional partial matching My = {(
Modify the network N (M;) — N(Ms).

Flow of value 3 1s needed.

N(M3) does not admit such a flow,
therefore return to M.
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LOWER QUOTAS: ALGORITHM GSDPC

Picking sequence 0 = &€, §¢, as, as, as,aq,ai.

applicant capacity preference | course lower upper

list quota quota RD (M )
aq 3 .co 03 C1 3 3 ® 21
ao 2 c3,C1,Cy4 Co 1 1 0
as 1 Co, C3 C3 2 3 0
a4 1 } e C4 2 2 0

Round 2: M; = {(al)}

C1

Applicant a4 is still treated, she considers c;.
Provisional partial matching My = {(“1), (1) }
a

C1

C1

Modify the network N(My) — N(Ms).

Flow of value 1 is needed.

My = {(a’l), (“4)} becomes fixed.

C1 C1
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PROPERTIES OF GSDPC

Theorem. GSDPT outputs a Pareto optimal matching.

Proof. By Maxflow - Mincut theorem, in each round k:

0 < residual demand of M}, < value(fi) < w(6°**{s}) = residual capacity

Last round: residual capacity 0 = RD(M,) = 0 = M, is a matching.
Pareto optimality: induction argument

Computational complexity:

L (applicant,course) pairs in preference lists; each explored at most once

Do not start from zero flow, at most ¢(c) searches in network when exploring ¢

In total: O(L*max.ccl(c))

Theorem. CALQ-DOMINANCE is NP-complete even in the case when g(a) =1

for each a € A and no lower quota of a course exceeds 3.

Theorem. Finding a POM with maximum cardinality in an instance of CALQ
is NP-hard, even if no lower quota exceeds 4 and capacities of applicant are 1.

Theorem. Finding a POM in an instance with indifferences is NP-hard, even
if each applicant is indifferent between all her acceptable courses.
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STRATEGIC ISSUES

Assumption: applicants know the picking sequence and all preferences.

Two types of manipulations:
reordering: changing the order of the entries in the preference list;
dropping: declaring some courses in the preference lists unacceptable

GSDPC is not immune against reodering manipulations

applicant capacity preference | course lower upper
list quota quota

ap 2 @ @ C1 1 2
ap 1 @*@ (&) 2 2

Assume picking sequence aq, a9, a;.

Both applicants act truthfully: output M;(a1) = M;i(a2) = {c1}.
If a; reports co, c1: output Ms(ay) = {c1,ca}; Ma(as) = {ca}.

Theorem. GSDPC with a contiguous picking sequence is strategy-proof against
reordering manipulations.
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STRATEGIC ISSUES

Theorem. There is no Pareto optimal mechanism for CALQ that is strategy-

proof against dropping manipulations.

applicant capacity preference | course lower upper
list quota quota

ai 1 \C2 C1 2 2

a 1 (o) ¢ 2 2

Two POMs: ]\fl (Cl) = {al,ag}. MQ(CQ) = {al, (12}.

If a mechanism outputs M, as has incentives to drop c;.

applicant  capacity preference | course lower upper
list quota quota

aj 1 C1,C2 C1 2 2

aj 1 C C 2 2

If a mechanism outputs Ms, a; has incentives to drop cs.

applicant capacity preference | course lower upper
list quota  quota

ay 1 C1 Cq 2 2

aq 1 Co,C1 Co 2 2
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PARETO OPTIMAL MATCHINGS WITH
PREREQUISITES CONSTRAINTS

Prerequisites: a student is allowed to subscribe to a course c only if she
subscribes to a set C” of other course(s).

Example:
Optimal Control Theory requires Differential Equations and Linear Algebra

Differential Equations require a Calculus course
For each applicant a € A: a partial order —, on C

Meaning: if ¢ € M(a) and ¢ —,, ¢’ then ¢/ € M(a)

For lexicographic preferences:
a POM can be found by a modified sequential mechanism
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PARETO OPTIMAL MATCHINGS WITH
PREREQUISITES CONSTRAINTS

Prerequisites: a student is allowed to subscribe to a course c only if she
subscribes to a set C” of other course(s).

Example:
Optimal Control Theory requires Differential Equations and Linear Algebra

Differential Equations require a Calculus course
For each applicant a € A: a partial order —, on C
Meaning: if ¢ € M(a) and ¢ —,, ¢’ then ¢/ € M(a)

For lexicographic preferences:

a POM can be found by a modified sequential mechanism

Algorithm SM-CAPR:

- always finds a Pareto optimal matching, given any policy

- runs in polynomial time

- may not produce all Pareto optimal matchings

- is not strategy-proof (implied also by (Hosseini and Larson, 2015)

Hard problems:
e Deciding whether a matching is Pareto optimal is co-NP-complete
e I'inding a maximum cardinality Pareto optimal matching is NP-hard
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COMPULSORY PREREQUISITES

£

O=(y, s Ay Qo Ay

q(a,) =%%1

q(a,) =% %0

q(c,)) =21
q(c,) =X0
q(c;) =%X0
q(c,) = X0
q(cs) =%%0
q(cs) =XX0
q(c;) =1
q(cg) =%0
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PARETO OPTIMAL MATCHINGS WITH
ALTERNATING PREREQUISITES

Prerequisites: a student is allowed to subscribe to a course c only if she
subscribes to at least one course from a given set C’

Example:
Mathematical modeling requires some course on mathematical sofware
(MATHEMATICA MATLAB, MAPLE ...)

For each applicant a € A there is a mapping —,: C' — 2¢

Meaning;:
if c€ M(a) and ¢+, {¢;;,Ciy, ..., ¢y, } then ¢;; € M(a) for some j =1,...,k

Bad news: finding a Pareto optimal matching is NP-hard under either additive
or lexicographic preferences
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PARETO OPTIMAL MATCHINGS WITH
COPREREQUISITES

For each applicant a € A there is an equivalence relation <>, on C'

Meaning: M (a) contains either all courses from an equivalence class or none

Algorithm for lexicographic preferences:
1. replace each course d € C by its equivalence class D:

e size of the 'supercourse’ is the number of courses in the equivalence class

e position of the ’supercourse’ in the preference list is the position of the
best course of the equivalence class

2. Run the sequential mechanism (take care of sizes)

Theorem. MAX POM CACR is NP-hard and not approximable within a factor
of N1=¢, for any ¢ > 0, unless P=NP, where N is the total capacity of the
applicants.
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EMPIRICAL STUDY

o Assignment of students to bachelor projects
o 53 students, 64 offered topics

o Distributed maket, we had results of real
outcome

o We elicitated students” preferences
o What are the preferences of teachers?

o Serial dictatorship: policy decreasing in
students” grades

o 7 students improved compared to the real
outcome
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Thank you for your attention!




