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These notes accompany a tutorial on strategic voting by Reshef Meir. This is a first draft,
and may contain mistakes. Any comments regarding the content or exposition are welcome.

1 Basic Notations

We will follow the notations of [10] as much as possible.
For a finite set X, we denote by R(X) the set of all weak orders over X, and by L(X) the

set of all linear (strict) orders over X. For L ∈ L(X), denote by top(L) the first element of L.
A voting scenario is defined by a set of candidates, or alternative, A, a set of voters N , and

a preference profile R = (R1, . . . , Rn), where each Ri ∈ L(A). For a, b ∈ a, i ∈ N , candidate
a precedes b in Ri (denoted a �i b) if voter i prefers candidate a over candidate b. Thus
top(Ri) ∈ A is i’s most preferred candidate.

Definition 1.1. A social choice correspondence (SCC) is a function F : L(A)n → 2A \ ∅, i.e.
a function that accepts a preference profile R as input, and outputs a nonempty set of winning
candidates.

Definition 1.2. An SCC F is resolute if |F (R)| = 1 for all R. Resolute SCCs are also called
Social choice functions (SCF). We typically denote SCFs by a lower case letter f .

Definition 1.3. A social welfare function (SWF) is a function fW : L(A)n → R(A), i.e. a
function that accepts a preference profile R as input, and outputs weak order over candidates.

We will use the term voting rule for a SCF unless stated otherwise.

2 Strategyproofness

Example of a manipulation Consider an election using the Borda voting rule with the
following preference profile:

1 2 3

b b a
a a b
c c c
d d d

Candidate b is the winner, beating candidate a 8 points to 7. However, if voter 3 lies about
his preferences and ranks candidate b last (after a, c and d), b’s score goes down to 6, and a
(voter 3’s favorite candidate) wins! Generally, if a voter knows the voting rule being used and
the preferences of the other voters (or can guess them), he may be able to bring about a more
preferable result for himself by reporting a preference different from his true preference. This
is called manipulation.
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Manipulability of voting rules We would like to have a voting rule which cannot be
manipulated, meaning that no voter can ever profit from lying about her preferences. But is
this possible?

Definition 2.1. A voting rule f is strategyproof if no (single) voter can ever benefit from
lying about his preferences:

∀R ∈ Rn ∀i ∈ N ∀R′i ∈ R : f(R′i,R−i) �i f(R)

For facility location and classification the definition is analogous, except that preferences
are locations or binary label vectors rather than orders.

Definition 2.2. A voting rule is manipulable if it is not strategy-proof.

Claim 2.3. If there are exactly two candidates then the Majority voting rule is strategy-proof.

Proof. Denote A = {a, b} and assume WLOG that candidate a was selected by the Majority
voting rule (for some given preference profile R). Let i ∈ N be one of the voters. If b ≺i a,
then voter i’s favorite candidate has already won, and she certainly has nothing to gain by lying
about her preferences. On the other hand, if a ≺i b, then changing voter i’s preference so that
b is ranked below a only lowers b’s score and cannot possibly cause b to win. In either case,
voter i cannot benefit from lying about her preferences.

2.1 The Gibbard-Satterthwaite theorem

Recall the definitions of dictatorial rules and duples:
A voting rule f is dictatorial if there is an individual (the dictator) whose most preferred

candidate is always chosen by f :

∃i ∈ N ∀R ∈ L(A)n : f(R) = top(Ri).

A voting rule f is a duple if there are only two possible winners: |{f(R) : R ∈ L(A)n}| ≤ 2.

Theorem 2.4. (The Gibbard-Satterthwaite theorem [26, 71]) If there are at least three candi-
dates, any deterministic voting rule is strategy-proof if and only if it is either dictatorial or a
duple.

It is easy to see that a dictatorial rule is SP, since the dictator is always best off reporting
the truth and all other voters have no power; if we allow duples, we can arbitrarily select two
candidates a, b and hold a majority vote between them.

There are many different proofs of the Gibbard-Satterthwaite theorem. Several simple
proofs can be found in [73]. In the appendix bring one of these proofs, under the simplifying
assumption that n = 2.

2.2 Manipulations in other domains

Facility location Facility location can be thought of as a special case of voting, where the
alternatives A are possible locations for a facility in some metric space. Each agent is assumed
to prefer the facility to be as close as possible to her location, thus instead of reporting her
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full preference order Ri, she only needs to report her location (say some point xi ∈ Rd or on a
graph G).

While there are many possible aggregation rules, the most natural one would simply take
all of the locations x1, . . . , xn and return the point a ∈ A that minimizes the average distance
to all input points. It is not hard to see that an agent i can manipulate by reporting a different
location x′i (typically more extreme), thereby moving the facility closer to her real location.

Binary classification A classification setting consists of an input space and a class of clas-
sifiers (known as the concept class), that is, functions from the input space to the set of labels
{+,−}. A classification mechanism receives as input a dataset—a set of input points and their
labels, where each such labeled input point is known as an example—and must return a classi-
fier from the given class that classifies the given examples as well as possible. For instance, the
input space might be images (represented as matrices of pixels), and the dataset might label
different images as showing a human face (positive label) or not showing a face (negative label).

In our setting the labels are reported by strategic agents. Each agent controls a subset of the
dataset, i.e., its own subset of (labeled) examples. The input points controlled by each agent
are known, but their labels are private information. Given the reported labels, the classification
mechanism selects a classifier. However, by lying the agents may achieve a classifier that better
reflects their own labels, at the expense of overall accuracy.

Judgement aggregation In judgement aggregation problems there is a finite agenda of k
binary issues, with a logical constraint on the valid combinations V ⊆ {0, 1}k (e.g. “C =
(A or B)” means that the assignment A = 0, B = 0, C = 1 is not valid). An aggregation
function collects the opinions of all judges (i.e. valid binary vectors xi ∈ V ), and outputs
a valid outcome. In contrast to facility location, there is typically no optimization goal, but
rather we want aggregators that have certain axiomatic properties like IIA (f(x1, . . . , xn)j =
fj(x1j , . . . , xnj) for all j ≤ k), unanimity (f(x, . . . , x) = x) and so on.

Since there is no one clear notion of utility, manipulation is also not uniquely defined [18].
For example we can think of “optimistic” manipulation, where the agent succeeds in changing
the outcome on one particular issue yj to xij , regardless of how other issues are affected; “pes-
simistic,” where the outcome must be at least as good for i on every issue j; and “utilitarian,”
where the agent cares about the total number of issues that match her opinion. Under the latter
notion of agents’ utility, JA is a special case of facility location, where every agenda corresponds
to a subset of {0, 1}k. For example, for the agenda in our example above, every opinion xi is a
point in A = {(000), (010), (100), (111)}.

The exact formulation of strategyproofness may differ according to the domain. See defini-
tions and discussion in the mentioned papers, and in references therein: Facility location [63, 19];
Binary Classification [44]; Judgement Aggregation [35, 18].

3 Robustness of the G-S Theorem

There have been many attempts to test whether the strong negative result of G-S can be
mitigated by slightly relaxing our requirements or assumptions. In this section we consider two
approaches that actually show the robustness of the negative result:
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1. A lower bound for the frequency of manipulation.

2. An impossibility theorem for randomized rules.

3.1 Frequency of manipulation

While the G-S theorem shows that for every rule there is some manipulation, perhaps there
are rules for which those manipulations are too rare for us to care about. If, for example,
there is only one or two “dangerous” profiles out of (m!)n then maybe we can live with such
“almost-SP” rules.

Unfortunately, it can be shown that in every reasonable voting rule there will be much more
manipulations than that. More formally, we define the manipulation power of voter i in rule f
as

Mi(f) =
1

(m!)n

∑
R∈L(A)n

q
∃R′i s.t. f(R−i, R

′
i) �i f(R)

y
,

i.e. as the probability that in a random profile (sampled uniformly according to the impartial
culture) voter i will have some beneficial manipulation.

Note that we can rephrase the G-S theorem as follows:

Theorem 3.1. For deterministic voting rule f , either f is dictatorial, or a duple, or
∑

i∈N Mi(f) >
0.

Now that we have a quantitative measure for manipulation, we would like to similarly relax
the notions of dictatorships and duples.

Definition 3.2. We say that a rule f is ε-bad if there is some other voting rule g s.t.

1. g is either a duple or dictatorial.

2. PrR∼U(L(A)n)(f(R) = g(R)) ≥ 1− ε, i.e., f and g agree on all input profiles except ε.

In particular, dictatorial function and duples are 0-bad. The question of whether we can
lower bound the manipulation power of ε-bad rules for ε > 0 is a relatively recent one.

The first studies of similar questions [15, 62] were more algorithmic in nature, and provided
algorithms that w.h.p can tell whether a manipulation exists or not. Friedgut et al. [25] was
the first to prove such a lower bound on the manipulation power (under a slightly different
definition), albeit only for Neutral rules with m = 3.

The state-of-the-art result now shows that:

Theorem 3.3 (Mossel and Rácz [49]). For any ε ≥ 0, and any deterministic voting rule f ,
either f is ε-bad, or

∑
Mi(f) > poly( 1

n ,
1
m , ε).

That is, to keep a low probability of manipulation, we must select a rule that is very close
to being a duple or dictatorial. Note e.g. that all anonymous and unanimous rules (including
all scoring rules, Copeland, Kemeny, etc.) are very far from being “bad” and thus have at least
a polynomial probability of manipulation.

Also note that we get the Gibbard-Satterthwaite theorem (Theorem 3.1) as a special case
for ε = 0.
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Group manipulations One may claim that the result above does not really convince that
manipulations are common. Indeed, a polynomial fraction may still be quite small. Even in
the Plurality rule, which is the most manipulable, the probability of manipulation is about 1√

n
.

When there are millions of voters, this becomes negligible.
However, things look less rosy when we consider groups of voters that can manipulate

together. If we allow sufficiently large groups, then we will almost always have some groups (or
even many groups) who can get a better outcome for all voters in the group by manipulating
together.

Formally, f has a group manipulation under profile R if there is a set of voters S ⊆ N ,
and R′S s.t. for all i ∈ S, f(R−S ,RS) �i f(R). f is group strategyproof if there is no group
manipulation under any profile.

In fact, there is a tight connection between the average-case manipulability, and the minimal
size of the coalition that is required to change the outcome. For most common voting rules,
coalitions of size at least ∼

√
n can decide the identity of the winner in almost every profile [77];

for smaller coalitions the probability they have any effect on the outcome is small.1

3.2 Randomized voting rules

Suppose we allow our voting rule to flip coins, i.e. return different outcomes with certain
probabilities. More formally, a randomized voting rule is is a function that maps any profile
R to a lottery (probability distribution) σ ∈ ∆(A). We denote by f(R, c) = σ(c) ∈ [0, 1] the
probability that f returns c ∈ A on profile R. Note that we can also think about f as a lottery
over deterministic voting rules.

It is easy to see that we can find such rules that violate the Gibbard-Satterthwaite conditions.
For example, we can think of a rule that return any candidate with equal probability, regardless
of the profile.

We can also consider somewhat more sophisticated rules, for example, selecting one voter
at random, and then use this voter as a dictator. Or, alternatively, select two candidates at
random, and then hold a Majority vote among them.

All of these rules are strategy-proof ex-post, that is, no voter has a manipulation even after
we reveal the outcome. We can also think of more refine notion of manipulation, where a voter
gains in expectation by deviating. To define expected utilities, we need to extend the voter
preferences to cardinal utilities, i.e. assume that each voter i assigns to each candidate c some
numerical utility ui(c) ∈ R.2

Strategyproofness means that in any cardinal profile u = (ui(c))i∈N,c∈A, any voter j ∈ N ,
and any alternative utility scale u′j ,

Ec∼f(u)[uj(c)] ≥ Ec∼f(u−j ,u′j)
[uj(c)].

It may seem that we might find rules that are SP in expectation, but not ex-post. In turns
out however, that the options we suggested above are roughly the only randomized rules that
are strategyproof, even in expectation.

1By small here we mean “goes to 0 as n grows. However in the part above we considered such probabilities
(polynomial rather than exponential) as large. All is relative in life.

2We typically assume that ui(c) 6= ui(c
′) for all c, c′ ∈ a.
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Definition 3.4. A voting rule is unilateral if there is some j ∈ N s.t. for all uj ,u−j ,u
′
−j,

f(u−j , uj) = f(u′−j , uj).

That is, the outcome is set exclusively based on the input from j.
It is not hard to see that among the unilateral rules, some are strategyproof (e.g. dictatorial

rules), while others are not (e.g. selecting j’s top choice w.p. 1/3, and j’s last choice w.p. 2/3).

Theorem 3.5. [27] A (randomized) voting rule f is strategyproof in expectation, if and only if
it is a lottery over (deterministic) duples and strategyproof unilateral rules.

In other words, allowing randomization extends the set of SP voting rules, but still doesn’t
allow for “reasonable” rules. In the next section, we will discuss several other approaches to
guarantee truthfulness.

4 Achieving truthfulness in voting

We will focus on four approaches, each of which attains truthfulness under certain assumptions:
Subsection Approach Assumptions

1 Domain restriction The preferences R have a certain structure

2 Complexity barriers Voters have bounded computational resources

3 Approximation -

4 Differential privacy Voters will only manipulate for a substantial gain

5 Payments We can charge arbitrary amounts of money from voters,
Voters have quasi-linear utility for money

The two latter approaches also assume voters have cardinal utilities for candidates.

4.1 Domain restriction

Suppose voters are voting on where to place a public library along a street. Naturally, each
voter prefers the library to be located as close as possible to her house (whose location is private
information). If we number all the addresses in the street from (say) east to west, then it is not
possible for example that a voter prefers the east-most location, then the west-most location,
and then some location in the middle. Thus not every preference profile is possible.

More formally, given an order L on candidates A, a preference order Ri is single peaked w.r.t.
L if there is some “peak candidate” a∗i s.t. for all x, y ∈ A, if L(x) is between L(a∗i ) (included)
and L(y) (excluded), then a∗i �i x �i y. In particular, a∗i is i’s most preferred candidate.3

Example: suppose A = {aj}5j=1 are ordered from a1 to a5, i.e. L(aj) = j. Then the following
orders are SP w.r.t. L:

• a1 � a2 � a3 � a4 � a5 (a1 is the peak).

• a3 � a2 � a4 � a5 � a1 (a3 is the peak).

• a4 � a3 � a2 � a1 � a5 a(a1 is the peak).

On the other hand, a2 � a1 � a3 � a5 � a4 is not SP w.r.t. L, since for x = a4, y = a5 we get
a violation of the definition.

3Note that this model is highly related to the facility location problem we mentioned earlier. However here
we do not assume any metric or cardinal utilities.
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The Median Voter rule Given a linear order L over alternatives A, and a preference profile
R that is single-peaked on L:

1. Ask each voter i ∈ N to report her peak ai = top(Ri).

2. Set li = L(ai), i.e. the order of ai in L.

3. Find j∗ ∈ N s.t. kj∗ ∈ median{l1, . . . , ln} (if there are more than one, select arbitrarily).

4. Return f(R) = aj∗ .

Theorem 4.1 (Moulin [50]). The Median Voter rule is group-strategyproof (in particular strat-
egyproof).

Proof. Assume towards a contradiction that there is a subset S ⊆ N that can manipulate by
reporting R′S , and denote c∗ = f(R), c′ = f(R−S ,R

′
S). Clearly S does not contain any voter

i s.t. ai = f(R) as such a voter strictly loses from any manipulation. Denote by SR, SL ⊆ S
the sets of agents whose peaks are to the right and to the left of f(R), respectively. W.l.o.g.
L(c′) < L(c∗), i.e. c′ is to the left of c∗. It cannot be that SR is empty, since no report by SL
can move the median left. However, consider some i ∈ SR, then L(c′) < L(c∗) < L(ai) thus i
strictly loses from this manipulation. A contradiction.

It also holds that the Median Rule is IIA, and that under SP preferences the Condorcet
winner always exists, and is always the median.

4.2 Complexity barriers

4 Another approach is to look for voting rules where even if manipulations exist, it might be
computationally hard for the voter (the potential manipulator) to actually find what to report
in order to promote her preferred candidate. Note that since the number of possible reports is
m!, a brute-force search is typically infeasible.

MANIPULATIONf : given a set of candidates A, a group of voters N , a voting rule f , a
manipulator i ∈ N , a preference profile of all voters except i RN

−i = (R1, . . . , Ri−1, Ri+1, . . . Rn)
, and a specific candidate p ∈ A: Answer whether the manipulator can provide a preference R∗i
such that f(R−i, R

∗
i ) = p.

Notice the following observations:

• The problem is a decision problem. We would like to know if there exists such a preference.

• The problem is defined more strongly than the simple definition of manipulation. The
question is not whether the manipulator can guarantee a victory of a more preferred
candidate, but whether he can guarantee the victory of a specific candidate.

• The Gibbard-Satterthwaite theorem specifies that one of the voters can manipulate the
results. We don’t know if this is true under the given circumstances, where i and p were
given.

4This subsection is based on notes by Ariel Procaccia, Ezra Resnick & Ariel Imber.
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A greedy algorithm This algorithm generates the preference of the voter i such that the
candidate p will be chosen, or returns that this is not possible. The algorithm does the following:

1. Rank p in 1st place.

2. While there are candidates that were not ranked yet:

• If there exists a candidate that can be ranked in the next spot without preventing p
from winning, rank that candidate in the next spot.

• otherwise - declare that the desired preference does not exist.

Example

In this example m=4, n=3, and the Borda voting rule (where every voter gives m-1 points
to his top candidate, m-2 to the next, etc.) will be used. The preference of voters 1 and 2 is
a, p, b, c and the result of the algorithm for the 3rd voter is:

1. Rank p in 1st place, and find that with the two other voters p has 7 points.

2. Notice that a can’t be ranked next, since he’ll end with 8 points. Rank b in 2nd place,
leaving him with 4 points.

3. Notice that a can’t be ranked next, since he’ll end with 7 points. Rank c in 3rd place,
leaving him with 1 point.

4. Rank a in 4th place, leaving him with 6 points.

According to f , p wins with 7 points (while a, b, and c have 6, 4, and 1 points respectively).

Proposition 4.2. Let f be any positional scoring rule, then the greedy algorithm always decides
MANIPULATIONf correctly.

In fact, the algorithm works for a much broader class of voting rules that also includes
Copeland and Maximin [6], but we only prove here a restricted version.

Proof. It’s obvious that if the algorithm found a preference resulting in p winning, the decision
that the manipulator can provide a preference such that p wins is correct. Let’s examine the
case where the algorithm could not find such a preference.

Suppose that the algorithm stopped ranking when the subset U ⊆ A were not yet ranked,
and assume that there exists a preference R

′
for the manipulator that causes p to win. Denote

u ∈ U the top candidate of the subset U according to R
′
. Complete the partial preference

created by the algorithm to a preference R∗ that u is ranked in the 1st place that was not
already ranked by the algorithm.

(Example: Let A = {a, b, c, d, p}, suppose that the algorithm generated the partial prefer-
ence (p, c, d) and assume that R

′
= (b, c, d, p, a). Then U = {a, b} and u = b.)

Let R′ = (R−i, R
′),R∗ = (R−i, R

∗). Since R′ is a successful manipulation, s(R′, p) >
s(R′, x) for all x 6= p (taking tie-breaking into account).
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For all x ∈ A \ (U ∪ {p}), we know that s(R∗, p) > s(R∗, x) since otherwise the algorithm
would have stopped earlier. For all x ∈ U , x is ranked (weakly) lower in R∗ than in R′, whereas
p is pushed up. Thus

s(R∗, p) ≥ s(R′, p) > s(R′, x) ≥ s(R∗, x).

Thus p must win in R∗ as well, as required.

Voting rules that are NP-hard to manipulate Note first that in some rules, such as
Kemeny, it is already NP-hard to compute the outcome of a given profile. Such rules are
clearly hard to manipulate but this is not an interesting results.

Theorem 4.3 ([6]). There is a voting rule f such that: I) f(R) can be computed in polynomial
time; II) MANIPULATIONf is an NP-Complete problem.

The original proof in [6] used a variation of Copeland, however similar hardness results hold
for common voting rules such as STV [5]. We provide a hardness-of-manipulation proof for
another rule called Plurality with Preround in the appendix.

Few candidates and Coalitional manipulations Note that for a fixed number of candi-
dates m, there is a trivial polynomial-time algorithm for computing a manipulation: simply try
all m! possible ballots, which is also a fixed number.

The coalitional manipulation problem is similar to MANIPULATIONf , except it gets
as input a set of manipulators I rather than a single manipulator. The number of possible
combined ballots that I can submit is (m!)n, so even for a fixed m this is a nontrivial problem.
Indeed, for many voting rules the coalitional manipulation problem turns out to be NP-hard
even for small values of m [14].

A particular problem of interest that has been open for several years was the complexity of
Borda manipulation of n = 2 voters (and any number of candidates). This was shown in be an
NP-hard problem in [17, 8]. For more details on complexity barriers see [10], Section 6.4.

4.3 Approximate scoring rules

Consider a rule with a natural notion of candidate score s(a), such as Plurality, Borda, or Max-
imin. For any outcome alternative a ∈ A we can compare s(a) to the score of the “true” winner
of the voting rule s(f(R)). Thus a (randomized) voting rule f is a γ output-approximation of
a scoring rule g if for any profile R, E[sg(f(R))] ≥ γ · sg(g(R)), where sg is the scoring used
by rule g.

Procaccia [61] suggested to limit ourselves to voting rules that are strategyproof (i.e., fall
under Gibbard [27] characterization), and within this set select a rule that approximates our
target rule g as well as possible.

For PSRs, this is done by selecting one voter uniformly at random, and define a particular
lottery over unilateral rules, that depends on the scoring function α (e.g. for Plurality, this
always selects the most preferred candidate of this voter). He shows the following:

Theorem 4.4 (Procaccia [61]). Let g be any PSR, then there is a randomized strategyproof
voting rule f such that f is a Ω( 1√

m
) output-approximation of g. This bound is tight for the

Plurality rule.
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That is, for a fixed number of candidates m, we get a fixed approximation ratio regardless
of the number of voters.

Notably, this approach requires the weakest assumptions on voters’ behavior - we only
assume they follow their weakly dominant strategy to be truthful. On the other hand, we get
an outcome that is only an approximation. Further, this is approximation in expectation, and
in a particular realization the outcome may be much worse than g.

Approximation with almost-SP rules Núnez and Pivato [54] suggested to use strategy
rules as Procaccia did, but instead using the SP rule (say, random dictator) all the time, use a
random dictatorial rule with some low probability ε, and run the target rule g with probability
1 − ε. They show that the combined rule guarantees a good approximation of the target rule
g. In addition, while the combined rule is not strategyproof, under mild assumptions on the
preferences of the population they show that as the population grows the probability that a
voter will want to manipulate goes to 0.

4.4 Differential privacy

Consider a randomized algorithm f that operates on some data R and returns some outcome
a ∈ A. We can think of R as a table with one row per person, and where columns specify
various information about this person.

An algorithm f is differentially private if for all , that differ by 1 person, and all S ⊆ A
we have Pr[f(R) ∈ ] ∼= Pr[f() ∈ ]. That is, we cannot tell by the outcome (almost) anything
about a particular person in the data.

There is abundant literature on constructing differentially private algorithms, or modifying
existing algorithms so as to make them differentially private. This is typically by adding noise
to the dataset in a particular way, see e.g. [21].

Differentially private voting rules Intuitively, a (randomized) voting rule f is differentially
private if for all profiles R,R′ that differ by a single voter, and for any subset of alternatives
S ⊆ A, Pr[f(R) ∈ S] ∼= Pr[f(R) ∈ S]. That is, a single voter has very small influence on
the outcome. While it seems that this is the case in most voting rules, note that in standard
deterministic rules (like Plurality), there are very few profiles in which a voter is pivotal, but in
those profiles the voter has large influence (changes the outcome with certainty). In contrast,
in differentially private rules, in every profile a single voter has negligible influence.

How does this relate to strategyproofness? Since the influence of every voter is small,
the (expected) gain from manipulation is also small. Thus the main idea is to take some
deterministic voting rule f , and modify it by adding some noise to the votes before computing
the outcome. If done properly, this will have very little effect on the outcome in most profiles,
while reducing the incentive of voters to manipulate.

Approximately SP voting

Definition 4.5. Fix a pseudo-metric d : L(A)×L(A)→ R+. A randomized voting rule f is a
δ input-approximation of another voting rule g, if for any profile Rg and every coin toss, there
is another profile Rf such that:
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• d(Rf ,Rg) ≤ δ,

• f(Rf ) = g(Rg).

E.g., if d counts the number of voters who vote differently, then for every R every realized
outcome of f we can change the vote of at most δ voters so as to get the “correct” outcome g(R).
Note that this is a very different notion of approximation than the one used in Section 4.3. As
a more concrete example, consider the Plurality rule g, and define f by first sampling k random
voters and replace their vote with an arbitrary candidate, and then compute the Plurality
winner. Then f is a k-approximation of Plurality.

Theorem 4.6 (Birrel and Pass [9]). For any deterministic voting rule g over m candidates,
and any ε > 0, there is a randomized voting rule f that is:

• ε-strategyproof, i.e. no voter has a probability greater that ε to improve her utility by
manipulation;

• δ input-approximation of g, for δ = O(m
2

ε ).

In other words, we can construct a voting rule f where the incentive to manipulate is as low
as we want. This voting rule will coincide with g except in “borderline” profiles where a small
number of voters could change the outcome. The size of this margin is inversely proportional
to the incentive to manipulate.

While this result (and other, more nuanced results in the paper) is mathematically sophis-
ticated, it is not clear to what extent they are required in practice. In reality, voters have
uncertainty over the outcome even without adding noise, and thus they are already “differen-
tially private” to some extent from the perspective of the voter. Yet, voters do manipulate even
though their expected gain is negligible, which raises the question if ε-strategyproofness is a
good enough guarantee.

4.5 Payments

Adding payments allows us to transfer utility between agents with much flexibility, thereby
aligning their incentives. The main tool we apply is a powerful mechanism with many applica-
tion in mechanism design, called VCG.

Voting with money To be able to compare voting outcomes and money, we assume voters
have cardinal utilities over candidates as in Section 3.2. That is, uj(c) ∈ R is the utility that
voter j assigns to candidate c. We now reformulate the voting process as an auction, where
each voter announces her value for each candidate. We can think of these values as “bids”, ad
a voter may bid higher or lower than her true value. Each agent will be charged some price pj ,
and her utility will be uj(c)− pj where c is the elected candidate (quasi-linear utilities).

The logical thing to due given the reported values, is to select the candidate that maximizes
the social welfare, i.e. c∗ = argmaxc∈A

∑
i∈N ui(c). We then need to decide the amount we

charge each agent.
As a first attempt, we can charge each voter j the amount of her bid, i.e., pj = uj(c

∗).
However, it is not hard to see that this is not strategyproof. Indeed, suppose all voter bid 1 on
c∗ and 0 on all other candidates. Then j can manipulate by reporting u′j(c

∗) = 0: c∗ will still
be selected, the payment of j will drop, and her utility will strictly increase.
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VCG The Vickrey-Clarke-Groves mechanism collect all information from the agents. Then it
computes the optimal outcome, and charges each agent i the “damage” that this agent inflicts
upon the other agents. That is, the difference between the maximal social welfare in a world
where i does not exist, and the maximal social welfare (of all except i) in the current world.
For a thorough exposition of VCG see [53].

While the VCG mechanism guarantees truthfulness in a wide variety of applications, it turns
out that as a voting rule it has a particularly attractive form:

1. Collect ui(c) for all i ∈ N, c ∈ A.

2. Let c∗ = argmaxc∈A
∑

i∈N ui(c).

3. For each j ∈ N :

(a) Compute SWN\{j} = maxc∈A
∑

i∈N\{j} ui(c) (the social welfare when j does not
exist).

(b) Compute SW−jN =
∑

i∈N\{j} ui(c
∗) (the current social welfare without j).

(c) Set pj = SWN\{j} − SW
−j
N .

In other words, agent j only pays if she is pivotal, and in that case only pays the minimal bid
that would still make c∗ win. By definition, VCG always selects the candidate maximizing the
social welfare.

Theorem 4.7 (Clarke [13]). The VCG voting rule is strategyproof. That is, for any u ∈ Rn×m

For a full proof see [53]. However the intuition is simple: a voter j can try to manipulate in
one of two ways. She can try to reduce her bid on c∗, or increase her bid on another candidate
c′ to make it win. In the former case, pj (and thus the utility of j) will not change unless the
winner changes. But if the winner changes to j′, then uj(c

∗) ≥ uj(c′) + pj , which means j does
not gain. Likewise, in the latter case, in order to change the winner to c′, j must in crease her
bid enough so that uj(c

′) + p′j ≥ uj(c∗).

Thus VCG supposedly solves the incentives problem completely, but under fairly strong
assumptions: voters have cardinal preferences over candidates, we can charge voters arbitrary
amounts of money, and voters attribute quasi-linear utility to money. A recent paper shows
that the last assumption cannot be relaxed: under mild requirements, if voters have non-quasi
linear utilities then there are no strategyproof rules even with money []

5 Voting Equilibrium

One of the earliest formal analyses of strategic voting is due to Farquharson [23], which models
it as an extensive-form game . Notably, this brilliantly text precedes even the G-S theorem and
is highly recommended for reading. However we will take a different approach that follows the
more common framework of normal-form games.
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g1 a b c

a a a a
b b b b
c c c c

g2 a b c

a a a a
b a b b
c a b c

g3 x y

a a b
b b c
c c a

g4 x y z w

a ax ay az aw
b bx by bz bw
c cx cy cz cw

Figure 1: Four examples of game forms with two agents. g1 = f1 is a dictatorial game form
with 3 candidates (the row agent is the dictator). g2 = f2 is the Plurality voting rule with
3 candidates and lexicographic tie-breaking. f3 and f4 are non-standard game forms. In g3,
A1 = C = {a, b, c}, A2 = {x, y}. Note that g4 is completely general (there are 3 × 4 possible
outcomes in C, one for each voting profile) and can represent any 3-by-4 game.

(f2,R
1) a b c

a 3, 1∗ 3, 1∗ 3, 1∗
b 3, 1 2, 3 2, 3
c 3, 1 2, 3 1, 2

(f2,R
2) a b c

a 1, 2 1, 2 1, 2
b 1, 2 2, 3 2, 3
c 1, 2 2, 3 3, 2

Figure 2: Consider first R1 = (a �1 b �1 c, b �1 c �1 a). The ordinal utilities of both voters
(higher is better) are on the left figure, and Nash equilibria are marked with *. We show the same
in the right figure for the same game form with preferences R2 = (c �1 b �1 a, b �2 c �1 a).

Voting rules, game forms, and games A game form g allows each agent i ∈ N to select
an action ai from a set of messages Ai. Thus the input to g is a vector a = (a1, . . . , an) called
an action profile. Then, g chooses a winning alternative—i.e., it is a function g : A → C, where
A = ×i∈NAi, and C is some set. See Fig. 1 for examples.

A game is attained by adding either cardinal or ordinal utility to a game form. The linear
order relation Ri ∈ L(C) reflects the preferences of agent i. That is, i prefers c over c′ (denoted
c �i c

′) if (c, c′) ∈ Ri.
A game form g is standard if Ai = A for all i, and A is either L(A) (the set of permutations

over A) or a coarsening of L(A).
Thus, a standard game form coincides with our previous definition of a voting rule, or SCF.

Each particular voting instance that includes voters’ real preferences is a game. Indeed, most
common voting rules including SCRs, Maximin, Kemeny etc. are standard game forms once
we fix a deterministic tie-breaking rule.

Approval is an example of a non-standard game form (note that it does not match our
definition of SCF or SCC). Another example is the Direct Kingmaker rule, where voter n
specifies a number i ∈ {1, . . . , n− 1}, and the winner is top(Ri).

Nash equilibrium Once we have a game, the game theoretic approach is to analyze its
equilibria. Figure 2 shows two different games derived from the Plurality voting rule, and their
pure Nash equilibria.

Definition 5.1. Given a game (f,R), an action profile a is a pure Nash equilibrium if for all
i ∈ N and all a′i it holds that f(a) �i f(a−i, a

′
i).

A mechanism can be any game form g whose range is A.

14



Denote by NEg(R) ⊆ A all candidates that win in some pure Nash equilibrium of the game
(g,R).

Consider the Plurality voting with n ≥ 3 voters. It is easy to see that any profile in which
all voters vote for the same candidate is a Nash equilibrium, i.e. NEPlurality(R) = A for all
R. This is true even if this candidate is ranked last by all voters in R, since no single voter
can change the outcome. This already indicates that using Nash equilibrium as way to predict
or recommend voters’ actions is problematic. Indeed, in all common voting rules, almost any
voting profile is a Nash equilibrium regardless of preferences. In the rest of this section we will
consider refinements and restrictions that aim to “narrow” the set of Nash equilibria and make
it more useful as a solution concept.

5.1 Implementation

Consider any (non-standard) SCC F , i.e. a function that maps preference profiles to subsets of
outcomes.

Implementation of F by a mechanism g means that given any profile R, all “reasonable”
outcomes of g when voters have preferences R are F (R). Reasonable in that sense typically
means a common solution concept such as Nash or strong equilibrium.

A most natural question is which voting rules implement themselves, if any. This question
can be extended by allowing arbitrary mechanisms that are not necessarily voting rules, and
ask if a voting rule can be implemented by such a mechanism.

NE implementation Formally, a mechanism g implements a SCC F in NE, if NEg(R) =
F (R) for all R.

Suppose g is a dictatorship. That is, for some i ∈ N , g(R) = top(Ri) for all R. In every
Nash equilibrium of g, i ranks top(Ri) first, and thus g(R) = top(Ri). Therefore, A dictatorship
g (trivially) implements itself in NE.

But are there less trivial examples of such voting rules? The answer is quite negative, even
if we allow the designer to use arbitrary mechanisms.

Theorem 5.2 (Maskin [36]). No voting rule except dictatorships and duples can be implemented
in NE by any mechanism. In particular no manipulable voting rule implements itself in NE.

Maskin further showed that if we want to implement SCCs rather than SCFs (i.e. rules
that allow for more than one winner) then results are more positive. A trivial example is the
SCC F (R) = A, which can clearly be implemented (e.g. by Plurality with n ≥ 3 voters).

A less trivial example is F (R) which returns all Pareto-optimal outcomes of R. Maskin
defines a certain property of SCCs that he calls monotonicity.5 Formally, that if a ∈ F (R)
and in R′ all voters only move a up their ranking (possibly changing order between other
candidates), then a ∈ F (R′). No veto power is a slight relaxation of unanimity, stating that if
n− 1 rank a ∈ A at the top then a ∈ F (R).

Theorem 5.3 (Maskin [36]). Consider an SCC F with n ≥ 3 voters. F can be implemented
in NE if it is monotone and has no veto power.

5This property is widely known as Maskin monotonocity, to distinct, and it is a close reminiscent of IIA. Note
that there is also a weaker notion of motonicity in the literature, where voters move up a without changing the
order among other candidates. Most common voting rules are monotone under the second definition.
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On the other hand, a slight relaxation of these conditions results in non-implementable
SCCs. The main idea of Maskin’s proof is to construct a mechanism where each voter reports
all of R, not just Ri. Voters also report another signal that is used for coordination. If all
voters report the same R, then the mechanism returns F (R). If exactly one voter reports
something else, the mechanism uses the rest of the reported preferences to “punish” him, which
guarantees that reporting the truth is a Nash equilibrium. If there is some greater disagreement,
the mechanism uses the coordination signal in a clever way to make sure that at least one voter
gains by deviating, so there are no other Nash equilibria.

SE implementation Let SEg(R) ⊆ A be all candidates that win in some strong equilibrium
of mechanism g. Recall that an equilibrium is strong if there is no subset of voters that can all
gain by deviating.

Formally, a mechanism g implements a mapping G : L(A)n → 2A in SE, if SEg(R) = G(R)
for all R.

Note that we do not require that G is a valid SCC, as it may return the empty subset.
An example of such a mapping is GCON , which returns the (possibly empty) set of Condorcet
winners of profile R.

SE implementation was studied by Sertel and Sanver [72], which in particular showed the
following.

Theorem 5.4. The Plurality voting rule implements GCON in SE, for all odd n.

Proof. Suppose first that R has a Condorcet winner c∗ ∈ A. We need to show that c∗ wins in
some SE, and that no other candidate wins in SE. Consider the profile where all voters vote for
c∗. A subset of voters S can only change the outcome if |S| > n/2 voters deviate to some other
candidate c′. However, since c∗ is a Condorcet winner, at least n/2 voters strictly prefer c∗ over
c′, and therefore at least dome of the voters in S would not gain by deviating to c′. Thus this
is an SE.

On the other hand, consider any profile in which c wins and c is not a Condorcet winner.
There is some c′ such that > n/2 voters prefer c′ over c. All these voters that are not currently
voting to c′ can deviate to make c′ the winner. Thus this is not an SE. In particular, if there
is no Condorcet winner in R, then there are no SEs.

Other notions of implementation Several authors suggested other equilibrium concepts,
and showed how certain voting rules can be implemented (sometimes by a simple mechanism
or by the same rule) under these equilibria. Some examples are: Veto implements itself under
Protective equilibrium [4]; Plurality implements itself under Demanding equilibrium [45]; and
Plurality implements Maximin under maximal Scoring rules [22].

5.2 Truth bias

As we saw, Nash equilibrium (even pure) is not very informative in most common voting rules,
as voters typically cannot change the outcome. Suppose that a voter who is non-pivotal, prefers
to vote according to her true preferences. Formally, we can think of truth-bias as a negligible
non-zero cost attached to any vote that is non-truthful (say, the mental burden of finding a
strategy, or the moral burden of manipulation).
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Hopefully, even such a small behavioral bias may help eliminating many undesired equilibria
(e.g., when all voters vote for bottom candidates). Truth-bias was formalized independently
in [43] and [20], who also provided some examples. In general, truth bias may eliminate all
Nash equilibria. Consider for example Plurality with lexicographic tie-breaking, where voters
preferences are c �1 a �1 b �1 d and d �2 b �2 a �2 c. One can check that none of the 16
action profiles are stable under truth-bias.

Obraztsova et al. [58] provide characterizations of Nash equilibria in Plurality with truth
bias. In particular they show:

Theorem 5.5 (Obraztsova et al. [58]). Given a preference profile R, and c = f(R) the truthful
outcome of Plurality:

1. It can be tested efficiently if R is an equilibrium under truth bias.

2. Given c′ 6= c, it is NP-hard to decide if there is some action profile R′ s.t. f(R′) = c′ and
R′ is an equilibrium under truth bias.

Thompson et al. [75] studied the effect of truth bias using simulations. They generated many
preference profiles and computed all their Nash equilibria (for Plurality) with and without truth
bias. First of all, they showed that instances where no PNE exist are uncommon, and especially
rare when there is an even number of voters. Yet, the number of PNEs drops dramatically from
millions (i.e. almost all action profiles) to typically under 5. In addition they show that the
outcome in these equilibria is more socially efficient according to various criteria.

We should note that as the number of voters grow, the probability that the truthful profile
is a PNE tends to 1, both with and without truth-bias.

Lazyness and the no-vote paradox Suppose that instead of experiencing ε cost for voting
strategically, voters experience ε cost for voting at all, and may choose to abstain (or stay
home). Since in most profiles all or almost all voters are non-pivotal, introducing such “lazy-
bias” means that almost no voter has any incentive to show up, an observation widely known
as the no-vote paradox [59, 51].

5.3 Equilibrium under uncertainty

We have seen that when voters know exactly how others are going to vote, they rarely have an
incentive to strategize (or to vote at all). Yet we known that people often do vote strategically,
or at least trying to. One possible explanation for this discrepancy is uncertainty : since voters
do not know exactly the preferences and actions of others, they know they might be pivotal,
and hence some actions may be better than others in expectation.

There are many models introducing uncertainty to voting and we will only cover several
prominent ones.

Bayesian reasoning The classic game-theoretic approach for uncertainty, or games with
partial information, assumes that each player’s type (preferences) is sampled from some dis-
tribution and this distribution is common knowledge. Thus each player knows her own type,
and some distribution on the other players’ types. In (Bayes-Nash) equilibrium, each player is

17



playing a mixed strategy contingent on her type, that is a best response to the (mixed) joined
strategy of all other players.

Myerson and Weber adapted this line of reasoning for strategic voting [52]. In their model,
voters’ types are cardinal utility scales for all candidates: Let D be a distribution over Rm, then
for each voter u is sampled i.i.d. from D. The crucial observation is that for most common
voting rules, and in particular for PSRs, there is no need to guess the exact actions of all other
voters. To assess the value of every action, it is sufficient to consider the probability that the
voter is pivotal between every pair of candidates. In scoring-based voting rules, each rule can
be defined by specifying a set of valid scores V ⊆ Rm

+ .6

Formally, suppose that for any x, y ∈ A, pxy is the probability that x, y are tied, and all
other candidates have a strictly lower score. Myerson and Weber make a simplifying assumption
here that if the voter assigns vy > vx points to candidates y, x respectively, then the probability
the winner changes from x to y is proportional to pxy(vy− vx). The expected gain for the voter
from voting v when her preferences are u (utility compared to abstaining):

gain(p, u, v) =
∑

x,y∈C
[probability outcome changes from x to y](uy−ux) =

∑
x,y∈C

pxy(vy−vx)(uy−ux).

In Plurality this can be somewhat simplified. The gain from voting for y is:

gain(p, u, y) =
∑
x∈C

[probability outcome changes from x to y](uy − ux) =
∑
x∈C

pxy(uy − ux).

From here, Myerson and Weber adopt the standard game-theoretic assumptions: each voter
is voting in a way that maximizes her expected gain. Thus an equilibrium can be described by
an action profile v : N → V , candidates’ scores s ∈ Rm

+ , and a probability vector p ∈ ∆(A2),
such that:

• For every voter i ∈ N with utility ui, vi = argmaxv∈V gain(p, u, v);

• For every candidate x ∈ C, s(x) =
∑

i∈N vi(x);

• pxy ∼ 1
k if (x, y) is one of the pairs whose probability to be tied is maximal (k is the

number of such pairs), and otherwise pxy is (close to) 0.

There are two cases determining which ties are most likely. Let W ⊆ C be such that s(w) = s
for all w ∈ W and s(c) < s for all other candidates (the winner set). Case (a): |W | > 1, in
which case the most likely ties are among all k =

(|W |
2

)
pairs from W ; (b) W = {w}, in which

case the most likely ties are between w and any of the k candidates whose score is maximal
among C \W .

Intuitively, D is highly concentrated around a particular utility profile u. As the model
assumes the number of voters tends to infinity, all ties that are not the most probable ones
according to s can be neglected. A natural question is whether such an equilibrium exists.

Theorem 5.6 (Myerson and Weber [52]). For any scoring-based rule (including SCRs), and
utility profile u, there exists a voting equilibrium.

6This captures all PSRs, Approval, Range voting and so on. E.g. in Plurality V contains vectors with a single
‘1‘ and all other entries are ‘0‘, whereas in Range voting V ⊆ Rm

+ .
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In fact, for Plurality the existence of equilibrium is trivial: consider any two candidates
x, y ∈ C, then there is an equilibrium where each voter votes for her more preferred candidate
among x, y.

Trembling hand perfection Consider a simpler model with a finite number of voters, and
the Plurality rule. Even if the voting profile is known, we can introduce uncertainty as follows.
For every voter i ∈ N , we do not count the vote of i with some small independent probability
ε. This may be justified as a probability that the vote is ‘miscounted’ or that the voter fails to
vote [46].

For an action profile a ∈ An, denote by pε(a) the distribution over profiles attained by
eliminating each vote with i.i.d probability ε. Note for example that voting for i’s least preferred
candidate b is never a best response, since with positive probability b is tied with some other
candidate, in which case i strictly loses, whereas i never strictly gains from voting to b.

Thus for a preference profile R, a robust equilibrium (RE) is an action profile a ∈ An s.t.
each ai is a best-response to pε(a) for ε → 0. This notion is closely related to trembling hand
equilibrium in the game theory literature [65].

Messner and Polborn show that in any Robust equilibrium under Plurality, at most 2 candi-
dates receive a positive number of votes. This phenomenon is known as the Duverger Law [69].

In fact. it is not hard to see that for any two candidates x, y ∈ C, there is an RE where only
x and y get votes: this is the profile where each voter votes for the more preferable candidate
among x, y.

A similar model of trembling-hand equilibrium was more recently analyzed in [55]. The
main difference is that with probability ε a voter submits a random ballot, rather than fails to
vote at all.

6 Iterative Voting

In the iterative voting model, voters have fixed preferences and start from some announcement
(e.g., sincerely report their preferences). Votes are aggregated via some predefined rule (e.g.
Plurality), but can change their votes after observing the current announcements and outcome.
The game proceeds in turns, where a single voter changes his vote at each turn, until no voter
has objections and the final outcome is announced. This process is similar to online polls via
Doodle or Facebook, where users can log-in at any time and change their vote. Similarly, in
offline committees the participants can sometimes ask to change their vote, seeing the current
outcome.

The outcome of such a game depends on the exact specification of the voting rule and the
process, and also on the strategies that voters use. If we assume voters do not know others’
preferences or who might change their vote, then a plausible assumption is that voters will act
in a myopic way. That is, vote in every round as if it is the last one. In game-theoretic terms,
each voter will play a best-reply to the current action profile of the other voters. If no voter
wants to change her vote, then by definition the current profile is a PNE. This is the type of
behavior we will consider in this section. Voters who are more sophisticated on one hand, or
have less accurate information about the current state on the other hand, may not follow their
best-reply and instead use other heuristics. We consider such heuristics in the next section.

For either voting rule and type of behavior we are interested in the following questions:
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• Are voters guaranteed to converge, i.e. reach a stable state where no voter wants to move?

• If so, how fast?

• Can we characterize the stable states?

• Is the iterative process leading the society to a socially good outcome?

6.1 Convergence and acyclicity

Local improvement graphs and schedulers Any game G induces a directed graph whose
vertices are all action profiles (states) A, and edges are all local improvement steps [78, 2]. That
is, there is an edge from profile a to profile a′ if there is some agent i and some action a′i that
a′ = (a−i, a

′
i) and i prefers a′ to a.

The sinks of G are all states with no outgoing edges. Clearly, a state is a sink iff it is a
PNE. Since a state may have multiple outgoing edges (|I(a)| > 1), we need to specify which
one is selected in a given play.

A scheduler φ selects which edge is followed at state a at any step of the game [3]. The
scheduler can be decomposed into two parts, namely selecting an agent i to play (agent scheduler
φN ), and selecting an action in Ii(a) (action scheduler φA), where φ = (φN , φA). We note that
a scheduler may or may not depend on the history or other factors, but this does not affect any
of our results.

Acyclicity properties Given a game G, an initial action profile a0 and a scheduler φ, we get
a unique (possibly infinite) path of steps.7 Also, it is immediate to see that the path is finite if
and only if it reaches a Nash equilibrium (which is the last state in the path). We say that the
triple

〈
G,a0, φ

〉
converges if the induced path is finite.

Much attention has been given in the game theory literature to the question of convergence,
and several notions of convergence have been defined [48, 47, 32, 3].

Definition 6.1. A game G has the finite individual improvement property (we say that G is
FIP), if

〈
G,a0, φ

〉
converges for any a0 and scheduler φ. Games that are FIP are also known as

acyclic games and as generalized ordinal potential games [48]. Two weaker notions of acyclicity
are as follows.

• A game G is weakly-FIP if there is some scheduler φ such that
〈
G,a0, φ

〉
converges for

any a0. Such games are known as weakly acyclic, or as φ-potential games.

• A game G is restricted-FIP if there is some action scheduler φA such that
〈
G,a0, (φN , φA)

〉
converges for any a0 and φN [32]. We term such games as order-free acyclic.

Intuitively, restricted FIP means that there is some restriction players can adopt s.t. con-
vergence is guaranteed regardless of the order in which they play. Kukushkin identifies a
particular restriction of interest, namely restriction to best-reply improvements, and defines
the finite best-reply property (FBRP) and its weak and restricted analogs. We emphasize that
an action scheduler must select an action in Ii(a), if one exists. Thus restricted dynamics that
may disallow all available actions do not fall under the definition of restricted-FIP.

7By “step” we mean an individual improvement step, unless specified otherwise.
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fPL
w,ŝ a b c

a (14, 9, 3) {a} (10, 13, 3) {b} (10, 9, 7) {a}
b (11, 12, 3) {b} (7, 16, 3) {b} (7, 12, 7) {b}
c (11, 9, 6) {a} (7, 13, 6) {b} (7, 9, 10) {c}

Figure 3: A game form fPL
w,ŝ, where N = {1, 2}, A1 = A2 = C = {a, b, c}, ŝ = (7, 9, 3) and

w = (3, 4) (i.e., voter 1 has weight 3 and voter 2 has weight 4). The table shows the final score
vector s(a1,a2) for every joint action of the two voters, and the respective winning candidate

fPL
w,ŝ(a1, a2) in curly brackets.

〈
f,Q1

〉
a b * c

* a {a} 3,2 {b} 2, 1 * {a} 3,2

b {b} 2, 1 {b} 2,1 {b} 2, 1

c {a} 3, 2 {b} 2, 1 {c} 1, 3

Figure 4: A gameG =
〈
f,Q1

〉
, where f = fPL

w,ŝ is as in Fig. 3, and Q1 is defined by aord1bord1c
and cord2aord2b. The table shows the ordinal utility of the outcome to each agent, where 3
means the best candidate. Bold outcomes are the NE points. Here the truthful vote (marked
with *) is also a NE.

We say that a game G is FIP from state a if 〈G,a, φ〉 converges for any φ. Clearly a game
is FIP iff it is FIP from a for any a ∈ An. The definitions for other all other notions of finite
improvement properties are analogous.

Recall that every voting rule (game form) f and preference profile R induce a game. We
say that f is FIP if for any preference profile R the induced game (f,R) is FIP, and similarly
for the other convergence notions.

6.2 Plurality

We allow for a broader set of “Plurality game forms” by considering both weighted and fixed
voters. Each of the strategic voters i ∈ N has an integer weight wi ∈ N. In addition, there
are n̂ “fixed voters” who do not play strategically or change their vote. The vector ŝ ∈ Nm

(called “initial score vector”) specifies the number of fixed votes for each candidate. Weights
and initial scores are part of the game form.8

The final score of c for a given profile a ∈ Cn in the Plurality game form fw,ŝ is the total
weight of voters that vote c. We denote the final score vector by sŝ,w,a (often just sa or s when
the other parameters are clear from the context), where s(c) = ŝ(c) +

∑
i∈N :ai=cwi.

Thus the Plurality rule selects some candidate from W = argmaxc∈C sŝ,w,a(c) with the
lowest lexicographic index. As with s, we omit the scripts w and ŝ when they are clear from
the context.

8This assumption only makes results more general, see [42].
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〈
f,Q2

〉
a b * c

* a {a} 3, 1 {b} 1,2 * {a} 3, 1

b {b} 1, 2 {b} 1,2 {b} 1, 2

c {a} 3, 1 {b} 1, 2 {c} 2, 3

Figure 5: This game has the same game form as in Fig. 3, and the preference profile Q2 is
aord1cord1b and cord2bord2a. In this case, the truthful vote a∗(Q2) is not a NE.

Unfortunately, Plurality is not acyclic, and this holds even if voters are restricted to best-
replies.

Proposition 6.2. fPL is not FBRP.

Proof. C = {a, b, c}. We have a single fixed voter voting for a, thus ŝ = (1, 0, 0). The preference
profile is defined as aord1bord1c, cord2bord2a. The following cycle consists of better replies
(the vector denotes the votes (a1, a2) at time t, the winner appears in curly brackets):

(b, c){a} 2→ (b, b){b} 1→ (c, b){a} 2→ (c, c){c} 1→ (b, c).

Direct replies We identify a different restriction, namely direct reply, that is well defined

under the Plurality rule. Formally, a step a
i→ a′ is a direct reply if f(a′) = a′i, i.e., if i votes

for the new winner. An example of an indirect step is when a voter who votes for the winner
changes the outcome by moving to a candidate with a low score (e.g. the steps of voter 1 in
the example above).

Theorem 6.3 ([43, 39]). fPL
ŝ is FDRP. Moreover, any path of direct replies will converge after

at most m2n2 steps. In particular, Plurality is order-free acyclic.

6.3 Other rules

For other voting rules, results are not as rosy (at least for strong/order-free acyclicity). While
Veto was shown to converge under direct replies from any initial state [34, 67], for most common
voting rules it is possible to construct examples of cycles, even when voters start by voting
truthfully. These results are summarized in Table 1.

Further, even variations of the Plurality rule, such as adding voters’ weights and/or changing
the tie-breaking method may result in games with cycles. At least for Plurality with random
tie-breaking rule, it can be shown that it is weakly acyclic, thereby providing partial explanation
to the fact that simulations almost never hit a cycle [39]. Whether other common voting rules
are also weakly acyclic is an open question, which is particularly of interest for a large number
of voters.

The structure of equilibria attained under iterative voting was studied in [64], which con-
sidered both the model above, and variations where voters are truth-biased or lazy.
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Voting rule FIP FBRP restricted-FIP Weak-FIP
Dictator V V V V
Plurality X X [MPRJ10] V [MPRJ10,M16] V
Veto X X [M16] V [RW12,LR12] V
k-approval (k ≥ 2) X X [LR12,L15] X X [M16]
Borda X X [RW12,LR12] X X [RW12]
PSRs (except k-approval) X X [LR12,L15] ? ?
Approval X X [M16] V [M16] V
Other common rules X X [KLR16] ? ?

Table 1: Positive results carry to the right side, negative to the left side. All rules in the table
use lexicographic tie-breaking. Reference codes: MPRJ10 [43], RW12 [67], LR12 [34], M15 [38],
L15 [33], M16 [39], KLR16 [31].

Other notions of convergence The above model only considers voters who change their
vote one-by-one. Other iterative models exist, that make different assumptions. For exam-
ple, we can consider voters that make coordinated coalitional moves [32, 28], simultaneous
(non-coordinated) moves [38], or a different dynamic where in each step a voter proposes one
alternative to replace the current winner using a Majority vote [1].

6.4 Welfare implications

In those cases where an iterative voting game converges, we would like to know “how good”
the outcome is to the society. As with other game-theoretic analyses of voting outcomes, there
are at least two different approaches to measure outcome quality:

• with respect to the particular voting rule in question.

• with respect to an objective measure, such as social welfare, Condorcet efficiency etc.

Dynamic Price of Anarchy A common way to measure the inefficiency in a game due to
strategic behavior is the Price of Anarchy : the ratio between the quality of the outcome in the
worst Nash equilibrium, and the optimal outcome [12]. In the context of voting, this translates
to the question of how far the equilibrium outcome can be from the truthful voting outcome
(seeing the truthful outcome as “optimal” according to the voting rule in use).9

As we have seen, Nash equilibria in most voting rules can be arbitrarily far from the truth,
thus Branzei et al. [11] suggested instead to restrict attention to the set of Nash equilibria that
are the outcome of some iterative voting procedure starting from the truthful vote.

Formally, for a given score-based voting rule f where the candidate c with the highest score
sf (c,R) wins in action profile R. The dynamic Price of Anarchy is defined as

DPoA(f) = min
R

min
R′∈EQT (f,R)

sf (f(R′),R)

sf (f(R),R)
,

where EQT (f,R) is the set of all profiles R′ s.t.:

9This notion of approximation is similar to the one we saw in Section 4.3, but instead of comparing the
outcome under two different rules, we consider the same rule under truthful and rational behavior.
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• There is a path of best-replies from the truthful profile R to R′.

• R′ is a Nash equilibrium of (f,R).

Branzei et al. [11] show that the DPoA of Plurality is close to 1 (i.e. a winner in equilibrium
must have a very close score to the truthful winner); and that the DPoA in Veto depends on
the number of candidates m. In particular for m ≤ 3 the DPoA in Veto is constant, regardless
of n. The DPoA in Borda on the other hand, is Ω(n), meaning that equilibria can be arbitrarily
bad.

Objective quality metrics The fact that we chose to use a particular voting rule does not
necessarily mean that this rule represents the optimal outcome for every profile. The selection
of the rule might be affected by other properties of the rule such as simplicity, from tradition,
and so on. We may thus have multiple criteria for a “good outcome,” and ask how well a given
voting rule satisfies them. Note that we focus on the equilibria outcomes rather than on the
truthful outcome.

For example, we may be interested in the social welfare of the voters (as measured by
Borda score), in the likelihood of finding the Condorcet winner when one exists, or avoiding
the Condorcet loser, and so on.

This question was studied using extensive simulations in [40] for the Plurality rule, where
it was shown that equilibria outcomes are better than the truthful outcome under most metrics
observed. [31] performed similar simulations for several other voting rules, and obtained mixed
results w.r.t. the the social welfare. More interestingly, rules that are not Condorcet consistent
(Bucklin, STV) are more likely to find the Condorcet winner under rational play than under
truthful voting, where as the Condorcet efficiency of Condorcet-consistent rules only slightly
declines.

That said, when the number of voters is large, the initial outcome is almost always an
equilibrium (whether truthful or not), and thus the effect of best-reply dynamics becomes
negligible.

7 Voting Heuristics

The equilibrium analysis and the best-reply dynamics considered in the previous sections makes
the following implicit assumptions.

• Voters know exactly how other voters currently vote.

• Voters are myopic: always vote as if the game ends after the current turn.

• Voters are rational: always vote in a way that improves or maximizes their utility.

7.1 Ad-hoc heuristics

Most heuristics are similar to best reply in that they only assume the voters knows her own
preferences, and has some information about the current voting profile (e.g., the score of each
candidate, or their current ranking). However in contrast to best- or better-reply, a heuristic
step may or may not change the outcome. It thus reflects the belief of the voter that she might
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be pivotal even if this is not apparent from the current state. In the next subsection we will
look more closely on such a rational (or bounded-rational) justification, but for now we will be
satisfied with just describing some heuristics that have been proposed.

In the following description, we assume f is some score-based rule, unless specified otherwise.
Let Ri be the real preferences of voter i, and a = (a1, . . . , an), s = (s1, . . . , sm) be the current
action profile and current scores of all candidates. We denote by cj the candidate with the j’th
highest score in s.

Crucially, some of these heuristics depend on some internal private parameters, which can
be used to explain behavioral differences among voters.

• “k-pragmatist” [66]. Here, each voter has a parameter ki, and votes as if only candidates
W = {c1, . . . , ck} participate (ranking all other candidates below according to Ri).

10

• “Threshold”. Similar to k-pragmatist, except instead of a fixed parameter ki, the set of
“possible winners” W consists of all candidates whose score sj is above some threshold
Ti(a) (i.e., the threshold may depend both on i and on the current state).

• “Second chance” [29]: If the current winner is not i’s best or second-best choice according
to Ri, she moves her second-best alternative to the top position.

• “Best upgrade” [29]: This is a restriction of best-reply to candidates that are ranked
above the current winner f(a) in Ri.

• “Upgrade” [57]: Similar to Best Upgrade, except the upgraded candidate is not necessarily
placed first (only high enough to win).

• “Unit upgrade” [57]: Similar to Upgrade, except the upgraded candidate is moved exactly
one step up (if this is enough to win).

Simulations show that these heuristics almost always lead to convergence when applied in
an iterative voting setting [29].

7.2 Strict uncertainty and bounded rationality

A different approach to derive heuristic voting behavior, is to consider a formal way to model
voter’s uncertainty regarding the outcome. Then , based on her beliefs, the voter selects the
action (ballot) that is best for her.

To see why this may differ from a purely rational behavior, note that:

1. The beliefs of the voter may not be justified. This is in contrast with e.g. the Myerson
and Weber model, where the distribution voters believe is itself part of the equilibrium.

2. The response of the voter may not maximize her expected utility, which may not even be
well defined.

10There is another variation where the most preferred candidate in W is moved to the top ,without other
changes.
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Thus we can think of such approaches as models of voters with bounded rationality. In contrast
with the models we considered in Section 5.3, voters may not assign exact probabilities to
outcomes, and in particular cannot compute expected utilities.11

Several papers studied beliefs based on strict uncertainties. One that we already mentioned
is [66], which assumes the voter may only be aware of the current winner, the order of candidates
according to scores, etc. Similar models are are considered in [16, 76].12 We can also think
of voters whose beliefs depend on some internal parameter, which we can think of as their
uncertainty level. Intuitively, as the voter is more uncertain, she considers more outcomes as
possible.

Two such models based on voter’s optimism were suggested in [68, 56]. In both models
voters with greater uncertainty will consider a larger set of candidates as possible winners, and
will vote strategically to one of them.

Local Dominance A third model to strict uncertainty is based on local dominance [40], and
can be applied to scoring-based rules. This model explicitly separates the beliefs of the voter
on candidates scores and her strategic actions:

• All voters share some prospective score vector s = (s1, . . . , sn).

• Each voter i has an uncertainty parameter ri.

• Voter i considers as possible all outcomes s′ such that |sj − s′j | ≤ ri.13 Denote all possible
states in voting profile a by Si(sa), where as is the score vector induced by action profile
a.

• Given this belief, voter i will change her action from ai to a′i if action a′i dominates action
ai. Formally, if f(s′, a′i) �i f(s′, ai) for all states s′ ∈ Si(sa), and f(s′′, a′i) �i f(s′′, ai) for
at least one state s′′ ∈ Si(sa).

This behavior encodes bounded rationality under loss aversion: the voter will make a strategic
move only if certain (according to her beliefs) that this move will not hurt her, and might be
beneficial for her.

Denote by Wi ⊆ C the set of candidates whose Plurality score (without voter i) is at least
maxcs(c) − 2ri. Note that these are exactly the candidates considered as possible winners by
voter i, since there is a possible state s′ where j ∈Wi gets ri more votes, and the current winner
gets ri votes less.

Worst-Case Regret minimization (WCR) [38] and Non-Myopic voting (NM) [56] are similar
in the way they derive the set of possible winners Wi, but then make some different behavioral
assumptions on action selection, which we will not specify explicitly here.

It turns out that the local dominance provides a (bounded) rational justification to the
threshold heuristic we described above, at least in Plurality.

Lemma 7.1 ([40, 38]). a′i locally dominates ai only if:

11Also note that expected utility is undefined for a voter with ordinal preferences, even if we had such a
distribution.

12In all these models, voters’ strategy is based on dominance (similarly to the Local Dominance model presented
next), but the the structure of voters’ beliefs is substantially different.

13The paper also considers other distance metrics, but this is the simplest one.
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1. Either ai /∈Wi, or ai is the least preferred candidate in Wi;

2. a′i ∈Wi;

3. there is some c ∈Wi that is less preferred than a′i.

In addition, if the above conditions apply, then the most preferred candidate a′i ∈ Wi always
locally dominates ai.

Therefore, a voter that simply follows the threshold heuristics is essentially strategizing
according to local dominance.14 If the voter selects a step minimizing her worst-case regret
rather than following local dominance moves, then this coincides with the threshold heuristics
exactly [38].

Local dominance is strongly related to models based on modal logic and epistemology [70,
76].

7.3 Equilibrium and Convergence

Given a voting rule f and a population of voters with well defined heuristics, a voting equilibrium
is simply a profile of valid votes a, such that for each i ∈ N , the heuristic action of i in profile
a is her current action ai. That is, a state where no voter wants to change her vote.

Observation 7.2. Consider an arbitrary voting rule f , and any restricted better-reply dynamics
(including best-reply and better-reply). Then for any preferences profile R, a state a is a voting
equilibrium if and only if a is a pure Nash equilibrium of the game (f,R).

Given a voting rule and a heuristic, two important questions are: (a) does an equilibrium
exist? and (b) will voters converge to equilibrium? The latter question can be further split to
whether convergence is guaranteed from arbitrary initial states or from the truthful state.

Recall that the FIP property means that convergence is guaranteed regardless of the initial
state, the order of voters, and which available reply they choose. As any heuristic simply
replaces the (possibly empty) set of better replies with some other set, we can modify the
definition of FIP, or FIP from the truth, accordingly.

These questions were studied in several recent papers. Some heuristics are very easy to
analyze. For example, when voters start from the truthful vote, then voters using the k-
pragmatist or the Second Chance heuristics will move at most once [66, 29]. Therefore, FIP
from the truth is immediate.

Obraztsova et al. [57] identified some common structure for heuristic dynamics, which can
be used to prove convergence for various combinations of voting rules and heuristics. However,
all these studies are restricted to voters that start by reporting the truth, and use exactly the
same heuristics. Results are summarized in Table 2.

14Note that while any LD move is consistent with the threshold heuristics, the converse does not always hold.
E.g. if there 5 possible winners above the threshold, then a move from the third-preferred to the most preferred
is not a local dominance move. Indeed, a loss-averse voter would refrain from such a dangerous move.
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Voting rule k-pragmatist Second Chance Best upgrade Upgrade Unit Upgrade
PSRs V [RE12] V V [GLR+13] ? V* [OMM+15]
Maximin V [RE12] V V [GLR+13] V [OMM+15] V [OMM+15]
Copland V [RE12] V V [GLR+13] ? ?
Bucklin - V ? ? V [OMM+15]
all rules - V [GLR+13] ? ? ?

Table 2: Positive results means FIP from the truth for uniform population (where relevant).
Convergence for other conditions was not studied. (* common PSRs including Borda and
Plurality). Reference codes: RE12 [29], GLR+13 [29], OMM+15 [57].
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Figure 6: The top left figure shows the initial (truthful) state of the game. The letter inside a voter
is his second preference. The dashed line marks the threshold of possible winners Wi for voters of type
ri = 2. Note that due to tie breaking it is not the same for all candidates. For example, since a beats
b in tie-breaking, b needs 2 more votes to win in the initial state. In the next two figures we can see
voters leaving their candidates (who are not possible winners for them) to join one of the leaders. The
last figure shows an equilibrium that was reached.

Uncertainty-based heuristics Uncertainty-based heuristics are more involved, especially
when the society is composed of voters with different uncertainty levels. Therefore, they have
been studied mostly for the Plurality rule. On the other hand, it turns out that the Local
Dominance heuristics has very strong convergence properties. An example of a Plurality game
where voters use the Local Dominance heuristics is in Figure 6.

Theorem 7.3 ([40, 38]). Plurality with the Local Dominance heuristics is FIP. This holds for
any population of voters with diverse uncertainty levels.

Limited convergence properties were also shown for other uncertainty-based heuristics. We
summarize them in Table 2.
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Heuristic Population FIP FIP from truth equilibrium exists
LD uniform V V [MLR14] V
LD uniform + truth bias ? V[MLR14] V
LD diverse V [M15] V V
WCR uniform ? V [M15] V
WCR diverse X X X [M15]
NM uniform ? V [OLP+16] V
NM diverse X X [OLP+16] ?

Table 3: Convergence results for Local-Dominance and Worst-Case Regret minimization. All
results are for Plurality. MLR14 [40], M15 [38], OLP+16 [56].

7.4 Equilibrium properties

Equilibrium properties are typically studied using simulations, so that uncommon or unlikely
equilibria can be ignored. Simulations are carried by generating preference profiles from some
distribution (e.g. Impartial culture, Urn, Plackett-Luce, etc.), set the initial profile (truthful
or other), and then sample voters randomly to make a heuristic move, until an equilibrium is
reached. For some heuristics voters’ parameters should also be decided up front.

It should first be noted that in practice, convergence to equilibrium is achieved in practice
(i.e. in simulations) almost always, whether or not this is guaranteed by theorems. Moreover,
this convergence is typically very quick.

The ad-hoc heuristics we mentioned typically lead to an better winner in terms of Condorcet
efficiency and Borda score [29]. As with the best-response simulations mentioned in Section 6.4,
this improvement is mild, possibly since the aforementioned heuristics give rise to a small
amount of strategic behavior, and thus in many profiles the equilibrium is simply the initial
state (note that some of these heuristics are just restrictions of best-response).

Extensive simulations of Plurality voting with Local Dominance heuristics show the follow-
ing [40]:

• As uncertainty level r increases, there is more strategic interaction among voters (more
moves) until a certain point, from which strategic interaction declines.

• With more strategic interaction, the welfare measures (including Borda score, Condorcet
consistency and others) tend to improve, reaching a significant improvement around the
peak of strategic activity.

• With more strategic interaction, votes are more concentrated around two candidates (Du-
verger Law).

These findings are consistent among a broad class of preference distributions, and for different
numbers of voters and candidates. Therefore at least for Plurality, it seems that equilibria
reached under Local Dominance resemble outcomes we observe in reality, and avoids unreason-
able or highly inefficient Nash equilibria.
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8 Summary: Towards a complete theory of strategic voting

Social choice is perhaps the oldest topic that received formal game-theoretic analysis, much
before the term game theory was coined. Yet while economists, political scientists, mathe-
maticians (and now computer scientists) all agree that Nash equilibrium is not an appropriate
solution concept for voting, there does not seem to be a single acceptable theory for strategic
voting.

This might be due to the fact that, as in other cases that concern with human behavior,
strategic voting involves many factors. Some of these factors may be domain specific and/or
depend on complex cognitive and social processes. One attempt to offer a desiderata for models
of strategic voting appears in [40] (a longer version is in [41]). This is a list of criteria that
a successful voting theory should satisfy, and is parted into: theoretic criteria, aiming to keep
the model grounded in game theoretic concept; behavioral criteria, whose aim is to maintain
plausible assumptions; and scientific criteria, that requires the theory to be predictive and
reproducible.

The material covered in this course was limited to theory, with the exception of some simu-
lations. However to better understand strategic voting, theoretical models must be confronted
with, and influenced by, empirical data and behavioral experiments [24, 7, 60, 30, 37, 74].
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A Proofs

A.1 The Gibbard-Satterthwaite theorem

Two useful lemmas The first lemma says that a strategy-proof voting rule’s selected out-
come remains constant for all changes to the preference profile such that candidates ranked
below the winner before the change are also ranked below the winner after the change:

Lemma A.1. (monotonicity) Let f be a strategy-proof voting rule, and let f(≺) = a for some
preference profile ≺ and a ∈ A. Then f(≺′) = a for all preference profiles ≺′ such that:

∀i ∈ N ∀x ∈ A \ {a} : x ≺i a⇒ x ≺′i a

Proof. Starting from the preference profile ≺ we will change the voters’ preferences one at
a time to ≺′ showing that the winner remains constant at every step. We begin with the
preference profile (≺′1,≺−1) and assume f(≺′1,≺−1) = b. Since f is strategy-proof, we know
that b �1 a (otherwise voter 1 would benefit from reporting his preference as ≺′1 instead of ≺1),
so according to the lemma premise we get b �′1 a. If b ≺′1 a then voter 1 would benefit from
reporting his preference as ≺1 instead of ≺′1, contradicting the assumption that f is strategy-
proof. Therefore a = b, meaning that the winner has not changed due to voter 1’s change in
preference. In the same manner we show that the winner remains constant as each voter i ∈ N
changes his preference from ≺i to ≺′i. We conclude that f(≺′) = a.

The second lemma says that the outcome of a strategy-proof and onto voting rule must be
(weakly) Pareto optimal, meaning there is no candidate strictly preferred by all voters to the
winning candidate:

Lemma A.2. (Pareto optimality) Let f be a strategy-proof voting rule which is onto, and let
a, b ∈ A, a 6= b. If ≺ is a preference profile such that ∀i ∈ N : b ≺i a then f(≺) 6= b.
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Proof. Suppose that f(≺) = b. Since f is onto, there exists a preference profile ≺′ such
that f(≺′) = a. Let ≺′′ be a preference profile where all voters rank candidate a first and
candidate b second. This means that no voter ranked b lower in ≺′′ than they did in ≺ (based
on the assumption that all voters ranked a above b in ≺), so by monotonicity it follows that
f(≺′′) = f(≺) = b. On the other hand, no voter ranked a lower in ≺′′ than they did in ≺′
(since a is always ranked first in ≺′′), so by monotonicity it follows that f(≺′′) = f(≺′) = a,
which is a contradiction (since a 6= b and f is a function). Hence f(≺) 6= b.

Theorem A.3. If there are exactly two voters and at least three candidates, any voting rule f
that is strategy-proof and onto is dictatorial.

Proof. Let ≺ be a preference profile and let a, b ∈ A such that:

∀x ∈ A \ {a, b} : (x ≺1 b ≺1 a) ∧ (x ≺2 a ≺2 b)

By Pareto optimality, f(≺) ∈ {a, b}. Assume WLOG that f(≺) = a. Now consider a preference
≺′2 which satisfies:

∀x ∈ A \ {a, b} : a ≺′2 x ≺′2 b

Due to Pareto optimality, f(≺1,≺′2) ∈ {a, b}. Due to strategy-proofness, f(≺1,≺′2) 6= b. And so
f(≺1,≺′2) = a. Monotonicity now implies that f will select a as the winner for any preference
profile where voter 1 ranks a first. So voter 1 is a dictator for candidate a. The analysis above
can be repeated for all pairs of candidates x, y ∈ A, to show that either voter 1 is a dictator for
candidate x or voter 2 is a dictator for candidate y.

For i ∈ {1, 2}, let Ai denote the set of candidates for whom voter i is a dictator. Let
A3 = A \ (A1 ∪ A2). Note that |A3| ≤ 1 (otherwise we could repeat the analysis above for two
candidates in A3 and find that one of them must be in A1 or A2). Note that for two different
candidates x, y, it is not possible that x ∈ A1 and y ∈ A2 (this would cause a contradiction if
voter 1 ranks x first and voter 2 ranks y first). We know that |A3| ≤ 1 and m ≥ 3 and therefore
|A1 ∪A2| ≥ 2, but we showed that two different candidates x and y cannot belong to A1 and
A2 respectively, so A1 ∩A2 = ∅. It follows that A2 = ∅ (we assumed a ∈ A1). Finally, A3 = ∅,
since if we assume c ∈ A3 then repeating the above analysis for c and a implies that either
c ∈ A1 or a ∈ A2, which is a contradiction. We conclude that A1 = A and f is dictatorial with
voter 1 as the dictator. (If we had initially assumed that f(≺) = b, voter 2 would have been
the dictator.)

A.2 A voting rule where the manipulation is NP-Hard

Definition: Plurality with Preround (PwP)

A voting rule which consists of two rounds:

1. The candidates are divided into pairs. The loser of pairwise elections in each pair is
removed.

2. After we are left with half of the original candidates, perform Plurality. Meaning, every
voter gives one point to his top candidate who survived the 1st round.

Theorem A.4. MANIPULATIONPwP ∈ NP − Complete
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Proof. Obviously, MANIPULATIONPwP ∈ NP , since given≺′ , we can decide in polynomial
time if p was elected or not. We’ll prove that is it NP-Hard using a reduction from the SAT
problem1.

Preparations

Let ϕ = (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x7 ∨ x8) ∧ . . . be a CNF formula.

• Denote V = {v : v variable in the formula} a set of variables.

• Denote L = {v,¬v : v ∈ V } set of literals.

• Denote C = {c : c clause in the formula } set of clauses.

• Define D to be a set of dummy candidates such that |D| = |C|+ 1.

• Define A = {p} ∪ L ∪ C ∪D the set of candidates.

We’ll create an instance of MANIPULATIONPwP in the following way:
Define V with the 3 following separate and covering subsets:

• Subset 1: consists of 4|C|+ 2 voters, such that p is the top candidate in their preference,
and the candidates from D are last.

• Subset 2: consists of 4|C| voters for every c ∈ C, such that c is the top candidate in their
preference, and the candidates from D are last. In total, there are 4|C|2 voters in this
subset.

• Subset 3: consists of 4 voters for every c ∈ C, such that in their preference the literals
that appear in c are ranked 1st, c is ranked after them, and all the candidates from D are
last. In total, there are 4|C| voters in this subset.

Additionally, the voters will rank the Literals in L such that for every v ∈ V , the literal v
is in tie with the literal ¬v (this is possible since we did not define the rankings of the majority
of the voters on the literals, and there is an even number of voters).
In the preround, we’ll divide the candidates to pairs such that for every v ∈ V , v is paired with
¬v, and every candidate in {p} ∪ C is paired with a candidate in D.

Reduction

All the candidates in {p} ∪ C survive the 1st round because all the voters rank the candidates
in D last (no matter what preference the manipulator provided). Additionally, since every v
and his negation are in tie, the manipulator can decide for every v ∈ V which of the two will
proceed to the 2nd round.

1See http://en.wikipedia.org/wiki/Boolean satisfiability problem for details
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• ⇒ Suppose that there exists a satisfying assignment to the given CNF formula. If the
manipulator’s preference is such that all the literals that receive true value in the assign-
ment will proceed to the 2nd round, he’ll cause p to be elected: p has at least 4|C| + 2
points in the 2nd round (the 1st group of voters voted for him). For each c ∈ C, at least
one l ∈ c survived the 1st round (because for every clause, the manipulator passed at least
one literal - the one that was satisfied in the clause). Therefore, every voter of the 3rd

group has at least one literal ahead of c, leaving c with only the 4|C| points he received
from the 2nd group of voters.
Additionally, every literal l ∈ L receives points only from the 3rd group of voters, leaving
him with up to 4|C| points (the size of the 3rd group).
We’ve examined all the candidates that survived the 1st round, and found that even if
the manipulator chooses to vote to a candidate other than p, that candidate will have up
to 4|C|+ 1 points, not enough to surpass p and his 4|C|+ 2 points. We can conclude that
if there is a satisfying assignment to the given CNF formula, there is a preference by the
manipulator that can cause the election of p.

• ⇐ Suppose there is no satisfying assignment to the given formula. Because in the 1st round
for each variable only one of his literals proceeds to the 2nd round, for every preference
of the manipulator (representing an assignment) there exists a clause c∗ ∈ C such that
every one of its literals were false, and therefore didn’t proceed to the 2nd round.
Therefore, c∗ receives 4|C| points from the 2nd group of voters, and 4 more points from
the 4 voters in the 3rd group that ranked the literals of c∗ 1st, and c∗ after them (since
these literals didn’t proceed to the 2nd round). We conclude that the candidate c∗ has
at least 4|C| + 4 points while p can have at most 4|C| + 3 points (one point from the
manipulator and the rest from the 1st group of voters).
We proved that if there is no satisfying assignment, p will lose no matter the manipulator’s
preference, as required.

In conclusion, we proved that MANIPULATIONPwP ∈ NP-Hard.
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