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Manipulation

• Consider the following voting profile:

• If the Borda rule is used, then a will win 
– a has 8 points,  while b only has 7
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Manipulation

• Consider the following voting profile:

• But if voter 3 lies about his preferences…

– Now a only has 6 points, and b wins!

• What would happen if we used Plurality?
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Manipulation

• Neither Plurality nor Borda are immune to 
strategic voting

• We next see that under mild requirements, 
no voting rule is 

– The Gibbard-Satterthwaite theorem

• In the rest of the course we will consider the 
implications



Strategyproofness

Definition: a voting rule f is strategyproof (SP), if no 
(single) voter can ever benefit from lying about his 
preferences. Formally:
∀𝑹 ∈ ℒ 𝐴 𝑛, ∀𝑖 ∈ 𝑁, ∀𝑅𝑖

′ ∈ ℒ 𝐴 , 𝑓 𝑹−𝑖 , 𝑅𝑖
′ ≼𝑖 𝑓 𝑹

Claim: If |𝐴| = 2 (i.e. there are two candidates), then 
Majority is Strategyproof

– In this case all the standard voting rules are also SP



More axioms

Definition: A voting rule f is dictatorial if there is an 
individual (the dictator) whose most preferred 
candidate is always chosen by f.  formally:

∃𝑖 ∈ 𝑁, ∀𝑹 ∈ ℒ 𝐴 𝑛, 𝑓 𝑹 = 𝑡𝑜𝑝 𝑅𝑖

Definition: A voting rule f is onto if it is possible for any 
of the candidates to win (given the right preference 
profile):

∀𝑎 ∈ 𝐴, ∃𝑹 ∈ ℒ 𝐴 𝑛, 𝑓 𝑹 = 𝑎



The Gibbard-Satterthwaite Theorem

The Gibbard-Satterthwaite theorem: If there are at 
least three candidates, any voting rule that is 
strategy-proof and onto is dictatorial.

(no dictator)

(onto)

(SP)∀𝑹 ∈ ℒ 𝐴 𝑛, ∀𝑖 ∈ 𝑁, ∀𝑅𝑖
′ ∈ ℒ 𝐴 , 𝑓 𝑹−𝑖 , 𝑅𝑖

′ ≼𝑖 𝑓 𝑹

¬∃𝑖 ∈ 𝑁, ∀𝑹 ∈ ℒ 𝐴 𝑛, 𝑓 𝑹 = 𝑡𝑜𝑝 𝑅𝑖

∀𝑎 ∈ 𝐴, ∃𝑹 ∈ ℒ 𝐴 𝑛, 𝑓 𝑹 = 𝑎



Proof outline for G-S theorem

• Every SP rule is (Maskin) Monotone
– If [𝑓 𝑹 = 𝑎 and ∀𝑖 ∈ 𝑁 ∀𝑏 ∈ 𝐴 (𝑏 ≺𝑖 𝑎 ⇒ 𝑏 ≺′

𝑖 𝑎)] then 𝑓 𝑹′ = 𝑎

• Every onto + SP rule is Pareto
– !∃𝑏 s.t. ∀𝑖 ∈ 𝑁 𝑏 ≻𝑖 𝑓 𝑹

• For 𝑛 = 2, and any pair 𝑎, 𝑏 ∈ 𝐴:

– Either voter 1 can enforce 𝑎 wins (“𝑎-dictator”)

– Or voter 2 can enforce 𝑏 wins (“𝑏-dictator”)



Consider a pair 𝑎, 𝑏
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By Pareto, 𝑎 or 𝑏 wins

w.l.o.g. a wins

𝑅1 𝑅2



Consider a pair 𝑎, 𝑏
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By Pareto, 𝑎 or 𝑏 wins

w.l.o.g. 𝑎 wins
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By SP for voter 2, 

𝑎 still wins 
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Consider a pair 𝑎, 𝑏

a

b

b

a

By Pareto, 𝑎 or 𝑏 wins

w.l.o.g. 𝑎 wins

a

b

b

a

a

By SP for voter 2, 

𝑎 still wins 

By monotonicity,  

𝑎 still wins 

𝑅2
′ 𝑅2

′′𝑅1
′′

𝑅1 𝑅2 𝑅1

Thus voter 1 is an “𝑎-dictator”



Proof outline for G-S theorem

• Every SP rule is Monotone

• Every onto + SP rule is Pareto

• For 𝑛 = 2, and any pair 𝑎, 𝑏 ∈ 𝐴:

– Either voter 1 can enforce 𝑎 wins (“𝑎-dictator”)

– Or voter 2 can enforce 𝑏 wins (“𝑏-dictator”)

• Conclude there is a dictator for all 𝑐 ∈ 𝐴

• Extend to 𝑛 > 2 by induction

For this and other simple proofs see [Svensson’99]



Course outline

The G-S theorem

More negative results

Achieving truthfulness

By additional assumptions

(“workarounds” for G-S)

Relax truthfulness:

- Rational voting and equilibrium analysis

- Iterative voting and convergence

Relax rationality:

Heuristic voting

See lecture notes for more details and full references

https://www.dropbox.com/s/2gmi3e2g8lwpvpr/strategic_voting2.pdf?dl=0


More negative results:

• Manipulations occur often

• Randomization does not help (much)

• Strategyproofness entails dictatorship in other 
domains



Can manipulations occur often?

• Intuitively, a single voter is usually powerless

– In particular, cannot manipulate 

• How can we measure this formally?

• [Friedgut et al.’08] assume unbiased culture

– (uniform distribution on all profiles)

• Define 𝑀𝑖(𝑓) as the probability that 𝑖 has a 
manipulation  𝑅′𝑖 , when the profile 𝑹 is 
selected uniformly at random.

– the “manipulation power” of voter 𝑖



“quantitative” G-S theorem
• Rephrasing the G-S theorem:

Either 𝑓 is dictatorial, or a duple, or σ𝑖𝑀𝑖
𝑓 > 0

Def.: 𝑓 is 𝜀-bad if there is some dictatorship/duple 

𝑔 s.t. Pr 𝑓 𝑹 = 𝑔 𝑹 ≥ 1 − 𝜀

Theorem [Friedgut et al.’08, Mossel and Rácz’12]:

Either 𝑓 is 𝜀-bad, or σ𝑖𝑀𝑖
𝑓 > poly(1

𝑛
,
1

𝑚
,𝜀)

“manipulations occur often”

Only 2 possible outcomes



Randomized voting rules

• Suppose we allow our voting rule to use 
randomization

• We have more ways to define an SP rule:

– A random fixed outcome

– A random dictator

– A random duple (select a pair of candidates at 
random, and use majority)

• Note that we have to define cardinal utilities 
for voters 



Randomized voting rules

Theorem [Gibbard’77]: Any strategyproof
randomized rule, is a lottery over dictatorships* 
and duples.



More negative results:

• Manipulations occur often

• Randomization does not help (much)

• SP means dictatorship in 

– facility location

– Classification

– Judgement aggregation



Strategyproofness on graphs

• Suppose agents report location on a graph

• Want a facility to placed as close as possible

Theorem [Schummer and Vohra’04]: if the graph 
has cycles, any SP+onto rule is a dictatorship.

• This assumes graph is continuous



Strategyproofness on graphs

• What about discrete graphs?

• Agents and facility must

be placed on vertices

[Dokow et al.’12]: Still “almost dictatorial” for 
large cycles.

Not true for small cycles (at most 12 nodes)



Course outline

The G-S theorem

More negative results

Achieving truthfulness

By additional assumptions

(“workarounds” for G-S)

Relax truthfulness:

- Rational voting and equilibrium analysis

- Iterative voting and convergence

Relax rationality:

Heuristic voting



Course outline

The G-S theorem

More negative results

5 surprising 

workarounds to the G-S 

theorem!!!

Relax truthfulness:

- Rational voting and equilibrium analysis

- Iterative voting and convergence

Relax rationality:

Heuristic voting



Achieving truthfulness under 
additional assumptions

1. Domain restriction (e.g. single-peak)

2. Complexity barriers

3. Approximation

4. Differential privacy

5. Payments

Was covered by 

Edith Elkind

Were covered 

by Edith Elkind



A    B         C          D   E          F

Single-Peaked Preferences 

• Definition: a preference profile is single-peaked (SP) 
wrt an ordering < of candidates (axis) 
if for each voter v: 
– if top(v) < D < E, v prefers D to E

– if A < B < top(v), v prefers B to A

• Example: 
– voter 1: C > B > D > E > F > A 

– voter 2: A > B > C > D > E > F

– voter 3: E > F > D > C > B > A 

Slides by Edith Elkind



SP Preferences: 
Circumventing Gibbard-Satterthwaite

• Suppose we have n = 2k+1 voters

• Median voter rule:

– consider an election that is single-peaked wrt 𝑹

– ask each voter v to vote for one candidate 

• let C(v) denote the vote of voter v

– order voters by C(v), breaking ties arbitrarily

– output C* = C(vk+1) 

Slides by Edith Elkind



SP Preferences: Median Is Truthful 

• Theorem: under the median voter rule, it is a 
dominant strategy to vote for one’s top choice

• Still true for single-peaked preferences on a tree

Slides by Edith Elkind



Achieving truthfulness

1. Domain restriction (e.g. single-peak)

2. Complexity barriers

3. Approximation

4. Differential privacy

5. Payments



MANIPULATIONf

Fix a voting rule f        

Given:
– a set of candidates 𝐴

– a group of voters 𝑁

– a specific candidate 𝑝 in 𝐴

– a manipulator i ∈ 𝑁

– and a preference profile 𝑹−𝑖 of all voters except 𝑖

• Answer whether the manipulator 𝑖 can vote 
such that 𝑝 will be chosen by f



A greedy algorithm for the 
(greedy) manipulator

• Rank 𝑝 first

• While there are more candidates:

– If there exists a “safe” candidate,

rank that candidate in the next spot.

– otherwise - declare that the desired preference 
does not exist.

Voter 1 Voter 2 Voter 3

a

p

b

c

a

p

b

c

p

b

c

a

Score(a) = 6

Score(p) = 4

Score(b) = 2

Score(c) = 0

7

4

1



When will it work?

Proposition: The greedy algorithm works for 
every scoring-based rule:

• PSRs

• Copeland

• Maximin

Is there a similar algorithm for other rules?



What about other algorithms?

Theorem [BTT ’89]: There is a voting rule f, for 
which MANIPULATIONf is NP-hard

(believed that no efficient algorithm exists)

• Original proof used a variant of Copeland

• Also hard: Single Transferable Vote (STV)



Hardness of manipulation

• Proving that MANIPULATIONf is hard is a 
positive result – it means voters are likely to 
be truthful

• An argument in favor of some rules like STV

• But:
– Only proves the worst-case

– Very sensitive to small variations



8 voters2 voters1 voter

Coalitional manipulation

• Suppose we use Borda

– No single manipulator can gain

– But if first three voters join forces…

c

a

b

d

a

c

b

d

b

a

c

d

Score(a) = 2+6+16 = 24

Score(b) = 1+4+24 = 29

Score(c) = 3+0+8 = 11

Score(d) = 0+2+0 = 2



8 voters2 voters1 voter

Coalitional manipulation

• Suppose we use Borda

– No single manipulator can gain

– But if first three voters join forces…

a

c

d

b

a

c

d

b

b

a

c

d

Score(a) = 3+6+16 = 25

Score(b) = 0+0+24 = 24

Score(c) = 2+3+8 = 13

Score(d) = 1+6+0 = 7

There is no efficient algorithm* for coalitional manipulation 

of Borda, even for 2 manipulators [DKNW11,BNW11]



Achieving truthfulness

1. Domain restriction (e.g. single-peak)

2. Complexity barriers

3. Approximation

4. Differential privacy

5. Payments



Approximation

• Suppose we allow randomization

• We saw that by [Gibbard’77] this only 
extends the class of SP rules to mixtures of:

– Dictators (and monotone unilateral rules)

– Duples

• Perhaps these rules are “good enough”?

• The winner is closed in expectation to the 
winner of another desired rule



Approximation

• Consider any scoring-based rule 𝑔

• A randomized rule 𝑓 is a 𝛾-approximation of 𝑔
if for any profile 𝑹, 

𝐸 𝑠𝑐𝑜𝑟𝑒𝑔 𝑓 𝑹 ≥ 𝛾 ⋅ 𝑠𝑐𝑜𝑟𝑒𝑔 𝑔 𝑹

(𝑓 selects winners that have high 𝑔-score in 
expectation compared to the true winner of 𝑔)

Theorem [Procaccia’10]: For any PSR 𝑔 there is a 

randomized SP rule 𝑓𝑔 that is a Ω(
1

𝑚
)-approximation

• What rule approximates Plurality?



Achieving truthfulness

1. Domain restriction (e.g. single-peak)

2. Complexity barriers

3. Approximation

4. Differential privacy

5. Payments



Differentially private voting rules

• The main idea: 

– Take any voting rule 𝑓

– Add noise to the voting profile (corrupt some 
votes randomly)

– This induces a new randomized voting rule 𝑓’

– 𝑓‘ is “almost” strategyproof

– 𝑓‘ is an approximation of 𝑓



Differentially private voting rules

Theorem [Birrel&Pass’11]: For any deterministic 

voting rule 𝑓, any 𝜀 > 0 and any 𝛿 >
𝑚2

𝜀
, there is a 

randomized voting rule 𝑓′ s.t.

– 𝑓’ is 𝜀-strategyproof (an agent can gain at most 𝜀)

– 𝑓’ is a 𝛿-approximation of 𝑓 (we can always get 
𝑓(𝑹) by modifying at most 𝛿 votes in 𝑓’)

– Not equivalent to the definition of approximation 
by [Procaccia’10]



Achieving truthfulness

1. Domain restriction (e.g. single-peak)

2. Complexity barriers

3. approximation

4. Differential privacy

5. Payments



Voting with payments

• Suppose voters have cardinal values

• This means voter 𝑖 is willing to pay  𝑣𝑖𝑎 if 𝑎 is 
selected

• We can turn the voting process to an auction:

– Each voter will report her valuations

– The alternative 𝑎 with the highest bids σ𝑖∈𝑁 𝑣𝑖𝑎 wins

– We charge payment from agents

– How much?



Direct payment mechanism

• Initial attempt: if 𝑤 wins, charge each voter 𝑣𝑖𝑤
• This is not truthful

– E.g. if 𝑤 wins anyway, 𝑖 can deviate by reporting 𝑣′𝑖𝑤 = 0

• Recall the second-price auction:
– the payment of 𝑖 should not depend on 𝑖’s own bids



VCG voting

• Define 𝑝𝑖 = 𝑚𝑎𝑥𝑧(σ𝑘≠𝑖 𝑣𝑘𝑧) − σ𝑘≠𝑖 𝑣𝑘𝑤
• Each agent pays 𝑝𝑖, gets utility 𝑣𝑖𝑤 − 𝑝𝑖

𝑐𝑎 𝑏 𝑐 𝑑

𝑣1𝑎

𝑣2𝑎

𝑣3𝑎



VCG voting

• Define 𝑝𝑖 = 𝑚𝑎𝑥𝑧(σ𝑘≠𝑖 𝑣𝑘𝑧) − σ𝑘≠𝑖 𝑣𝑘𝑤
• Each agent pays 𝑝𝑖, gets utility 𝑣𝑖𝑤 − 𝑝𝑖

𝑐𝑎 𝑏 𝑐 𝑑
= 𝑤 = 𝑧

𝑝1



VCG voting

• Define 𝑝𝑖 = 𝑚𝑎𝑥𝑧(σ𝑘≠𝑖 𝑣𝑘𝑧) − σ𝑘≠𝑖 𝑣𝑘𝑤
• Each agent pays 𝑝𝑖, gets utility 𝑣𝑖𝑤 − 𝑝𝑖 = 𝑢𝑖

Theorem [Clarke’71]: VCG voting is strategyproof

(for details see e.g. [Nissan’07, Section 9.3]).

𝑐𝑎 𝑏 𝑐 𝑑
= 𝑤 = 𝑧

𝑝1

𝑢1



VCG voting

• Define 𝑝𝑖 = 𝑚𝑎𝑥𝑧(σ𝑘≠𝑖 𝑣𝑘𝑧) − σ𝑘≠𝑖 𝑣𝑘𝑤
• Each agent pays 𝑝𝑖, gets utility 𝑣𝑖𝑤 − 𝑝𝑖 = 𝑢𝑖

Theorem: VCG voting is strategyproof

𝑐𝑎 𝑏 𝑐 𝑑
= 𝑤 = 𝑧

𝑝1

𝑢1Possible manipulations:

𝑣′1𝑎 = 0 ∀𝑎 𝑢′1



VCG voting

• Define 𝑝𝑖 = 𝑚𝑎𝑥𝑧(σ𝑘≠𝑖 𝑣𝑘𝑧) − σ𝑘≠𝑖 𝑣𝑘𝑤
• Each agent pays 𝑝𝑖, gets utility 𝑣𝑖𝑤 − 𝑝𝑖 = 𝑢𝑖

Theorem: VCG voting is strategyproof

𝑐𝑎 𝑏 𝑐 𝑑
= 𝑤 = 𝑧

𝑝1

𝑢1Possible manipulations:

𝑣′1𝑎 = 0 ∀𝑎

𝑣′1𝑤 < 𝑣1𝑤



VCG voting

• Define 𝑝𝑖 = 𝑚𝑎𝑥𝑧(σ𝑘≠𝑖 𝑣𝑘𝑧) − σ𝑘≠𝑖 𝑣𝑘𝑤
• Each agent pays 𝑝𝑖, gets utility 𝑣𝑖𝑤 − 𝑝𝑖 = 𝑢𝑖

Theorem: VCG voting is strategyproof

𝑐𝑎 𝑏 𝑐 𝑑
= 𝑤 = 𝑧

𝑝1

𝑢1Possible manipulations:

𝑣′1𝑎 = 0 ∀𝑎

𝑣′1𝑤 < 𝑣1𝑤

𝑢′1



VCG voting

• Define 𝑝𝑖 = 𝑚𝑎𝑥𝑧(σ𝑘≠𝑖 𝑣𝑘𝑧) − σ𝑘≠𝑖 𝑣𝑘𝑤
• Each agent pays 𝑝𝑖, gets utility 𝑣𝑖𝑤 − 𝑝𝑖 = 𝑢𝑖

Theorem: VCG voting is strategyproof

𝑐𝑎 𝑏 𝑐 𝑑
= 𝑤 = 𝑧

𝑝1

𝑢1Possible manipulations:

𝑣′1𝑎 = 0 ∀𝑎

𝑣′1𝑤 < 𝑣1𝑤

𝑣′1𝑦 > 𝑣1𝑦

𝑝′1



Course outline

The G-S theorem

More negative results

Achieving truthfulness

By additional assumptions

(“workarounds” for G-S)

Relax truthfulness:

- Rational voting and equilibrium analysis

- Iterative voting and convergence

Relax rationality:

Heuristic voting



Voting as a game
• Instead of assuming truthfulness, we assume 

rationality

– Voters vote the way that best suits their interests

– Who wins when voters are rational?

• Every voting rule 𝑓 defines a game form

• Together with a preference profile 𝑹 we get a 
game (𝑓, 𝑹) with ordinal utilities 

• The game-theory approach: analyze the 
equilibria of this game to predict the outcome



Voting as a normal-form game

a

a

b c
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7 9 3



Voting as a normal-form game

(14,9,3)

(11,12,3)
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b c
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c

W2=4

W1=3
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score:

7 9 3



Voting as a normal-form game

(14,9,3) (10,13,3) (10,9,7)

(11,12,3) (7,16,3) (7,12,7)

(11,9,6) (7,13,6) (7,9,10)

a

a

b c

b

c

W2=4

W1=3

Initial 

score:

7 9 3



Voting as a normal-form game

(14,9,3) (10,13,3) (10,9,7)

(11,12,3) (7,16,3) (7,12,7)

(11,9,6) (7,13,6) (7,9,10)

a

a

b c

b

c

W2=4

W1=3

Voters 

preferences:

a > b > c

c > a > b 



Voting equilibrium

1. Nash equilibrium

2. Strong equilibrium

3. Truth-bias

4. Equilibrium under uncertainty



Nash equilibrium

• Let 𝑁𝐸𝑓(𝑹) ⊆ A be all candidates that win 

in some Nash Equilibrium of the game 
(𝑓, 𝑹).

• Consider Plurality

– Almost any state is a Nash

– Thus 𝑁𝐸𝑓 𝑹 = A almost always

– Not informative at all!

• This seems to be true in all voting rules we 
have seen



NE Implementation

• Let 𝐹:ℛ𝑛 → 2𝐴 be some function that maps 
profiles to a winning subset

– Examples: “All Plurality winners”; “All candidates”; “All 
Condorcet winners”; “All non-Condorcet losers”

• A voting rule 𝑓 implements 𝐹 in NE if

𝑁𝐸𝑓(𝑹) = 𝐹(𝑹) for all 𝑹

• What does Plurality implement in NE?



NE Implementation

• Question 1: Can a voting rule 𝑓 implement 𝑓
itself in NE?

• Question 2: Can a voting rule 𝑓 be 
implemented in NE by some mechanism 𝑀? 



NE Implementation

• Question 1: Can a voting rule 𝑓 implement 𝑓
itself in NE?  

• Question 2: Can a voting rule 𝑓 be 
implemented in NE by some mechanism 𝑀? 

– No, except for dictator/duple [Maskin’85]

– Possible for some non-resolute rules (SCCs)

• E.g. 1 “All outcomes”

• E.g. 2 “Pareto outcomes”



NE Implementation

• Question 1: Can a voting rule 𝑓 implement 𝑓
itself in NE?  No (except trivial rules)

• Question 2: Can a voting rule 𝑓 be 
implemented in NE by some mechanism 𝑀? 

– No, except for dictator/duple [Maskin’85]



NE Implementation

• Question 1: Can a voting rule 𝑓 implement 𝑓
itself in NE?  No (except trivial rules)

• Question 1*: Can a voting rule 𝑓 implement 𝑓
itself in Dominant Strategies?

– No (Except trivial rules)

– Due to the G-S theorem 



Strong Equilibrium 
Implementation

• A strong equilibrium (SE): no coalition has a 
reply where all members gain

• Let 𝐹:ℛ𝑛 → 2𝐴 be some function that maps 
profiles to a winning subset

• A voting rule 𝑓 implements 𝐹 in SE if

𝑆𝐸𝑓(𝑹) = 𝐹(𝑹) for all 𝑹

Theorem [Sertel & Sanver’04]: 

Plurality implements Condorcet in SE.

(proof is almost trivial!)



Other notions of implementation

• Protective equilibria [Barbera&Dutta’86]

– Veto implements itself

• Demanding equilibria [Merlin&Naeve’01]

– Plurality implements itself

• Scoring rules [Falik, M., Tennenholz’12]

– Plurality implements Maximin



Voting equilibrium

1. Nash equilibrium

2. Strong equilibrium

3. Truth-bias

4. Equilibrium under uncertainty



Truth bias

• Suppose that voters have some very weak 
preference to be truthful

– Will be strategic if it helps them even slightly

– If they have no effect at all, will remain truthful

• This assumption “kills” many weird equilibria 
like “all vote for candidate x”

• Let 𝑇𝑁𝐸𝑓(𝑹) ⊆ A be all winners in some NE of 

(𝑓, 𝑹) under truth-bias.



Truth biased equilibrium

• 𝑇𝑁𝐸𝑓(𝑹) may be empty. Example: Plurality 
with 2 voters:

• 𝑅1: 𝑐 ≻ 𝑎 ≻ 𝑏 ≻ 𝑑

• 𝑅2: 𝑑 ≻ 𝑏 ≻ 𝑎 ≻ 𝑐

1 \ 2 a b c d

a a a a a

b a b b b

c a b c c

d a b c d



Truth biased equilibrium

• 𝑇𝑁𝐸𝑓(𝑹) may be empty.

A characterization of TNEs 
in Plurality voting games:

• Easy for the truthful winner

• NP-Hard otherwise

• [Obraztsova et al.’13]

Example: Plurality 
with 2 voters:

• 𝑅1: 𝑐 ≻ 𝑎 ≻ 𝑏 ≻ 𝑑

• 𝑅2: 𝑑 ≻ 𝑏 ≻ 𝑎 ≻ 𝑐

1 \ 2 a b c d

a a a a a

b a b b b

c a b c c

d a b c d



TNEs on average [Thompson et al.’13]

• Some TNE almost always exist 

• Truthful TNEs are common

• On the other hand, instead of 

millions of NEs, there are 

typically just a few TNEs



TNEs on average

• NEs are often really bad (e.g. when all vote 
to a bad candidate)

• How about TNEs?

Borda

winner

NE

TNE



Voting equilibrium

1. Nash equilibrium

2. Strong equilibrium

3. Truth-bias

4. Equilibrium under uncertainty



Voters with Bayesian reasoning

• Typically voters do not know 𝑹 exactly 

• Suppose voters’ utility 𝑢𝑖 ∈ ℝ𝑚 is sampled 
from a (known) distribution over all types

• Each voter predicts the probability 𝑝𝑥𝑦 that 

𝑥, 𝑦 are tied, for any 𝑥, 𝑦 ∈ 𝐴

• Then the expected utility of voting for 𝑥 is

• (this is for Plurality but can be generalized)

𝐸 𝑥 𝒑 = ෍

𝑦≠𝑥

𝑝𝑥𝑦 (𝑢𝑥 − 𝑢𝑦)



Voters with Bayesian reasoning

• Each voter is assumed to vote for the 
candidate x that maximizes 𝐸[𝑥|𝒑]

• If we know how a voter of type 𝑢 votes, we 
can estimate candidates’ scores 𝒔

• Then estimate pivot probabilities 𝒑:

𝐸 𝑥 𝒑 = ෍

𝑦≠𝑥

𝑝𝑥𝑦 (𝑢𝑥 − 𝑢𝑦)

a b c d e f

Case 1: 𝑝𝑎𝑏 = 𝑝𝑏𝑐 = 𝑝𝑎𝑐~
1

3

𝑝𝑥𝑦 < 𝜀 for all others

a b c d e f

Case 2: 𝑝𝑎𝑏 = 𝑝𝑎𝑐~
1

2

𝑝𝑥𝑦 < 𝜀 for all others



A voting equilibrium

• A voting equilibrium for profile 𝒖 is 𝒔 and 𝒑
such that

– Pivot probabilities 𝒑 are consistent with 𝒔

– If all voter types maximize their expected utility 
according to 𝒑, scores are 𝒔

• Theorem [Myerson&Weber’93]: A voting 
equilibrium exists for any scoring rule



Trembling hand perfection

• Suppose each vote is miscounted with some small 
probability 𝜀

• Thus every voter has some chance to be pivotal

• A TH-equilibrium is a voting profile that has no 
deviation when 𝜀 → 0

[Messner & Polborn’04] show that in any TH-
equilibrium in Plurality, at most 2 candidates get 
votes.

• This phenomenon is known as “Duverger’s law”



Course outline

The G-S theorem

More negative results

Achieving truthfulness

By additional assumptions

(“workarounds” for G-S)

Relax truthfulness:

- Rational voting and equilibrium analysis

- Iterative voting and convergence

Relax rationality:

Heuristic voting



Most 

preferred

Least 

preferred



Most 

preferred

Least 

preferred



Most 

preferred

Least 

preferred



Voting in turns

• We allow each voter to change his vote

• Only one voter may act at each step

• The game ends when there are no objections

This mechanism is implemented in some  

on-line voting systems, e.g. in Facebook, Doodle, 
etc.







2020

3

A        B         C

𝑟𝑖

6A>B>C

A>C>B

B>C>A C>A>B

(Lexicographic tie braking)



Some games always converge

Theorem [M. et al.’10]: Plurality games 
converge from any initial state.

Assumes: all voters have equal weights and 
always use direct-reply.

Not true otherwise.



Other voting rules

• Studied by [Lev & Rosenschein’12, Reyhani & 
Wilson ‘12] and others. 

• Veto also converges

• For many other voting rules there are 
counter examples (cycles)

– Weighted Plurality

– Borda

– Minimax

– Copeland

– …



Implications

• What are the implications of convergence?

– Will voters reach a “better” outcome?

– Note that we still have all Nash equilibria, 
including all the weird ones

– Fewer if we assume voters start by being truthful

• We want to compare the equilibrium 
outcomes to the truthful outcomes



Dynamic Price of Anarchy

• Approach #1: for score-based rules (where 
score is a measure to candidate’s quality), 
compare the scores of equilibrium and truthful 
winners.

• 𝐷𝑃𝑜𝐴 𝑓, 𝑅 = min
𝑅

min
𝑅′∈𝐸𝑄𝑇 𝑓,𝑅

𝑠𝑐𝑜𝑟𝑒𝑓 𝑓 𝑅′ ,𝑅

𝑠𝑐𝑜𝑟𝑒𝑓 𝑓 𝑅 ,𝑅
, where 

𝐸𝑄𝑇(𝑓, 𝑅) contains all equilibrium states reachable from the 
truth

• Results [Branzei et al.’13]:

– In Plurality, 𝐷𝑃𝑜𝐴 close to 1

– In Borda, 𝐷𝑃𝑜𝐴 = Ω(𝑛)

Worst case approach



Objective quality measures

• Approach #2: use external quality measures 
independent of 𝑓:

– Social welfare

– Condorcet consistency

– Distance from ground truth (when exists)

• Study the average effect using simulations



[Koolyk et al.’16]: mixed effect on social 
welfare, Condorcet consistency improves.



Course outline

The G-S theorem

More negative results

Achieving truthfulness

By additional assumptions

(“workarounds” for G-S)

Relax truthfulness:

- Rational voting and equilibrium analysis

- Iterative voting and convergence

Relax rationality:

Heuristic voting



Taking a step back

• “best response” is a myopic heuristic 

“rule of 

thumb”
Does not look forward 



Taking a step back

• “best response” is a myopic heuristic

• Other heuristics were suggested :
– “Second chance”: promote the second best candidate [Grandi et 

al.’13]

– “Best Upgrade”: look at all candidates preferred over the winner, 
do best-reply to one of them if possible [Grandi et al.’13]

– “𝑘-pragmatist”: look at the leading 𝑘 candidates, vote for best one 
[Reijngoud&Endriss’12]

– “𝑇-threshold”: look at all candidates above some threshold 𝑇, 
vote for best one

– “far-sighted”: best-reply assuming 𝑘 more voters will change their 
vote [Obraztsova et al.’15]

– “leader rule” (Approval only): approve everyone you prefer to the 
current leader [Laslier’09]

S
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Properties

• Different heuristics require different levels of 
information [Reijngoud&Endriss’12], e.g:

– All votes

– Only order of candidates

– Only the winner

– No information



Convergence

• Various results for combinations of 

Voting rule X   heuristic

• Some general guidelines in [Obraztsova et 
al.’15]

– Works for many such combinations

– Assumes voters start from the truth



• Effect of heuristic voting on Condorcet 
efficiency [Grandi et al. ‘13]



Local-Dominance

• Some heuristics seem kind of arbitrary

• We want to derive the behavior from basic 
(game-theoretic?) principles

– Attempt 0: best-response

• The key idea: add uncertainty

– The voters are unsure about the exact outcome

– Unlike [Myerson&Weber’93]:

• No distributions

• No cardinal utilities

• Care about dynamics rather than just equilibrium



Prospective scores 𝒔
• E.g. from a poll

• “world state”

Uncertainty level 𝑟𝑖 ≥ 0

Voter 𝑖 considers as “possible” all states close 

enough to 𝒔.   𝑆 𝒔, 𝑟𝑖 = {𝒔′: 𝒔′ − 𝒔 ≤ 𝑟𝑖}
– Example I: “𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦"

𝒔 = (90,20,85,45)90 + 𝑟𝑖

90 − 𝑟𝑖

Epistemic model



Def. I (Local dominance): A candidate 𝑐′

S-dominates candidate 𝑐 if it is always weakly 

better for 𝑖 to vote for 𝑐′.

𝒔 = (90,20,85,45)

𝒔 𝜖 ℝ|𝒞|
: state (scores)

𝑆 = 𝑆 𝒔, 𝑟𝑖 : possible states

in every state 𝒔′ ∈ S

Rational agents 

avoid dominated 

strategies!

Behavioral  model



Iterative setting: As long as your vote is locally 

dominated, switch to a candidate that dominates 

it. Otherwise – stay.  

Rational agents 

avoid dominated 

strategies!

Behavioral  model

Local dominance move



Strategic voting (one shot)

A   B   C    D   E    F

𝑇 𝒔, 𝑟𝑖

A      B      C      D       E      F

Lemma: All dominance relations in state 𝒔 are characterized by a single 

threshold 𝑇 𝒔, 𝑟𝑖 : (depends on winner’s score)

𝑐 is dominated iff below the threshold or least preferred.*

2𝑟𝑖

𝑟𝑖



2018
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A        B         C

𝑟𝑖

6A>B>C

A>C>B

B>C>A C>A>B

(Lexicographic tie braking)

r = 2

r = 2



Results

Theorem [M., AAAI’15]: 

Any sequence 𝒔0 → 𝒔1 → 𝒔2 → ⋯ of Local-

dominance moves is acyclic (must converge).

In particular,  a voting equilibrium always exists.

Still true for:

- Arbitrary initial (non-truthful) profile

- Arbitrary order of players

- Diverse uncertainty levels 𝑟𝑖



Theorem [M., AAAI’15]: 

Any sequence 𝒔0 → 𝒔1 → 𝒔2 → ⋯ of Local-

dominance moves is acyclic (must converge).

In particular,  a voting equilibrium always exists.

Results

Prop.  [M. et al., AAAI’10]: 

“best-response converges to a Nash equilibrium.”

𝑆(𝒔, 𝑟𝑖) = {𝒔}⇒Proof sketch:

Local-dominance ≡  Best response

Voting equilibrium ≡ Nash equilibrium⇒

𝑟𝑖 = 0 for all 𝑖

⇒

Follows as a special case!



• Decisiveness

• Duverger Law

• Participation

• Welfare              

Equilibrium properties

(computer simulations)

[M., Lev, Rosenschein, EC’14]

More uncertainty

𝒔0

𝒔′0𝒔′′0

𝒔′′′0



Not covered

• Behavioral voting experiments

• How do people really vote?

• See lecture notes for some references

https://www.dropbox.com/s/2gmi3e2g8lwpvpr/strategic_voting2.pdf?dl=0

