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Recap: fairness notions

• (PROP) proportionality

• (MFS) maxmin fair share

• (EF) envy-freeness

• (ESW) egalitarian social welfare

• (NSW) Nash social welfare

• (esum,max,bool) number of envious agents

• (emax,max,raw) max envy between any pair of agents

• envy up to one (some/any) good
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Recap: some results

Under the additive assumption that we made:

• scale of fairness criteria

• Nash social welfare has interesting fairness properties
• deciding the existence of allocations satisfying most of these
notions is NP-complete (proportionality, egalitarian-optimal,
envy-free + complete), and even harder for other problems

• in practice: MIP formulations allowing efficient solving
• in practice: envy-free allocations always satisfied from a
certain number of goods

• in practice: existence of MFS allocations always satisfied

Two open problems we mentioned:

• complexity of deciding whether an MFS allocation exist
• existence of envy-freeness up to any good
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One question we left pending

+ With Borda utilities, any EF allocation must be egalitarian-
optimal

False. Easy to see (similar to what we showed in general) : 2
agents, 4 resources, reversed preferences. Both agents can get
they top and third preferred items, this is EF, but it would be
better (and possible) for both to get they two preferred items.
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One question we left pending

How about this stronger statement?

+ With Borda utilities, some EF allocation (if there exist) must
be egalitarian-optimal

False. Counter-example:

r0 r1 r2 r3 r4 r5
agent 1 6 5 3 4 2 1
agent 2 6 5 3 4 2 1
agent 3 4 5 6 1 2 3

There is an allocation with maxmin value = 7 which is envy-free,
but egalitarian-optimal is 8 and none of the allocation are
envy-free.

More about this interplay between egalitarian social welfare
and env-freeness:
Brams and King. Efficient fair division?help the worst off or avoid envy?.
Rationality and Society, 2005.
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Why do we need (nice) protocols

There are many reasons why protocols often have to be used in
practice:

• lack of access to (or trust in) a central authority,

• agents prefer to take part in the allocation process,

• interesting compromise between communication burden and
efficiency/fairness guarantees

Communication is often a real bottleneck in resource allocation
problems, and in principle protocols can make a difference.
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Example: protocols for allocating one good

Consider the following situation:

There are two agents (A and B); and one object to allocate.
Each agent x has a valuation vx ∈ {0, 1, 2, 3} for the object.
Goal: assign the object to the agent who values it the most.

Can we design efficient protocols to achieve this goal?

I. Segal. Communication in Economic Mechanisms. CES-2006.
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Example: protocols for allocating one good

Consider the following situation:

There are two agents (A and B); and one object to allocate.
Each agent x has a valuation vx ∈ {0, 1, 2, 3} for the object.
Goal: assign the object to the agent who values it the most.

Can we design efficient protocols to achieve this goal?

Protocol π0: “One-sided Revelation” bits
A gives her valuation 2
B computes the allocation, and send it 1

total⇒ 3
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Example: protocols for allocating one good

Consider the following situation:

There are two agents (A and B); and one object to allocate.
Each agent x has a valuation vx ∈ {0, 1, 2, 3} for the object.
Goal: assign the object to the agent who values it the most.

Can we design efficient protocols to achieve this goal?

Protocol π1: “English Auction” bits
p← 0, X← A
while not(stop):

ask X “stop”’ or “raise” 1
p← p+ 1
X← X

allocate to X
total⇒ 1, 2, or 3 7



Example: protocols for allocating one good

Consider the following situation:

There are two agents (A and B); and one object to allocate.
Each agent x has a valuation vx ∈ {0, 1, 2, 3} for the object.
Goal: assign the object to the agent who values it the most.

Can we design efficient protocols to achieve this goal?

Protocol π2: “High/Low Bisection” bits
A says whether her valuation {0, 1} (low) or {2, 3} (high) 1
B computes the allocation
(if low (if vB = 0 then give to A else give to B))
(if high (if vB = 3 then give to B else give to A))
and send it 1

total⇒ 2
7



Communication issues

• for additive utilities, centralized protocols require
O(nm logK) for full elicitation

• in general, communication complexity arguments show that
you cannot hope to get more frugal protocols

• but some protocols offer interesting compromises
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The Adjusted Winner

The protocol is designed for two agents, who initially have the
same amount of points to assign to items.
It runs in two phases:

1. winning phase: allocate goods efficiently, ie. assign each
good to the agent who values it most

2. adjusting phase: goods are transferred from the “high”
agent to the “low” agent in increasing order of the ratio

uh(r)
ul(r)

until the poorest become the richest (or they enjoy the same
utility).

Brams and Taylor. The Win-win Solution. Guaranteeing Fair Shares to Ev-
erybody. 2000.

10



The Adjusted Winner

But the protocol may require the last resource r to be splitted.

The idea is to split precisely so as to attain exactly the same
utility for both agents :

ul(r) + ul(π \ {r})− uh(π \ {r})
uh(r) + ul(r)

However, without knowing in advance which resource may be
splitted, it must be assumed that all are. Under this assumption:

+ Adjusted Winner returns an envy-free Pareto-optimal allo-
cation, and both agents enjoy the same utility.

11



The Adjusted Winner

Example:

r0 r1 r2 r3 r4
agent 1 1 2 5 3 8
agent 2 2 3 8 1 5
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The Adjusted Winner

Example:

r0 r1 r2 r3 r4
agent 1 1 2 5 3 8
agent 2 2 3 8 1 5

winning phase
agent 1 enjoys utility 11
agent 2 enjoys utility 13
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The Adjusted Winner

Example:

r0 r1 r2 r3 r4
agent 1 1 2 5 3 8
agent 2 2 3 8 1 5

adjusting phase
((r1, 32), (r2,

8
5), (r0,

2
1))

r1 must be transferred

14



The Adjusted Winner

Example:

r0 r1 r2 r3 r4
agent 1 1 2 5 3 8
agent 2 2 3 8 1 5

adjusting phase
agent 2 must get (of r1):
(2+11-10)/(2+3)=3/5

15
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Lipton et al.

We first present informally the approach, based on a simple
sequential allocation of resources.
For each resource rk to be allocated:

• build the envy graph G = (N ,E), where (i, j) ∈ E× E if agent i
envies agent j

• while the graph has cycles, pick one C = (c1, c2, . . . cq), and
reallocates the bundle of ci to ci−1 (and of c1 to cq).

• allocate rk to an agent that no one envies.

Lipton et al. On approximately fair allocations of divisible goods. EC-04.
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Lipton et al.

2

1

3

r0 r1 r2 r3 r4 r5
agent 1 1 2 5 3 7 2
agent 2 2 6 8 1 1 2
agent 3 5 4 4 3 2 2

No object is allocated yet.
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Lipton et al.

2

1

3

1

4

1

2

r0 r1 r2 r3 r4 r5
agent 1 1 2 5 3 7 2
agent 2 2 6 8 1 1 2
agent 3 5 4 4 3 2 2

There are two cycles: (1,3) or (1,2,3)
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Lipton et al.

2

1

3

3
r0 r1 r2 r3 r4 r5

agent 1 1 2 5 3 7 2
agent 2 2 6 8 1 1 2
agent 3 5 4 4 3 2 2

Suppose we chose cycle (1,2,3). After a single rotation, agent 1
and agent 2 are not envied any longer.
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Lipton et al.

2

1

3

2

r0 r1 r2 r3 r4 r5
agent 1 1 2 5 3 7 2
agent 2 2 6 8 1 1 2
agent 3 5 4 4 3 2 2

We can give r3 to agent 1. There are no cycle, agent 2 and
agent 3 are not envied.
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Lipton et al.

2

1

3

7

2

1

r0 r1 r2 r3 r4 r5
agent 1 1 2 5 3 7 2
agent 2 2 6 8 1 1 2
agent 3 5 4 4 3 2 2

We can give r4 to agent 2. There are no cycles but only agent 3
is not envied.
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Lipton et al.

2

1

3

7
r0 r1 r2 r3 r4 r5

agent 1 1 2 5 3 7 2
agent 2 2 6 8 1 1 2
agent 3 5 4 4 3 2 2

We finally give r5 to agent 3. The final allocation is not
envy-free, as agent 1 envies agent 2.
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Lipton et al.: analysis

Cycle reallocation step: C = (c1, c2, . . . , cq)
+ Envy must have decreased.

• any agent in the cycle has increased its utility.

• bundles are unaffected

+ The number of edges in the envy graph has decreased.

• edges between agents ̸∈ C are not affected

• edges from agents ̸∈ C to C now point to previous agent in C

• edges from agents ∈ C to agents ̸∈ C may only decrease

• (original) edges between agents ∈ C are deleted

Lipton et al. On approximately fair allocations of divisible goods. EC-04.
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Lipton et al.: envy is bounded

Let α be the max value that any agent gives to a good.

+ The max envy between pair of agents is bounded by α

Base case:
A0: allocate first resource randomly. Clearly e(A0) ≤ α.

Induction step:
Suppose A with {r1, . . . , rk} allocated, and e(A) ≤ α.
By repeatedly applying cycle reallocation in the envy graph, we
must get an acyclic graph.
Hence at least an agent j is not envied: she gets rk+1.
Envy among agents ̸= j is not affected.
Envy of agents i ̸= j towards j is ≤ α, since j was not envied.

Lipton et al. On approximately fair allocations of divisible goods. EC-04.
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Lipton et al.: complexity

• computational complexity : cycle detection O(n2) and edge
removing. Number of edges to remove is at most n2. This
takes place m times (for each resource), hence O(mn4).

• the communication requirement of the protocol is, for each
agent, to say whether she envies the other ones (n2). This
occurs for each resource allocation, giving overall mn2 bits.

• observe that the protocol as presented never requires agents
to communicate utilities
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Picking sequences

We fix beforehand a sequence of agents, eg. (n = 3,m = 6)

[123231]

• agents pick one resource at a time, at their turn

• if they do so sincerely they pick the best resource available to
them at that stage of the protocol

Only requires to communicate m times which resource to pick
(log(m) bits), hence overall m logm bits.
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Picking sequences

Sequence = [123231]

r0 r1 r2 r3 r4 r5
agent 1 1 2 5 3 7 2
agent 2 2 6 8 1 1 2
agent 3 5 4 4 3 2 2

29



Picking sequences

Assuming for the moment that k = m mod (n), ie. we can
ensure that each agent gets the same number of resources.

Take a permutation of agents:

p = [p(1),p(2), . . . ,p(n)]

Let p−1 be the “mirror” sequence of p.

• round robin: the subsequence p is repeated k times
• balanced: (p ◦ p−1) is repeated k/2 times

(When there are only two agents, it is common to talk about
strict alternation or balanced alternation)

Brams and Taylor. The Win-win Solution. Guaranteeing Fair Shares to Ev-
erybody. 2000.

Bouveret and Lang. A general elicitation-free protocol for allocating indi-
visible goods. IJCAI-11.
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Picking sequences: Round-Robin

Round-robin sequences are arguably the simplest ones (they
are also called draft mechanisms).

When n = m similar to serial dictatorship.

Do they have interesting properties?

+ Round-robin picking sequences satisfy envy-freeness up
to one good

Intuition: during each k phase, when picking its resource r,
agent i prefers r over the n− 1 ones subsequently chosen by
other agents. Envy towards j can result from resource chosen
by j before his first pick (during the first phase). Removing this
resource from bundle of j removes envy.

31
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Picking sequences: Round-Robin

What about Pareto-efficiency?

r0 r1 r2 r3 r4 r5
agent 1 18 8 1 1 1 1
agent 2 4 6 5 5 5 5
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Picking sequences: Round-Robin

What about Pareto-efficiency?

r0 r1 r2 r3 r4 r5
agent 1 18 8 1 1 1 1
agent 2 4 6 5 5 5 5

⇒ Round-robin gives r0 to agent 1, r1 to agent 2, and two other
resources each among {r2, r3, r4, r5}: utilities = (20, 16).
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Picking sequences: Round-Robin

What about Pareto-efficiency?

r0 r1 r2 r3 r4 r5
agent 1 18 8 1 1 1 1
agent 2 4 6 5 5 5 5

⇒ But exchanging r1 that agent 2 got against the two items
among {r2, r3, r4, r5} that agent 1 obtained gives (24, 20).
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Picking sequences: Round-Robin

What about Pareto-efficiency?

r0 r1 r2 r3 r4 r5
agent 1 18 8 1 1 1 1
agent 2 4 6 5 5 5 5

+ Round-robin picking sequences are not guaranteed to sat-
isfy Pareto-optimality

However, for two agents, for Borda utilities and under
assumption of uniform distribution, they maximizes the
expected utilitarian social welfare.

Kalinowski et al. A social welfare optimal sequential allocation procedure..
IJCAI-13.
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Picking sequences: designing fair sequences

Can we design sequences such that they are fair?

Let us make the assumption that utilities are Borda.

• under uniform preferences, what are the sequences which
maximize egalitarian social welfare?

Let’s try for n = 3 and m = 7! (use the Notebook to look for
the best sequence)
You can also check the optimal sequences here:
http://recherche.noiraudes.net/en/sequences.php

• can we design sequences which guarantee proportionality?
(or maximize the likelihood to get a proportional allocation?)

33
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Picking sequences: proportionality

+ For even k, when m = k ·n, the balanced picking sequence
returns a proportional allocation

Intuition: Worst case is when agents have same preferences.
Possible to analyse the situation in that case.

Darmann and Klamler. Proportional Borda Allocations. COMSOC-2016.
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Picking sequences: proportionality

+ For odd n, when m = k ·n, there exists a picking sequence
which returns a proportional allocation

The following picking sequence can be used:

• for the first 3n picks, follow the sequence

[1, . . . . . . ,n,
n,n− 2,n− 4, . . . , 1, n− 1,n− 3, . . . , 2,
n− 1,n− 3, . . . , 2,n, n− 2 . . . , 1]

• for the remaining picks use the balanced sequence

Darmann and Klamler. Proportional Borda Allocations. COMSOC-2016.
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Picking sequences: proportionality

Note that this leaves some cases where proportional
allocations are not guaranteed to exist.

• when m = n a proportional allocation may not exist (consider
two agents, two resources, same preferences).

• or some odd k, even n, eg. for n = 2 and m = 6 (4
problematic cases)
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Local Exchanges

We conclude with a fully distributed approach:

• resources are initially held by agents
• agents agree on local rational deals
• agents may have restrictions on the types of deals they can
perform

• agents may not be able too see/deal with any other agents

This approach relies on a dynamics, with agents encountering
each others and (potentially) agreeing on deals. The final
allocation is when no more deals are possible.

Sandholm. Contract types for satisficing task allocation. AAAI Spring Sym-
posium.

Endriss et al. Negotiating socially optimal allocations of resources. JAIR-06.
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Local Exchanges

The notions of fairness/efficiency behave differently wrt. this
distributed setting:

Intuitively:

• if some agents perform a deal which increase locally the sum
of utilities, then globally the sum of utility will increase

• if some agents perform a deal which increase locally the min
of utility, then globally the min of utility cannot decrease

• if some agents perform a deal which decrease locally envy,
then globally envy may very well increase

This has consequences on convergence guarantees that can be
given.
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Local Exchanges

Let us illustrate this approach on a simple scenario:

• same number of resources as agents

• each agent can hold only hold one resource

• TTC is the method of choice with nice properties

• but suppose agents can simply perform rational swap deals

Damamme et al. The power of swap deal in distributed resource allocation.
AAMAS-15.
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Example

5 4 3 2 1

agent 1:
s

agent 2:
s

agent 3:
s

agent 4:
s

agent 5:
s

⇒ swu(A) = 22
⇒ swe(A) = 4
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Local Exchanges

What are the properties of such a protocol?

• Is Pareto-optimality guaranteed?

• What is the “price” of using this protocol wrt. egalitarian
social welfare?

• What is the “price” of using this protocol wrt. number of
pairwise envies? (ie. utilitarian social welfare in this case...)

• What is the complexity of the reachability question?

46



Local Exchanges

Is Pareto-optimality guaranteed?

No.

Domain restriction guaranteeing Pareto-optimal outcomes?

+ In a single-peaked domain, any sequence of rational swap
deals reaches a Pareto-optimal allocation.
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Local Exchanges

Price for egalitarian social welfare:

1 : r1 ≻ rn ≻ . . .

2 : r2 ≻ r1 ≻ . . .

3 : r3 ≻ r2 ≻ . . .

4 : r4 ≻ r3 ≻ . . .

...
n− 1 : rn−1 ≻ rn−2 ≻ . . .

n : rn ≻ . . . ≻ . . . ≻ rn−1 ≻ rn−2
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Local Exchanges

Price for utilitarian social welfare / number of pairwise envies:

Price is at most 2. Take a swap-stable allocation A: for each pair
of agents (x, y), at least one agent ranks the resource of the
other below her current. Hence overall at least n(n− 1)/2
resources ranked below.
Price can be 2:

a1 : 1 ≻ 2 ≻ 3 ≻ 4 ≻ 5

a2 : 2 ≻ 3 ≻ 4 ≻ 5 ≻ 1

a3 : 3 ≻ 4 ≻ 5 ≻ 1 ≻ 2

a4 : 4 ≻ 5 ≻ 1 ≻ 2 ≻ 3

a5 : 5 ≻ 1 ≻ 2 ≻ 3 ≻ 4
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More on distributed settings

Other typical results in such settings:

• allowing the use of money and characterizing convergence
properties under various protocols/preference constraints

• accounting for the underlying visibility/deal graph

• communication complexity (typically in terms of number of
deals) of such protocols

Chevaleyre et al. Allocating Goods on a Graph to Eliminate Envy. AAAI-07.

Dunne. Extremal behaviour in multiagent contract negotiation. JAIR-05.
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Going further

More general preferences than cardinal additive utilities:

• first note that the additivity assumption is not used in Lipton’s
et al. approach. In that case the maximum marginal utility
becomes :

α = max
i,r,S⊆O\{r}

[ui(S ∪ {g})− ui(S)]

• many other protocols available: the descending demand
procedure, the undercut procedure, ...

Slides of the COST Summer School on Fair Division. Grenoble. 2015.
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