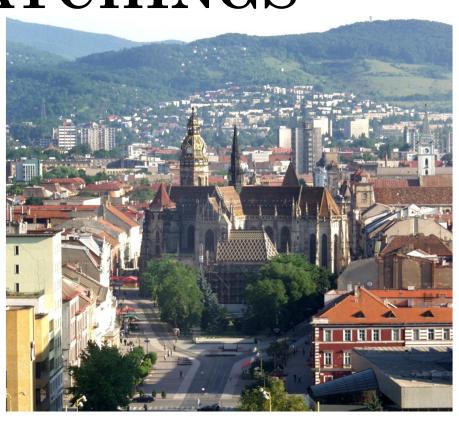
PARETO OPTIMAL MATCHINGS



Katarína Cechlárová, UPJŠ Košice, Slovakia

BASIC SETTING

A is the set of m agents, C is the set of n objects.

Each agents

- consumes at most one object
- has strict preferences over objects. students and courses

 $I = (A, C, \mathcal{P})$ is an instance of the matching problem.

$$P(a_1): c_4, c_3, c_2, c_7, c_5$$

 $P(a_2): c_1, c_3, c_6, c_7$

$$P(a_2): (c_1, c_3, c_6, c_7)$$

$$P(a_3): c_2, c_5(c_6, c_4, c_1)$$

$$P(a_4): c_1, c_3 c_4 c_2$$

$$P(a_5): c_4, c_1, c_2$$

$$P(a_6): c_4, c_2$$

$$P(a_7): c_1, c_3 c_4$$

Matching: M_1

$$\left\{ \begin{pmatrix} a_1 \\ c_2 \end{pmatrix}, \begin{pmatrix} a_2 \\ c_1 \end{pmatrix}, \begin{pmatrix} a_3 \\ c_6 \end{pmatrix}, \begin{pmatrix} a_4 \\ c_4 \end{pmatrix}, \begin{pmatrix} a_7 \\ c_3 \end{pmatrix} \right\}$$

Possible applications:

- tenants and houses
- workers and positions
- researchers and offices
- ice-hockey teams and players

Which matching is optimal?

A matching M' dominates a matching Mif at least one applicant prefers M' to Mand no applicant prefers M to M'.

A matching M is Pareto optimal if it is not dominated by any other matching.

SERIAL DICTATORSHIP SD

Agents are ordered into a picking sequence (policy) σ . Each agent on her turn according to σ picks her most preferred available object.

$$P(a_1): c_4 c_3, c_2, c_7, c_5$$

$$P(a_2): c_1 c_3, c_6, c_7$$

$$P(a_3): c_2 c_5, c_6, c_4, c_1$$

$$P(a_4): c_1, c_3 c_4, c_2$$

$$P(a_5): c_4, c_1, c_2$$

$$P(a_6): c_4, c_2$$

$$P(a_7): c_1, c_3, c_4$$

Policy
$$\sigma_1 = a_1, a_2, \dots, a_7$$

Matching:
$$M_{SD1}$$

$$\left\{ \begin{pmatrix} a_1 \\ c_4 \end{pmatrix}, \begin{pmatrix} a_2 \\ c_1 \end{pmatrix}, \begin{pmatrix} a_3 \\ c_2 \end{pmatrix}, \begin{pmatrix} a_4 \\ c_3 \end{pmatrix} \right\}$$

Size of
$$M_{SD1}$$
: 4

$$P(a_1): c_4, c_3, c_2, c_7 c_5$$

$$P(a_2): c_1, c_3, c_6$$

$$P(a_3): c_2, c_5, c_6, c_4, c_1$$

$$P(a_4): c_1, c_3, c_4, c_2$$

$$P(a_5): c_4, c_1, c_2$$

$$P(a_6): c_4 c_2$$

$$P(a_7): c_1 c_3, c_4$$

Policy
$$\sigma_2 = a_7, a_6, \dots, a_1$$

Matching:
$$M_{SD2}$$

$$\left\{ \binom{a_1}{c_7}, \binom{a_2}{c_6}, \binom{a_3}{c_5}, \binom{a_4}{c_3}, \binom{a_5}{c_2}, \binom{a_6}{c_4}, \binom{a_7}{c_1} \right\}$$

Size of M_{SD2} : 7

PROPERTIES OF SERIAL DICTATORSHIP

Theorem 1. SD produces a POM for any policy.

Theorem 2. SD is strategy-proof.

Theorem 3. SD can produce any POM.

Proved by:

Svensson 1994, Abdulkadiroğlu & Sönmez 1998, Abraham, KC, Manlove & Mehlhorn 2004, Brams & King 2005

Characterization of POM:

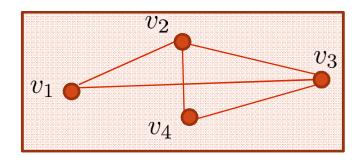
- maximal
- trade-in free
- coalition-free

MINITUTORIAL ON GRAPHS 1

Graph is a pair (V, E); V is the set of vertices and E is the set of edges (arcs).

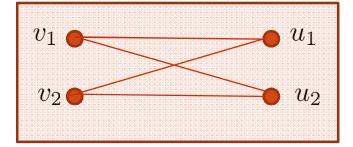
Undirected graph:

edges are unordered pairs of vertices



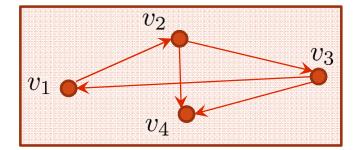
Bipartite graph:

vertices partitioned into sets V, U, edges are only between V and U

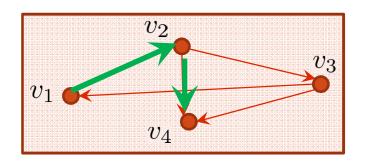


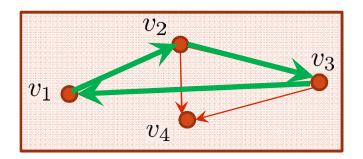
Directed graph:

arcs are ordered pairs of vertices



MINITUTORIAL ON GRAPHS 2

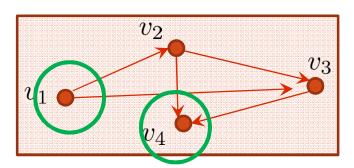




Path

Cycle

A directed graph that contains no cycle is called acyclic



An acyclic graph contains:

a source: vertex with no incomming arcs a sink: vertex with no outgoing arcs

An acyclic directed graph admits a topological labelling of vertices $\sigma: V \to \mathbb{N}$: if there is an arc $i \to j$ then $\sigma(i) > \sigma(j)$

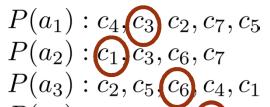
Algorithm: give a sink v the minimum possible label; delete its incomming arcs and repeat.

 \implies no pair can be added maximal

Acceptability graph G(I): vertices are agents and objects • trade-in free Matching: set of edges; no two have a vertex in common

• coalition-free Maximal matching: no edge can be added

Maximum matching: matching with maximum cardinality



$$P(a_3): c_2, c_5, c_6, c_4, c_1$$

$$P(a_4): c_1, c_3, c_4 \ c_2 \ P(a_5): c_4, c_1, c_2$$

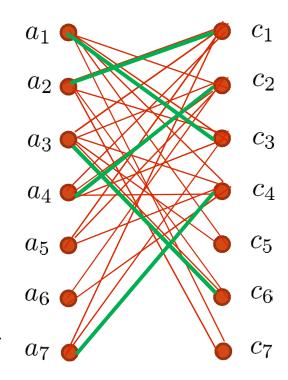
$$P(a_5): c_4, c_1, c_2$$

$$P(a_6):c_4,c_2$$

$$P(a_7): c_1, c_3, c_4$$

Matching: M_1

$$\left\{ \begin{pmatrix} a_1 \\ c_3 \end{pmatrix}, \begin{pmatrix} a_2 \\ c_1 \end{pmatrix}, \begin{pmatrix} a_3 \\ c_6 \end{pmatrix}, \begin{pmatrix} a_4 \\ c_2 \end{pmatrix}, \begin{pmatrix} a_7 \\ c_4 \end{pmatrix} \right\}$$



- maximal
- $(trade-in free) \implies no matched agent can move to a preferred free object$
- coalition-free

$$P(a_1): c_4, c_3 c_2, c_7, c_5$$

$$P(a_2): c_1, c_3, c_6, c_7$$

$$P(a_2): c_1, c_3, c_6, c_7 \ P(a_3): c_2, c_5, c_6 \ c_4, c_1$$

$$P(a_4): c_1, c_3, c_4$$

$$P(a_5): c_4, c_1, c_2$$

$$P(a_6): c_4, c_2$$

$$P(a_7): c_1, c_3, c_4$$

Matching: M_2

$$\left\{ \begin{pmatrix} a_1 \\ c_3 \end{pmatrix}, \begin{pmatrix} a_2 \\ c_1 \end{pmatrix}, \begin{pmatrix} a_3 \\ c_5 \end{pmatrix}, \begin{pmatrix} a_4 \\ c_2 \end{pmatrix}, \begin{pmatrix} a_7 \\ c_4 \end{pmatrix} \right\}$$

 M_1 is

not trade-in free:

 a_3 can move to c_5

- maximal
- trade-in free

• coalition-free) \Longrightarrow no coalition of agents can exchange their objects Envy graph $G(M_2)$: vertices are agents Arc $a_i \to a_j$ if a_j has an object that a_i prefers to $M(a_i)$ M admits a coalition if and only if G(M) contains a cycle.

$$P(a_1): c_4, c_3 c_2, c_7, c_5$$

$$P(a_2): (c_1, c_3, c_6, c_7)$$

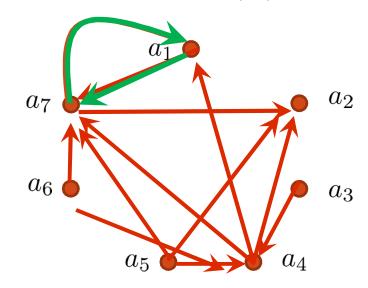
$$P(a_2): c_1, c_3, c_6, c_7$$
 $P(a_3): c_2, c_5, c_6, c_4, c_1$

$$P(a_4): c_1, c_3, c_4, c_2$$

$$P(a_5): c_4, c_1, c_2$$

$$P(a_6):c_4,c_2$$

$$P(a_7): c_1, c_3, c_4$$



Matching: M_2

$$\left\{ \begin{pmatrix} a_1 \\ c_3 \end{pmatrix}, \begin{pmatrix} a_2 \\ c_1 \end{pmatrix}, \begin{pmatrix} a_3 \\ c_5 \end{pmatrix}, \begin{pmatrix} a_4 \\ c_2 \end{pmatrix}, \begin{pmatrix} a_7 \\ c_4 \end{pmatrix} \right\}$$

- maximal
- trade-in free
- coalition-free

⇒ no coalition of agents can exchange their objects Envy graph $G(M_2)$: vertices are agents

Arc $a_i \to a_j$ if a_j has an object that a_i prefers to $M(a_i)$ M admits a coalition if and only if G(M) contains a cycle.

$$P(a_2): c_1, c_3, c_6, c_7$$

$$P(a_3): c_2, c_5, c_6, c_4, c_1$$

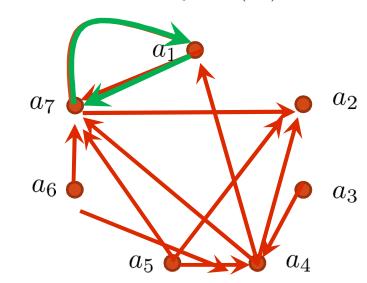
$$P(a_4): c_1, c_3, c_4, c_2$$

 $P(a_5): c_4, c_1, c_2$

$$P(a_5): c_4, c_1, c_2$$

$$P(a_6): c_4, c_2$$

$$P(a_7): c_1(c_3, c_4)$$



Coalition
$$(a_1, a_7)$$

Matching: M_3

$$\left\{ \begin{pmatrix} a_1 \\ c_4 \end{pmatrix}, \begin{pmatrix} a_2 \\ c_1 \end{pmatrix}, \begin{pmatrix} a_3 \\ c_5 \end{pmatrix}, \begin{pmatrix} a_4 \\ c_2 \end{pmatrix}, \begin{pmatrix} a_7 \\ c_3 \end{pmatrix} \right\}$$

10

- maximal
- trade-in free
- coalition-free \implies no coalition can profitably exchange their houses

Envy graph $G(M_3) \implies$ is acyclic

$$P(a_1): c_4 c_3, c_2, c_7, c_5$$

$$P(a_2): c_1, c_3, c_6, c_7$$

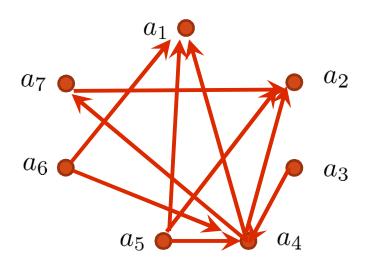
$$P(a_3): c_2, c_5, c_6, c_4, c_1$$

$$P(a_4): c_1, c_3, c_4, c_2$$

$$P(a_5): c_4, c_1, c_2$$

$$P(a_6):c_4,c_2$$

$$P(a_7): c_1, c_3 c_4$$



Matching: M_3

$$\left\{ \begin{pmatrix} a_1 \\ c_4 \end{pmatrix}, \begin{pmatrix} a_2 \\ c_1 \end{pmatrix}, \begin{pmatrix} a_3 \\ c_5 \end{pmatrix}, \begin{pmatrix} a_4 \\ c_2 \end{pmatrix}, \begin{pmatrix} a_7 \\ c_3 \end{pmatrix} \right\}$$

- maximal
- trade-in free
- coalition-free \Longrightarrow no coalition can profitably exchange their houses

$$P(a_1): c_4 c_3, c_2, c_7, c_5$$

$$P(a_2): c_1, c_3, c_6, c_7$$

$$P(a_3): c_2, c_5, c_6, c_4, c_1$$

$$P(a_4): c_1, c_3, c_4, c_2$$

$$P(a_5): c_4, c_1, c_2$$

$$P(a_6):c_4,c_2$$

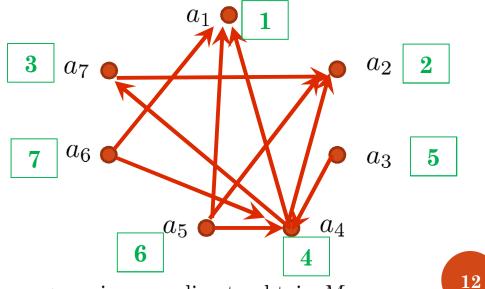
$$P(a_7): c_1, c_3 c_4$$

Matching: M_3

$$\left\{ \begin{pmatrix} a_1 \\ c_4 \end{pmatrix}, \begin{pmatrix} a_2 \\ c_1 \end{pmatrix}, \begin{pmatrix} a_3 \\ c_5 \end{pmatrix}, \begin{pmatrix} a_4 \\ c_2 \end{pmatrix}, \begin{pmatrix} a_7 \\ c_3 \end{pmatrix} \right\}$$

Katarína Cechlárová, Pareto optimal matchings

Envy graph $G(M_3) \Longrightarrow$ is acyclic $\Longrightarrow G(M_3)$ admits a topological ordering σ



 $\Longrightarrow \sigma$ gives a policy to obtain M_3

$$\sigma = (a_1, a_2, a_7, a_4, a_3, a_5, a_6)$$

ALTERNATIVE TESTING FOR COALITIONS

Aziz et al., Optimal Reallocation under Additive and Ordinal Preferences, 2016

Object improvement graph $\bar{G}(M_2)$: vertices are objects

Arc $c_i \to c_j$ if there exists an agent a who prefers c_j to $c_i = M(a)$

M admits a coalition if and only if $\bar{G}(M)$ contains a cycle.

$$P(a_1): c_4, c_3 c_2, c_7, c_5$$

 $P(a_2): c_1, c_3, c_6, c_7$
 $P(a_3): c_2, c_5 c_6, c_4, c_1$
 $P(a_4): c_1, c_3, c_4, c_2$
 $P(a_5): c_4, c_1, c_2$

$$P(a_2): c_1, c_3, c_6, c_7$$

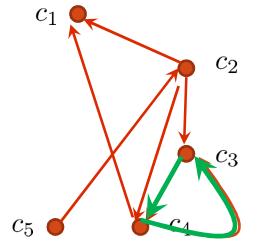
$$P(a_3): c_2, c_5, c_6, c_4, c_1$$

$$P(a_4): c_1, c_3, c_4, c_2$$

$$P(a_5):c_4,c_1,c_2$$

$$P(a_6):c_4,c_2$$

$$P(a_7): c_1, c_3, c_4$$



Matching: M_2

$$\left\{ \begin{pmatrix} a_1 \\ c_3 \end{pmatrix}, \begin{pmatrix} a_2 \\ c_1 \end{pmatrix}, \begin{pmatrix} a_3 \\ c_5 \end{pmatrix}, \begin{pmatrix} a_4 \\ c_2 \end{pmatrix}, \begin{pmatrix} a_7 \\ c_4 \end{pmatrix} \right\}$$

Katarína Cechlárová, Pareto optimal matchings

FINDING A MAXIMUM CARDINALITY POM

- 1. Find a maximum cardinality matching M_1 in acceptability graph G(I).
- 2. Use all possible trade-ins to get a matching M_2 .
- 3. Satisfy all coalitions to get a matching M_3 .

 $P(a_1): c_4, c_3, c_2, c_7 \ c_5$ $P(a_1): c_4, c_3, c_2, c_7 \ c_5$ $P(a_2): c_1, c_3, c_6 \ c_7$ $P(a_2): c_1, c_3, c_6 \ c_7$ $P(a_3): c_2, c_5 \ c_6, c_4, c_1$ $P(a_3): c_2, c_5 \ c_6, c_4, c_1$ $P(a_4): c_1, c_3 \ c_4, c_2$ $P(a_4): c_1, c_3 \ c_4, c_2$ $P(a_5): c_4, c_1, c_2$ $P(a_5): c_4 \ c_1, c_2$ $P(a_6): c_4, c_2$ $P(a_6): c_4, c_2$ $P(a_7): c_1 \ c_3, c_4$ $P(a_7): c_1 \ c_3, c_4$ Steps 2,3: size of matching cannot decrease Pareto optimality is ensured

Given an agent a and object c:

POS(a,c): Does there exist a policy σ such that $M_{SD(\sigma)}(a)=c$?

NEC(a,c): Is it true that $M_{SD(\sigma)}(a)=c$ for each policy σ ?

Saban & Sethuraman 2013:

POS(a, c) is NP-complete and NEC(a, c) is polynomial if each agent finds all objects acceptable.

Further results: Aziz, Brand, Brill, Mestre 2014

MANY-TO-MANY MATCHINGS

Course allocation problem: applicants+courses, various feasibility constraints

EXISTENCE OF A POM

Take the set of all feasible matchings \mathcal{M} .

Create a partial order \succeq on \mathcal{M} :

 $M \succeq M'$ if $M(a) \succeq M'(a)$ each agent a and $M'(a) \succ M(a)$ for no agent a.

As \mathcal{M} is finite, (\mathcal{M}, \succ) has \succeq -maximal elements \Longrightarrow they correspond to POM.

TESTING FOR PARETO OPTIMALITY

coNP-complete in many settings

EXTENDING PREFERENCES

Agents have preferences over individual objects, need to compare sets.

Agent a: (strictly) prefers object c to object c': notation $c \succ_a c'$

is indifferent between objects c and c': notation $c \sim_a c'$

weakly prefers object c to object c': notation $c \succeq_a c'$

Minimal requirement for the preference extension: responsiveness

Two most common set preferences:

agent a has utility $u_a(c)$ for each object $c \in C$ Additive:

a prefers set S to set T if $\sum_{c \in S} u_a(c) > \sum_{c \in T} u_a(c)$

Lexicographic: agent a prefers set S to set T if the most preferred object

in the symmetric difference $S \oplus T$ belongs to S

Characteristic vector χ_a^S : entries ordered according to a' preferences

$$\chi_a^S(c) = \begin{cases} 1 & \text{if } c \in S \\ 0 & \text{otherwise} \end{cases}$$

a prefers set S to set T if χ_a^S is lexicographically greater than χ_a^T .

Example:
$$P(a) : 0, c_2, 0, c_5, c_3$$

$$P(a): \bigcirc c_2, c_4, \bigcirc c_6$$

$$S = \{c_1, c_4\}; \ \chi_a^s = (1, 0, 1, 0, 0)$$

Example:
$$P(a): (c_1, c_2, c_3, c_5, c_3)$$
 $S = \{c_1, c_4\}; \chi_a^s = (1, 0, 1, 0, 0)$ $\Longrightarrow a \text{ prefers}$ $P(a): (c_1, c_2, c_4, c_5) (c_3)$ $T = \{c_1, c_5, c_3\}; \chi_a^T = (1, 0, 0, 1, 1)$ $S \text{ to } T$

$$\implies a \text{ prefers}$$

$$S$$
 to T

EXAMPLES OF FEASIBILITY CONSTRAINTS

- (i) Capacity constraints. A bundle of courses is feasible for applicant a with capacity q(a) if and only if its size does not exceed this capacity.
- (ii) **Partition constraints.** Suppose applicant a partitions the set of courses into disjoint classes $C_1^a, C_2^a, \ldots, C_r^a$ and applicant a has nonnegative partial $quotas\ q_1(a), \ldots, q_r(a)$ that denote the maximum number of courses from each class that she is willing to attend.
- (iii) Conflict-free constraints. Applicant cannot attend courses scheduled in the same time. This can be modelled by a *conflict* graph: vertices=courses, edge between two courses if their times overlap. Feasible bundles of courses correspond to independent sets of vertices of this graph.
- (iv) **Price-budget constraints**. Each course c has a nonnegative price p(c), applicant a has a budget b(a). Set of courses is feasible if its total price does not exceed the budget.

Downward closed feasible sets: a matching with lexicographic preferences is a POM iff it can be obtained by a modified sequential allocation mechanism.

Finding a POM in the price-budget case with additive preferences is NP-hard.

KC, Eirinakis, Fleiner, Magos, Mourtos, Potpinková: Pareto optimality in many-to-many matching problems, Discrete Optimization 14 (2014), 160-169.

INDIFFERENCES

Svenson 1994: Serial dictatorship may output a matching that is not a POM.

 $P(a_1):(c_1,c_2)$ Policy $\sigma = a_1, a_2$

 $P(a_2): c_1$ Matching: $M = \{(a_1, c_1)\}$ is dominated by: $M' = \{(a_1, c_2), (a_2, c_1)\}$

Krysta, Manlove, Rastegari, Zhang, Size versus truthfulness in the House Allocation problem, 2015: combination of SD with augmenting paths technique

We shall deal with the many-to-many generalization.

K. C., P. Eirinakis, T. Fleiner, D. Magos, D. Manlove, I. Mourtos, E. Oceľáková, B. Rastegari, Pareto optimal matchings in many-to-many markets with ties, Algorithmic Game Theory, SAGT 2015, LNCS 9347, 27-42, 2015.

An instance of many-to-many matching problem: I = (A, C, P) where

A is the set of agents, each has quota q(a)

C is the set of objects, each has quota q(c)

 \mathcal{P} are the preferences of agents over objects, may contain indifferences

agent	quota	preference	object	quota
		list		
a_1	2	$(c_1,c_2),c_3$	c_1	3
a_2	3	$c_2, (c_1, c_3)$	c_2	1
a_3	2	c_3, c_2, c_1	c_3	1

LEXICOGRAPHIC PREFERENCES

If basic preferences are strict, then so are lexicographic preferences over sets. What about indifferences?

agent	quota	preference	object	quota	
		list			M
a_1	2	$(c_1, c_2) c_3$	c_1	3	Inc
a_2	3	$c_2, (c_1, c_3)$	c_2	1	P(
a_3	2	c_3, c_2, c_1	c_3	1	1

difference classes (ties)

$$P(a): (C_1^a, C_2^a, \dots, C_k^a)$$

Generalized characteristic vector χ_a^S : entries are $(|C_1^a \cap S|, |C_2^a \cap S|, \dots, |C_k^a \cap S|)$ Agent a prefers set S to set T if χ_a^S is lexicographically greater than χ_a^T .

Example:
$$P(a):(c_1, c_2), (c_4, c_5), c_3$$

$$S = \{c_2, c_5\}; \ \chi_a^S = (1, 1, 0)$$

$$P(a):(c_1,c_2),(c_4,c_5),(c_3)$$

$$P(a):(c_1,c_2),$$
 $C_1,C_2)$, C_3 $T=\{c_1,c_4,c_5\}; \chi_a^T=(0,2,1)$

 $\implies a$ prefers set S to set T

Algorithm Generalized Serial Dictatorship with Ties GSDT uses network flows.

Network is a pair N = (G, w) where G = (V, E) is a directed graph with a source s and sink t and $w : E \to \mathbb{N}$ are capacities of arcs.

Flow in N:

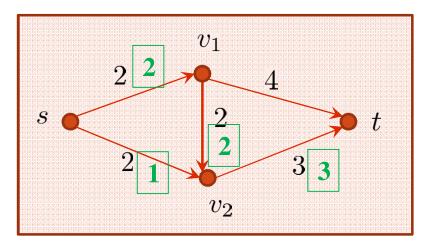
function $f: E \to \mathbb{R}^+$ that fulfils:

capacity constraints:

 $f(e) \leq w(e)$ for each arc e

flow conservation:

inflow=outflow for each vertex $\neq s, t$



Network is a pair N = (G, w) where G = (V, E) is a directed graph with a source s and sink t and $w : E \to \mathbb{N}$ are capacities of arcs.

Flow in N:

function $f: E \to \mathbb{R}^+$ that fulfils:

capacity constraints:

 $f(e) \leq w(e)$ for each arc e

flow conservation:

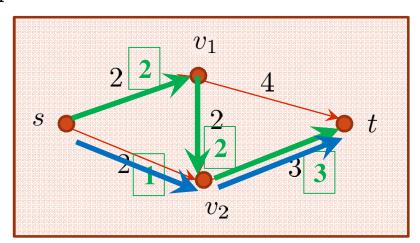
inflow=outflow for each vertex $\neq s, t$

Size of flow v(f):

sum of outflows from s

Each flow f can be partitioned into v(f) s – t paths

Maximum flow: flow with maximum size



Network is a pair N = (G, w) where G = (V, E) is a directed graph with a source s and sink t and $w : E \to \mathbb{N}$ are capacities of arcs.

Flow in N:

function $f: E \to \mathbb{R}^+$ that fulfils:

capacity constraints:

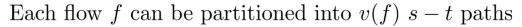
 $f(e) \leq w(e)$ for each arc e

flow conservation:

inflow=outflow for each vertex $\neq s, t$

Size of flow v(f):

sum of outflows from s

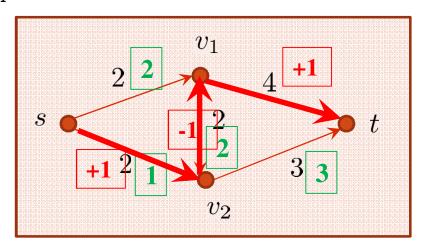


Maximum flow: flow with maximum size

Flow f is maximum if and only if it admits no f-augmenting path.

Forward arcs: f(e) < w(e)

Backward arcs: f(e) > 0



Network is a pair N=(G,w) where G=(V,E) is a directed graph with a source s and sink t and $w:E\to\mathbb{N}$ are capacities of arcs.

Flow in N:

function $f: E \to \mathbb{R}^+$ that fulfils:

capacity constraints:

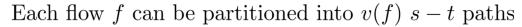
 $f(e) \le w(e)$ for each arc e

flow conservation:

inflow=outflow for each vertex $\neq s, t$

Size of flow v(f):

sum of outflows from s



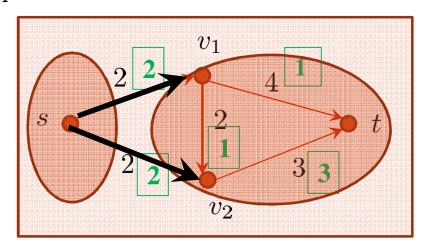
Maximum flow: flow with maximum size

Cut in network: partition of vertices into X, Y so that $s \in X$ and $t \in Y$

Capacity of a cut (X, Y): $w(\delta^{out}(X) = \sum \{w(e); e \text{ goes from } X \text{ to } Y\}$

For each flow f and each cut (X,Y): $v(f) \leq w(\delta^{out}(X))$

Theorem (Maxflow-mincut). A flow f is maximum if and only if its size is equal to the capacity of some cut.

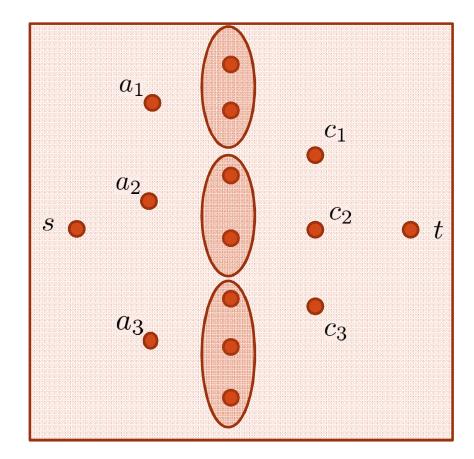


agent	quota	preference	object	quota
		list		
a_1	2	$(c_1, c_2), c_3$	c_1	3
a_2	3	$c_2, (c_1, c_3)$	c_2	1
a_3	2	c_3, c_2, c_1	c_3	1

Lexicographic preferences

The algorithm uses network N(I).

Vertices: s, t, agents, ties, objects



agent	quota	preference	object	quota
		list		
a_1	2	$(c_1, c_2), c_3$	c_1	3
a_2	3	$c_2, (c_1, c_3)$	c_2	1
a_3	2	c_3, c_2, c_1	c_3	1

Lexicographic preferences

The algorithm uses network N(I).

Vertices: s, t, agents, ties, objects

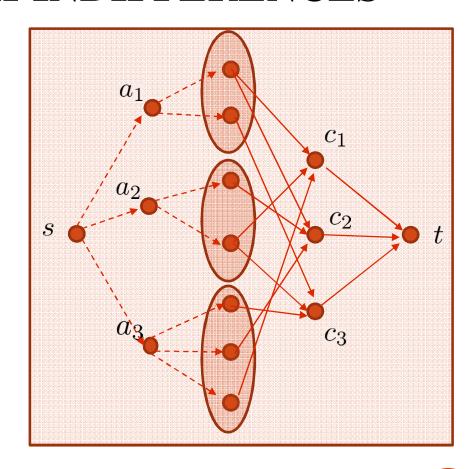
Arcs:

(c,t): capacity is q(c)

(tie,object): capacity is 1

(s, agent) and (agent, tie):

capacity increases during algorithm



agent	quota	preference	object	quota
		list		
a_1	2	$(c_1,c_2),c_3$	c_1	3
a_2	3	$c_2, (c_1, c_3)$	c_2	1
a_3	2	c_3, c_2, c_1	c_3	1

Lexicographic preferences

The algorithm uses network N(I).

Vertices: s, t, agents, ties, objects

Arcs:

(c,t): capacity is q(c)

(tie,object): capacity is 1

(s, agent) and (agent, tie):

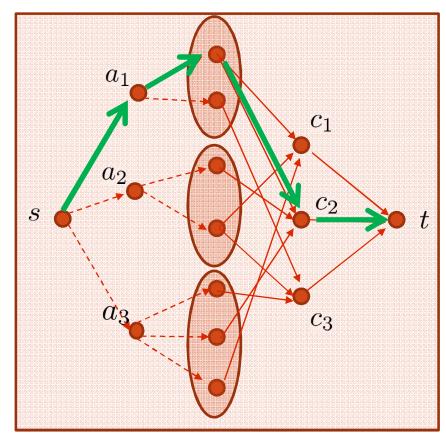
capacity increases during algorithm

Policy $\sigma = a_1, a_2, a_3, a_2, a_2, a_1, a_3$

The algorithm works in stages.

Stage i: applicant a^i increases her capacity by 1 increases capacity of tie C^a_j

 a^i can get an object from tie C^a_j iff network in $N^{i,t}$ admits augmenting path.



agent	quota	preference	object	quota
		list		
a_1	2	$(c_1, c_2), c_3$	c_1	3
a_2	3	$c_2, (c_1, c_3)$	c_2	1
a_3	2	c_3, c_2, c_1	c_3	1

Lexicographic preferences

The algorithm uses network N(I).

Vertices: s, t, agents, ties, objects

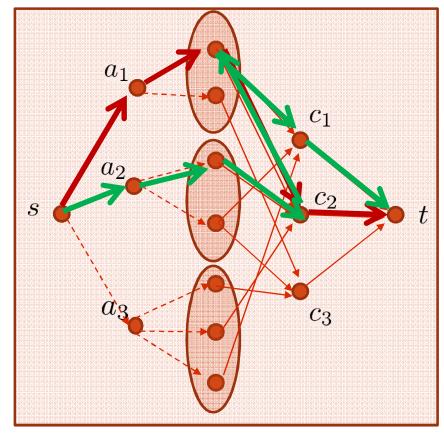
Arcs:

(c,t): capacity is q(c)

(tie,object): capacity is 1

(s, agent) and (agent, tie):

capacity increases during algorithm



Stage 2: applicant $a^2 = a_2$ increases her capacity by 1 increases capacity of her first tie

LOWER QUOTAS OF COURSES

Applicant a has capacity q(a); course c has lower quota $\ell(c)$ and upper quota u(c).

applicant	capacity	preference	course	lower	upper
		list		quota	quota
a_1	3	c_1, c_2, c_3	c_1	3	3
a_2	2	c_3, c_1, c_4	c_2	1	1
a_3	1	c_2, c_3	c_3	2	3
a_4	1	c_4, c_1	c_4	2	2

If a course does not achieve its lower quota then it stays closed.

Matchings with project closures: Monte & Tumenassan 2013, Kamiyama 2013, C. & Fleiner 2016

An assignment M is a matching if:

- (i) $M(a) \subseteq P(a)$, $|M(a)| \le q(a)$ for each $a \in A$;
- (ii) $\ell(c) \leq |M(c)| \leq u(c)$ or $M(c) = \emptyset$ for each $c \in C$.

An assignment M is called a partial matching if it fulfils (i) and (ii') $|M(c)| \le u(c)$ for each $c \in C$.

A partial matching M has a set $\mathcal{D}(M)$ of demanding courses: $0 < |M(c)| < \ell(c)$

Residual demand of a partial matching $M: RD(M) = \sum_{c \in \mathcal{D}(M)} (\ell(c) - |M(c)|).$

A partial matching M is a matching iff RD(M) = 0.

Applicants' clones are ordered into a picking sequence $\sigma = a^1, a^2, \dots, a^Q$. Algorithm GSDPC works in *rounds*. Round k starts with a partial matching M_{k-1} .

applicant	capacity	preference	course	lower	upper
		list		quota	quota
a_1	3	c_1, c_2, c_3	c_1	3	3
a_2	2	c_3, c_1, c_4	c_2	1	1
a_3	1	c_2, c_3	c_3	2	3
a_4	1	c_4, c_1	c_4	2	2

Round k: assign applicant a^k the best possible course c on conditions that:

- no course will exceed its upper quota
- all courses from $\mathcal{D}(M_{k-1} \cup (a^k, c))$ can still fulfil their lower quotas. To check these conditions we use network flows.

Network N(M):

- \bullet applicant vertices, course vertices, s, t
- capacity of (sa)=residual capacity of aplicant a
- arc $(a_j c_k)$ if $c_k \in P(a_j)$ and a_j has not yet considered c_k
- capacity of arc $(c_k t)$ is $\ell(c_k) |M(c_k)|$ if $c_k \in \mathcal{D}(M)$

Lemma. There exists a matching μ such that $M_k = M_{k-1} \cup \{(a,c)\} \subseteq \mu$ if and only if $N(M_k)$ admits a flow f_k of value $RD(M_k)$.

Picking sequence $\sigma = a_1, a_4, a_2, a_3, a_2, a_1, a_1$.

applicant	capacity	preference	course	lower	upper
		list		quota	quota
a_1	3	(c_1, c_2, c_3)	c_1	3	3
a_2	2	c_3, c_1, c_4	c_2	1	1
a_3	1	c_2, c_3	c_3	2	3
a_4	1	c_4, c_1	c_4	2	2

RD(M)
£ 2
0
0
0

Round 1: $M_0 = \emptyset$

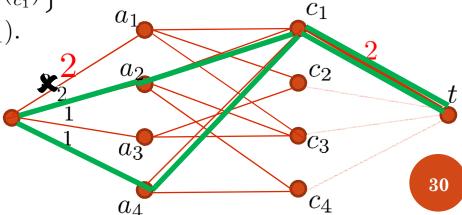
Applicant a_1 is treated, she considers c_1 .

Provisional partial matching $M_1 = \left\{ \begin{pmatrix} a_1 \\ c_1 \end{pmatrix} \right\}$.

Modify the network $N(M_0) \to N(M_1)$.

Flow of value 2 is needed.

$$M_1 = \left\{ \begin{pmatrix} a_1 \\ c_1 \end{pmatrix} \right\}$$
 becomes fixed.



Picking sequence $\sigma = \mathbf{k}_1, \mathbf{k}_2, a_2, a_3, a_2, a_1, a_1$.

applicant	capacity	preference	course	lower	upper
		list		quota	quota
a_1	3	(c_1, c_2, c_3)	c_1	3	3
a_2	2	c_3, c_1, c_4	c_2	1	1
a_3	1	c_2, c_3	c_3	2	3
a_4	1	\mathbf{x}, c_1	c_4	2	2

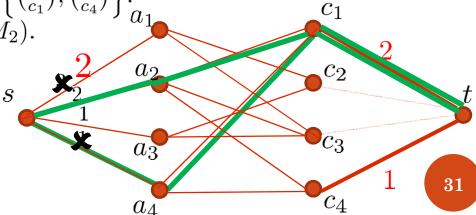
RD(M)
£ 2
0
0
& 1

Round 2: $M_1 = \left\{ \binom{a_1}{c_1} \right\}$.

Applicant a_4 is treated, she considers c_4 .

Provisional partial matching $M_2 = \left\{ \begin{pmatrix} a_1 \\ c_1 \end{pmatrix}, \begin{pmatrix} a_4 \\ c_4 \end{pmatrix} \right\} a_1$

Modify the network $N(M_1) \to N(M_2)$.



Picking sequence $\sigma = \mathbf{k}_1, \mathbf{k}_2, a_2, a_3, a_2, a_1, a_1$.

applicant	capacity	preference	course	lower	upper
		list		quota	quota
a_1	3	(c_1, c_2, c_3)	c_1	3	3
a_2	2	c_3, c_1, c_4	c_2	1	1
a_3	1	c_2, c_3	c_3	2	3
a_4	1	\mathbf{c}_1	c_4	2	2

RD(M)
£ 2
0
0
x 1

Round 2: $M_1 = \left\{ \binom{a_1}{c_1} \right\}$.

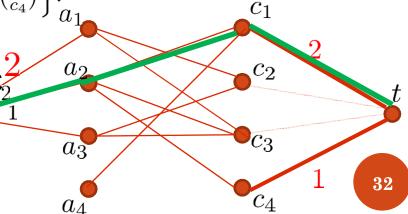
Applicant a_4 is treated, she considers c_4 .

Provisional partial matching $M_2 = \left\{ \begin{pmatrix} a_1 \\ c_1 \end{pmatrix}, \begin{pmatrix} a_4 \\ c_4 \end{pmatrix} \right\} a_1$

Modify the network $N(M_1) \to N(M_2)$.

Flow of value 3 is needed.

 $N(M_2)$ does not admit such a flow, therefore return to M_1 .



Picking sequence $\sigma = \mathbf{A}, \mathbf{A}, a_2, a_3, a_2, a_1, a_1$.

applicant	capacity	preference	course	lower	upper
		list		quota	quota
a_1	3	(c_1, c_2, c_3)	c_1	3	3
a_2	2	c_3, c_1, c_4	c_2	1	1
a_3	1	c_2, c_3	c_3	2	3
a_4	1	X , X	c_4	2	2

RD(M)				
2 1				
0				
0				
0				

Round 2: $M_1 = \left\{ \binom{a_1}{c_1} \right\}$.

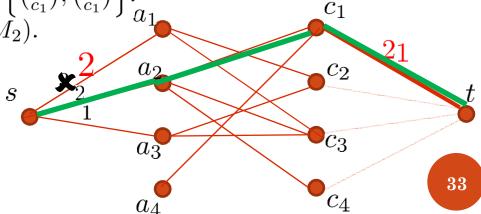
Applicant a_4 is still treated, she considers c_1 .

Provisional partial matching $M_2 = \left\{ \begin{pmatrix} a_1 \\ c_1 \end{pmatrix}, \begin{pmatrix} a_4 \\ c_1 \end{pmatrix} \right\}_a$

Modify the network $N(M_1) \to N(M_2)$.

Flow of value 1 is needed.

$$M_2 = \left\{ \begin{pmatrix} a_1 \\ c_1 \end{pmatrix}, \begin{pmatrix} a_4 \\ c_1 \end{pmatrix} \right\}$$
 becomes fixed.



PROPERTIES OF GSDPC

Theorem. GSDPT outputs a Pareto optimal matching.

Proof. By Maxflow - Mincut theorem, in each round k:

 $0 \le \text{residual demand of } M_k \le value(f_k) \le w(\delta^{out}\{s\}) = \text{residual capacity}$

Last round: residual capacity $0 \Longrightarrow RD(M_r) = 0 \Longrightarrow M_r$ is a matching.

Pareto optimality: induction argument

Computational complexity:

L (applicant, course) pairs in preference lists; each explored at most once Do not start from zero flow, at most $\ell(c)$ searches in network when exploring c In total: $O(L^2 \max_{c \in C} \ell(c))$

Theorem. CALQ-DOMINANCE is NP-complete even in the case when q(a) = 1 for each $a \in A$ and no lower quota of a course exceeds 3.

Theorem. Finding a POM with maximum cardinality in an instance of CALQ is NP-hard, even if no lower quota exceeds 4 and capacities of applicant are 1.

Theorem. Finding a POM in an instance with indifferences is NP-hard, even if each applicant is indifferent between all her acceptable courses.

34

STRATEGIC ISSUES

Assumption: applicants know the picking sequence and all preferences.

Two types of manipulations:

reordering: changing the order of the entries in the preference list; dropping: declaring some courses in the preference lists unacceptable

GSDPC is not immune against reodering manipulations

applicant	capacity	preference	course	lower	upper
		list		quota	quota
a_1	2	c_1c_2	c_1	1	2
a_1	1	c_1c_2	c_2	2	2

Assume picking sequence a_1, a_2, a_1 .

Both applicants act truthfully: output $M_1(a_1) = M_1(a_2) = \{c_1\}$.

If a_1 reports c_2, c_1 : output $M_2(a_1) = \{c_1, c_2\}; M_2(a_2) = \{c_2\}.$

Theorem. GSDPC with a *contiguous* picking sequence is strategy-proof against reordering manipulations.

STRATEGIC ISSUES

Theorem. There is no Pareto optimal mechanism for CALQ that is strategy-proof against dropping manipulations.

applicant	capacity	preference	course	lower	upper
		list		quota	quota
a_1	1	c_1 c_2	c_1	2	2
a_1	1	c_2c_1	c_2	2	2

Two POMs: $M_1(c_1) = \{a_1, a_2\}$. $M_2(c_2) = \{a_1, a_2\}$.

If a mechanism outputs M_1 , a_2 has incentives to drop c_1 .

applicant	capacity	preference list	course		upper quota
a_1	1	c_1, c_2	c_1	2	2
a_1	1	c_2	c_2	2	2

If a mechanism outputs M_2 , a_1 has incentives to drop c_2 .

applicant	capacity	preference	course	lower	upper
		list		quota	quota
a_1	1	c_1	c_1	2	2
a_1	1	c_2, c_1	c_2	2	2

PARETO OPTIMAL MATCHINGS WITH PREREQUISITES CONSTRAINTS

Prerequisites: a student is allowed to subscribe to a course c only if she subscribes to a set C' of other course(s).

Example:

Optimal Control Theory requires Differential Equations and Linear Algebra Differential Equations require a Calculus course

For each applicant $a \in A$: a partial order \rightarrow_a on C

Meaning: if $c \in M(a)$ and $c \to_{a_i} c'$ then $c' \in M(a)$

For lexicographic preferences:

a POM can be found by a modified sequential mechanism

PARETO OPTIMAL MATCHINGS WITH PREREQUISITES CONSTRAINTS

Prerequisites: a student is allowed to subscribe to a course c only if she subscribes to a set C' of other course(s).

Example:

Optimal Control Theory requires Differential Equations and Linear Algebra Differential Equations require a Calculus course

For each applicant $a \in A$: a partial order \rightarrow_a on C

Meaning: if $c \in M(a)$ and $c \to_{a_i} c'$ then $c' \in M(a)$

For lexicographic preferences:

a POM can be found by a modified sequential mechanism

Algorithm SM-CAPR:

- always finds a Pareto optimal matching, given any policy
- runs in polynomial time
- may not produce all Pareto optimal matchings
- is not strategy-proof (implied also by (Hosseini and Larson, 2015)

Hard problems:

- Deciding whether a matching is Pareto optimal is co-NP-complete
- Finding a maximum cardinality Pareto optimal matching is NP-hard

38

COMPULSORY PREREQUISITES

$$\sigma = \langle a_1, a_2, a_1, a_2, a_1, a_2, \ldots \rangle$$

$$a_1: \underline{c_1} c_2 c_3 \underline{c_4} \underline{c_5} \underline{c_6} c_7 \underline{c_8}$$

$$a_2: c_1 c_2 c_3 c_4 c_5 c_6 c_7 c_8$$

$$\begin{array}{cccc}
c_7 & c_2 & c_3 \\
\hline
\end{array}$$

$$q(a_1) = 5 2 1$$

$$q(a_2) = 4 2 0$$

$$q(c_1) = 21$$

$$q(c_2) = 2 0$$

$$q(c_3) = 2 0$$

$$q(c_4) = 2 0$$

$$q(c_5) = 2 \times 0$$

$$q(c_6) = 2 \times 0$$

$$q(c_7) = 1$$

$$q(c_8) = 20$$

39

PARETO OPTIMAL MATCHINGS WITH ALTERNATING PREREQUISITES

Prerequisites: a student is allowed to subscribe to a course c only if she subscribes to at least one course from a given set C'

Example:

Mathematical modeling requires some course on mathematical sofware (MATHEMATICA, MATLAB, MAPLE . . .)

For each applicant $a \in A$ there is a mapping $\mapsto_a : C \to 2^C$

Meaning:

if $c \in M(a)$ and $c \mapsto_a \{c_{i_1}, c_{i_2}, \dots, c_{i_k}\}$ then $c_{i_j} \in M(a)$ for some $j = 1, \dots, k$

Bad news: finding a Pareto optimal matching is NP-hard under either additive or lexicographic preferences

PARETO OPTIMAL MATCHINGS WITH COPREREQUISITES

For each applicant $a \in A$ there is an equivalence relation \leftrightarrow_a on C

Meaning: M(a) contains either all courses from an equivalence class or none

Algorithm for lexicographic preferences:

- 1. replace each course $d \in C$ by its equivalence class D:
 - size of the 'supercourse' is the number of courses in the equivalence class
 - position of the 'supercourse' in the preference list is the position of the best course of the equivalence class
- 2. Run the sequential mechanism (take care of sizes)

Theorem. MAX POM CACR is NP-hard and not approximable within a factor of $N^{1-\varepsilon}$, for any $\varepsilon > 0$, unless P=NP, where N is the total capacity of the applicants.

EMPIRICAL STUDY

- Assignment of students to bachelor projects
- 53 students, 64 offered topics
- Distributed maket, we had results of real outcome
- We elicitated students' preferences
- What are the preferences of teachers?
- Serial dictatorship: policy decreasing in students' grades
- 7 students improved compared to the real outcome

Thank you for your attention!