Axiomatic Foundations of Voting Theory (part I)

William S. Zwicker
Mathematics Department, Union College

Computational Social Choice Summer School
San Sebastian, Spain
18-22 July 2016
COST IC1205
Axiomatic Foundations of Voting Theory

William S. Zwicker
Mathematics Department, Union College

Computational Social Choice Summer School
San Sebastian, Spain
18-22 July 2016 COST IC1205
Axiomatic Foundations of Voting Theory

William S. Zwicker
Mathematics Department, Union College

Computational Social Choice Summer School
San Sebastian, Spain
18-22 July 2016

COST IC1205
1) Intro: Three voting rules

• Election with 3 candidates a, b, c for mayor of a town
• 303 voters
• Each voter casts a ballot
1) Intro: Three voting rules

- Election with 3 candidates a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
1) Intro: Three voting rules

- Election with 3 candidates a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A *profile* specifies the ballot cast by each voter: \((b_1, b_2, \ldots, b_{303})\)

complete information about an election
1) Intro: Three voting rules

- Election with 3 candidates a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A **profile** specifies the ballot cast by each voter: \((b_1, b_2, \ldots, b_{303})\)

\[
P_1
\begin{array}{ccc}
102 & 101 & 100 \\
 a & b & c \\
b & c & b \\
c & a & a \\
\end{array}
\]

complete information about an election
1) Intro: Three voting rules

- Election with 3 candidates a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A **profile** specifies the ballot cast by each voter: \((b_1, b_2, \ldots, b_{303})\)

<table>
<thead>
<tr>
<th></th>
<th>102</th>
<th>101</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

\(P_1\) is a **voting situation**, not a profile (**incomplete info**)
1) Intro: Three voting rules

- Election with 3 candidates a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A **profile** specifies the ballot cast by each voter: \((b_1, b_2, \ldots, b_{303})\)

<table>
<thead>
<tr>
<th>P_1</th>
<th>102</th>
<th>101</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

\(P_1\) is a **voting situation**, not a profile (**incomplete** info)

- A **plurality ballot** specifies a single most preferred candidate

complete information about an election
1) Intro: Three voting rules

- Election with 3 candidates a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A profile specifies the ballot cast by each voter: \((b_1, b_2, \ldots, b_{303})\)
 complete information about an election
- A plurality ballot specifies a single most preferred candidate
- Plurality voting rule: winner = candidate with most votes

<table>
<thead>
<tr>
<th>P_1</th>
<th>102</th>
<th>101</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

\(P_1\) is a voting situation, not a profile (incomplete info)
1) Intro: Three voting rules

- Election with 3 candidates a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A profile specifies the ballot cast by each voter: \((b_1, b_2, \ldots, b_{303})\)
- A plurality ballot specifies a single most preferred candidate
- Plurality voting rule: winner = candidate with most votes

<table>
<thead>
<tr>
<th>P₁</th>
<th>102</th>
<th>101</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

\(P₁\) is a voting situation, not a profile (incomplete info)
- Plurality winner for \(P₁\) is a
1) Intro: Three voting rules

- Election with 3 candidates a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A **profile** specifies the ballot cast by each voter: \((b_1, b_2, \ldots, b_{303})\)

 complete information about an election

- A **plurality ballot** specifies a single most preferred candidate

- **Plurality voting rule**: winner = candidate with most votes

<table>
<thead>
<tr>
<th></th>
<th>102</th>
<th>101</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

\(P_1\) is a **voting situation**, not a profile (**incomplete** info)

- Plurality winner for \(P_1\) is a
- No **majority** winner exists
1) Intro: Three voting rules

- Election with 3 candidates a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A profile specifies the ballot cast by each voter: \((b_1, b_2, \ldots, b_{303})\) complete information about an election
- A plurality ballot specifies a single most preferred candidate
- Plurality voting rule: winner = candidate with most votes

\[
P_1
\begin{array}{ccc}
102 & 101 & 100 \\
\ a & \ b & \ c \\
\ b & \ c & \ b \\
\ c & \ a & \ a \\
\end{array}
\]

\(P_1\) is a voting situation, not a profile (incomplete info)
- Plurality winner for \(P_1\) is \(a\)
- No majority winner exists
- For 3 or more candidates, plurality \(\neq\) majority
1) Intro: Three voting rules

- Election with 3 candidates a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A **profile** specifies the ballot cast by each voter: \((b_1, b_2, \ldots, b_{303})\)
- A **plurality ballot** specifies a single most preferred candidate
- **Plurality voting rule**: winner = candidate with most votes

*\[
P_1
\begin{array}{ccc}
102 & 101 & 100 \\
a & b & c \\
b & c & b \\
c & a & a \\
\end{array}
\]*

\(P_1\) is a **voting situation**, not a profile (**incomplete** info)

- Plurality winner for \(P_1\) is **a**

...
1) Intro: Three voting rules

- Election with 3 candidates a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A **profile** specifies the ballot cast by each voter: \((b_1, b_2, \ldots, b_{303})\) complete information about an election
- A **plurality ballot** specifies a single most preferred candidate
- **Plurality voting rule**: winner = candidate with most votes

<table>
<thead>
<tr>
<th></th>
<th>100</th>
<th>101</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

\(P_1\) is a **voting situation**, not a profile *(incomplete info)*

- Plurality winner for \(P_1\) is *a*
- Say we used a different voting rule – one using info in full ranking . . . ?
- **Who should win?**
1) Intro: Three voting rules

- Election with 3 candidates a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A profile specifies the ballot cast by each voter: \((b_1, b_2, \ldots, b_{303})\)
 complete information about an election
- A plurality ballot specifies a single most preferred candidate
- Plurality voting rule: winner = candidate with most votes

\[
P_1
\begin{array}{ccc}
102 & 101 & 100 \\
a & b & c \\
b & c & b \\
c & a & a \\
\end{array}
\]

- \(P_1\) is a voting situation, not a profile (incomplete info)
- Plurality winner for \(P_1\) is \(a\)
- Say we used a different voting rule – one using info in full ranking . . . ?
- Who should win? Why?
1) Intro: Three voting rules

- Election with 3 candidates a, b, c for mayor of a town
- 303 voters
- Each voter casts a ballot
- Each ballot lists candidates in descending order of preference
- A **profile** specifies the ballot cast by each voter: $(b_1, b_2, \ldots, b_{303})$
 complete information about an election
- A **plurality ballot** specifies a single most preferred candidate
- **Plurality voting rule**: winner = candidate with most votes

<table>
<thead>
<tr>
<th>P_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>a</td>
</tr>
</tbody>
</table>

P_1 is a **voting situation**, not a profile (**incomplete** info)

- Plurality winner for P_1 is a
- Say we used a different voting rule – one using info in full ranking . . . ?
- Using most rules, b wins
1) Intro: Three voting rules

- Plurality rule is common in RW
- Elect US senator from NY State
- 3-way 1980 vote

<table>
<thead>
<tr>
<th>P₁</th>
<th>102</th>
<th>101</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

P₁ is a **voting situation**, not a profile (*incomplete* info)

- Plurality winner for P₁ is **a**
- Say we used a different voting rule – one using info in full ranking . . . ?
- Using most rules, b wins
1) Intro: Three voting rules

- Plurality rule is common in RW
- Elect US senator from NY State
- 3-way 1980 vote: A. D’Amato (R), E. Holtzmann (L), J. Javits (L)
- New York sits on Left (US terms)

\[P_1 \]

<table>
<thead>
<tr>
<th></th>
<th>102</th>
<th>101</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(P_1 \) is a voting situation, not a profile (incomplete info)

- Plurality winner for \(P_1 \) is \(a \)
- Say we used a different voting rule – one using info in full ranking . . . ?
- Using most rules, b wins
1) Intro: Three voting rules

- Plurality rule is common in RW
- Elect US senator from NY State
- 3-way 1980 vote: A. D’Amato (R), E. Holtzmann (L), J. Javits (L)
- New York sits on Left (US terms)
- Outcome was very parallel to P_1
- H and J split L vote; D’Amato won

\[P_1 \]

\[
\begin{array}{ccc}
102 & 101 & 100 \\
\text{a} & \text{b} & \text{c} \\
\text{b} & \text{c} & \text{b} \\
\text{c} & \text{a} & \text{a} \\
\end{array}
\]

P_1 is a voting situation, not a profile (incomplete info)

- Plurality winner for P_1 is a
- Say we used a different voting rule – one using info in full ranking . . . ?
- Using most rules, b wins
1) Intro: Three voting rules

- Plurality rule is common in RW
- Elect US senator from NY State
- 3-way 1980 vote: A. D’Amato (R), E. Holtzmann (L), J. Javits (L)
- New York sits on Left (US terms)
- Outcome was very parallel to \(P_1 \)
- H and J split L vote; D’Amato won
- Such examples are major reason for opposition to plurality rule . . .
- . . . and interest in voting theory

\[
P_1
\begin{array}{ccc}
102 & 101 & 100 \\
a & b & c \\
b & c & b \\
c & a & a \\
\end{array}
\]

\(P_1 \) is a voting situation, not a profile (incomplete info)
- Plurality winner for \(P_1 \) is \(a \)
- Say we used a different voting rule – one using info in full ranking . . . ?
- Using most rules, b wins
• 2010 Meeting, Ch. du Baffy, Normandy
• We agreed . . . on almost nothing . . . *
- 2010 Meeting, Ch. du Baffy, Normandy
- We agreed . . . on almost nothing . . . *
- Vote on Voting Rules
- 2010 Meeting, Ch. du Baffy, Normandy
- We agreed . . . on almost nothing . . . *
- Vote on Voting Rules
- . . . *but note score for plurality is 0
• 2010 Meeting, Ch. du Baffy, Normandy
• We agreed . . . on almost nothing . . . *
• Vote on Voting Rules
• . . . *but note score for plurality is 0
• Laslier’s article: “And the loser is ... Plurality Voting”
• 2010 Meeting, Ch. du Baffy, Normandy

• We agreed . . . on almost nothing . . . *

• Vote on Voting Rules

• . . . *but note score for plurality is 0

• Laslier’s article: “And the loser is ... Plurality Voting”

• Which voting rule won?
• 2010 Meeting, Ch. du Baffy, Normandy

• We agreed . . . on almost nothing . . . *

• Vote on Voting Rules

• . . . *but note score for plurality is 0

• Laslier’s article: “And the loser is ... Plurality Voting”

• Which voting rule won?

• What question should you be asking me . . . ?
1) Intro: Three voting rules

\[P_2 \]

<table>
<thead>
<tr>
<th></th>
<th>102</th>
<th>101</th>
<th>100</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>
1) Intro: Three voting rules

- In profile P_2
 - 202 voters rank a over b

<table>
<thead>
<tr>
<th></th>
<th>102</th>
<th>101</th>
<th>100</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>
1) Intro: Three voting rules

- In profile P_2
 - 202 voters rank a over b
 - 102 rank b over a

\[
\begin{array}{cccc}
102 & 101 & 100 & 1 \\
 a & b & c & c \\
b & c & a & b \\
c & a & b & a \\
\end{array}
\]
1) Intro: Three voting rules

- In profile P_2
 - 202 voters rank a over b
 - 102 rank b over a
 - $\text{Net}_{P_2}(a > b) = 202 - 102 = 100$
1) Intro: Three voting rules

- In profile P_2
 - 202 voters rank a over b
 - 102 rank b over a
 - $Net_{P_2}(a > b) = 202 - 102 = 100$

- We get a **weighted tournament** induced by the profile P_2

\[
\begin{array}{cccc}
102 & 101 & 100 & 1 \\
a & b & c & c \\
b & c & a & b \\
c & a & b & a \\
\end{array}
\]
1) Intro: Three voting rules

• In profile P_2
 - 202 voters rank a over b
 - 102 rank b over a
 - $\text{Net}_{P_2}(a > b) = 202 - 102 = 100$

• We get a **weighted tournament** induced by the profile P_2

• **Tournament:**
 - A graph in which the vertices are the candidates
 - For each two vertices, *either* $a \rightarrow b$ *or* $a \leftarrow b$ is an edge
1) Intro: Three voting rules

- In profile P_2
 - 202 voters rank a over b
 - 102 rank b over a
 - $\text{Net}_{P_2}(a > b) = 202 - 102 = 100$

- We get a **weighted tournament** induced by the profile P_2

Tournament:
- A graph in which the vertices are the candidates
- For each two vertices, *either* $a \rightarrow b$ *or* $a \leftarrow b$ is an edge

Edge weights:
- Assign $\text{Net}_{P_2}(a > b)$ to $a \rightarrow b$
1) Intro: Three voting rules

Pairwise Majority Preference
• $x >^\mu y$ means (strictly) more voters rank x over y than y over x

\[
\begin{array}{cccc}
102 & 101 & 100 & 1 \\
a & b & c & c \\
b & c & a & b \\
c & a & b & a \\
\end{array}
\]
1) Intro: Three voting rules

Pairwise Majority Preference
• $x >^\mu y$ means (strictly) more voters rank x over y than y over x
• Equivalently, $\text{Net}_p(x>y) > 0$

\[
\begin{array}{cccc}
102 & 101 & 100 & 1 \\
\begin{array}{cccc}
a & b & c & c \\
b & c & a & b \\
c & a & b & a \\
\end{array}
\end{array}
\]
1) Intro: Three voting rules

Pairwise Majority Preference

• $x \succ^\mu y$ means (strictly) more voters rank x over y than y over x
• Equivalently, $\text{Net}_p(x>y) > 0$
• For P_2, we have $a \succ^\mu b \succ^\mu c \succ^\mu a$
 ➢ *majority cycle/Condorcet cycle*
 ➢ \succ^μ is *intransitive*
1) Intro: Three voting rules

Pairwise Majority Preference

- \(x >^\mu y \) means (strictly) more voters rank \(x \) over \(y \) than \(y \) over \(x \)
- Equivalently, \(\text{Net}_p(x>y) > 0 \)
- For \(P_2 \), we have \(a >^\mu b >^\mu c >^\mu a \)
 - majority cycle/Condorcet cycle
 - \(>^\mu \) is intransitive
- 3 BIG results of voting theory
 - majority cycles
 - Arrow’s impossibility Thm
 - Gibbard-Satterthwaite Thm

\[
\begin{array}{cccc}
102 & 101 & 100 & 1 \\
a & b & c & c \\
b & c & a & b \\
c & a & b & a \\
\end{array}
\]
1) Intro: Three voting rules

Pairwise Majority Preference
• \(x \succ^\mu y \) means (strictly) more voters rank \(x \) over \(y \) than \(y \) over \(x \)
• Equivalently, \(\text{Net}_p(x>y) > 0 \)
• For \(P_2 \), we have \(a \succ^\mu b \succ^\mu c \succ^\mu a \)
 ➢ majority cycle/Condorcet cycle
 ➢ \(\succ^\mu \) is intransitive
• 3 BIG results of voting theory
 ➢ majority cycles
 ➢ Arrow’s impossibility Thm
 ➢ Gibbard-Satterthwaite Thm
1) Intro: Three voting rules

Pairwise Majority Preference
- $x >^\mu y$ means (strictly) more voters rank x over y than y over x
- Equivalently, $\text{Net}_p(x>y) > 0$
- For P_2, we have $a >^\mu b >^\mu c >^\mu a$
 - *majority cycle/Condorcet cycle*
 - $>^\mu$ is *intransitive*

3 BIG results of voting theory
 - *majority cycles*
 - *Arrow’s impossibility Thm*
 - *Gibbard-Satterthwaite Thm*
1) Intro: Three voting rules

Pairwise Majority Preference
- $x >^\mu y$ means (strictly) more voters rank x over y than y over x
- Equivalently, $\text{Net}_p(x>y) > 0$
- For P_2, we have $a >^\mu b >^\mu c >^\mu a$
 - $majority\ cycle/Condorcet\ cycle$
 - $>^\mu$ is intransitive
- 3 BIG results of voting theory
 - $majority\ cycles$
 - Arrow’s impossibility Thm
 - Gibbard-Satterthwaite Thm

Copeland Voting Rule
- Symmetric Copeland Score
 \[\text{Cop}(x) = |\{y | x >^\mu y\}| - |\{y | y >^\mu x\}| \]
1) Intro: Three voting rules

Pairwise Majority Preference
- $x \succ y$ means (strictly) more voters rank x over y than y over x
- Equivalently, $\text{Net}_p(x>y) > 0$
- For P_2, we have $a \succ b \succ c \succ a$
 - *majority cycle/Condorcet cycle*
 - \succ is *intransitive*
- 3 BIG results of voting theory
 - *majority cycles*
 - *Arrow’s impossibility Thm*
 - *Gibbard-Satterthwaite Thm*

Copeland Voting Rule
- Symmetric Copeland Score

 $\text{Cop}(x) = |\{y | x \succ y\}| - |\{y | y \succ x\}|$
- For P_2, $\text{Cop}(a) = 1 - 1 = 0$
1) Intro: Three voting rules

Pairwise Majority Preference
• $x >_\mu y$ means (strictly) more voters rank x over y than y over x
• Equivalently, $Net_p(x>y) > 0$
• For P_2, we have $a >_\mu b >_\mu c >_\mu a$
 ➢ majority cycle/Condorcet cycle
 ➢ $>_\mu$ is intransitive
• 3 BIG results of voting theory
 ➢ majority cycles
 ➢ Arrow’s impossibility Thm
 ➢ Gibbard-Satterthwaite Thm

Copeland Voting Rule
• Symmetric Copeland Score
 $Cop(x) = |\{y | x >_\mu y\}| - |\{y | y >_\mu x\}|$
• For P_2, $Cop(a) = 1 - 1 = 0$
 $0 = Cop(b) = Cop(c)$ Tie!
1) Intro: Three voting rules

Pairwise Majority Preference
- $x \succ^\mu y$ means (strictly) more voters rank x over y than y over x
- Equivalently, $\text{Net}_p(x>y) > 0$
- For P_2, we have $a \succ^\mu b \succ^\mu c \succ^\mu a$
 - *majority cycle/Condorcet cycle*
 - \succ^μ is *intransitive*
- 3 BIG results of voting theory
 - *majority cycles*
 - *Arrow’s impossibility Thm*
 - *Gibbard-Satterthwaite Thm*

Copeland Voting Rule
- Symmetric Copeland Score
 \[
 \text{Cop}(x) = |\{y | x \succ^\mu y\}| - |\{y | y \succ^\mu x\}|
 \]
- For P_2, $\text{Cop}(a) = 1 - 1 = 0$
 $0 = \text{Cop}(b) = \text{Cop}(c)$ *Tie!*

![Diagram](attachment:image.png)
1) Intro: Three voting rules

Pairwise Majority Preference
- $x \succ=y$ means (strictly) more voters rank x over y than y over x
- Equivalently, $\text{Net}_p(x>y) > 0$
- For P_2, we have $a \succ=b \succ=c \succ=a$
 - *majority cycle/Condorcet cycle*
 - \succ is *intransitive*
- 3 BIG results of voting theory
 - *majority cycles*
 - *Arrow’s impossibility Thm*
 - *Gibbard-Satterthwaite Thm*

Copeland Voting Rule
- Symmetric Copeland Score
 \[
 \text{Cop}(x) = |\{y | x \succ=y\}| - |\{y | y \succ=x\}|
 \]
- For P_2, $\text{Cop}(a) = 1 - 1 = 0$
 $0 = \text{Cop}(b) = \text{Cop}(c)$ *Tie!*

![Diagram](image)

Cop’d ignores size of margins in pairwise wins/losses . . . *very indecisive*
1) Intro: Three voting rules

Pairwise Majority Preference
• x >\(\mu\) y means (strictly) more voters rank x over y than y over x
• Equivalently, Net\(_p\)(x>y) > 0
• For P\(_2\), we have \(a >\mu b >\mu c >\mu a\)
 ➢ *majority cycle/Condorcet cycle*
 ➢ >\(\mu\) is *intransitive*
• 3 BIG results of voting theory
 ➢ *majority cycles*
 ➢ *Arrow’s impossibility Thm*
 ➢ *Gibbard-Satterthwaite Thm*

Copeland Voting Rule
• *Symmetric* Copeland Score
 \[
 \text{Cop}(x) = \left| \{y | x >\mu y\} \right| - \left| \{y | y >\mu x\} \right|
 \]
• For P\(_2\), Cop(a) = 1 – 1 = 0
 0 = Cop(b) = Cop(c) *Tie!*

\[
\begin{array}{c}
\text{b} \\
\text{102}
\end{array}
\begin{array}{c}
\text{a} \\
\text{100}
\end{array}
\begin{array}{c}
\text{c} \\
\text{100}
\end{array}
\]

Cop’d ignores size of margins in pairwise wins/losses . . . very indecisive
1) Intro: Three voting rules

Pairwise Majority Preference
• $x >^\mu y$ means (strictly) more voters rank x over y than y over x
• Equivalently, $\text{Net}_p(x>y) > 0$
• For P_2, we have $a >^\mu b >^\mu c >^\mu a$
 ➢ majority cycle/Condorcet cycle
 ➢ $>^\mu$ is intransitive
• 3 BIG results of voting theory
 ➢ majority cycles
 ➢ Arrow’s impossibility Thm
 ➢ Gibbard-Satterthwaite Thm

Copeland Voting Rule
• Symmetric Copeland Score
 $\text{Cop}(x) = |\{y | x >^\mu y\}| - |\{y | y >^\mu x\}|$

Exercise 1: Do other versions of Copeland score yield the same rule?
1) Intro: Three voting rules

Borda Voting Rule
- Symmetric Borda Score
 \[\beta(x) = \sum_y \text{Net}_p(x>y) \]

Copeland Voting Rule
- Symmetric Copeland Score
 \[\text{Cop}(x) = |\{y|x >_\mu y\}| - |\{y|y >_\mu x\}| \]
- For \(P_2 \), \(\text{Cop}(a) = 1 - 1 = 0 \)
 \(0 = \text{Cop}(b) = \text{Cop}(c) \) **Tie!**

\[\begin{array}{ccc}
 & b & \\
 a & 100 & 102 \\
 & 100 & c \\
\end{array} \]

Cop’d ignores size of margins in pairwise wins/losses **very indecisive**
1) Intro: Three voting rules

Borda Voting Rule
- Symmetric Borda Score
 \[\beta(x) = \sum_y \text{Net}_p(x>y) \]
- Equivalently, weight the +1s, -1s in Copeland score by size of margins

Copeland Voting Rule
- Symmetric Copeland Score
 \[\text{Cop}(x) = |\{y|x >_\mu y\}| - |\{y|y >_\mu x\}| \]
- For \(P_2 \), \(\text{Cop}(a) = 1 - 1 = 0 \)
 \(0 = \text{Cop}(b) = \text{Cop}(c) \) **Tie!**

\[\begin{array}{c}
 a \\
 100 \\
 \text{b} \rightarrow \\
 102 \\
 \text{c} \\
 100 \\
 \text{a} \leftarrow \\
 100
\end{array} \]

Cop’d ignores size of margins in pairwise wins/losses . . . very indecisive
1) Intro: Three voting rules

Borda Voting Rule

- Symmetric Borda Score
 \[\beta(x) = \sum_y \text{Net}_p(x>y) \]
- Equivalently, weight the +1s, -1s in Copeland score by size of margins
- For \(P_2 \), \(\beta(b) = (-100) + (+102) = 2 \), \(\beta(a) = 0 \), \(\beta(c) = -2 \), so b wins.

Copeland Voting Rule

- Symmetric Copeland Score
 \[\text{Cop}(x) = |\{y|x >^\mu y\}| - |\{y|y >^\mu x\}| \]
- For \(P_2 \), \(\text{Cop}(a) = 1 - 1 = 0 \), \(0 = \text{Cop}(b) = \text{Cop}(c) \) Tie!

Cop’d ignores size of margins in pairwise wins/losses . . . very indecisive
1) Intro: Three voting rules

Borda Voting Rule

- Symmetric Borda Score
 \[\beta(x) = \sum_y \text{Net}_P(x>y) \]
- Equivalently, weight the +1s, -1s in Copeland score by size of margins
- For \(P_2 \), \(\beta(b) = (-100) + (+102) = 2 \), \(\beta(a) = 0 \), \(\beta(c) = -2 \), so b wins.
- *The rules we discuss are all distinct – you can learn a lot by constructing profiles for which the winners differ*

Copeland Voting Rule

- Symmetric Copeland Score
 \[\text{Cop}(x) = |\{y| x >^\mu y\}| - |\{y| y >^\mu x\}| \]
- For \(P_2 \), \(\text{Cop}(a) = 1 - 1 = 0 \)
 \(0 = \text{Cop}(b) = \text{Cop}(c) \quad \text{Tie!} \)

\[
\begin{array}{c}
\text{b} \\
\downarrow \\
100 \\
\uparrow \\
\text{a} \\
\downarrow \\
100 \\
\uparrow \\
\text{c} \\
\end{array}
\]

Cop’d ignores size of margins in pairwise wins/losses ... very indecisive
1) Intro: Three voting rules

Borda Voting Rule

- Symmetric Borda Score
 \[\beta(x) = \sum_y \text{Net}_p(x>y) \]
- Equivalently, weight the +1s, -1s in Copeland score by size of margins
- For \(P_2 \), \(\beta(b) = (-100) + (+102) = 2 \), \(\beta(a) = 0 \), \(\beta(c) = -2 \), so b wins.
- *The rules we discuss are all distinct – you can learn a lot by constructing profiles for which the winners differ*

This is **not** the standard definition of Borda Voting Rule

Copeland Voting Rule

- Symmetric Copeland Score
 \[\text{Cop}(x) = |\{y | x > \mu y\}| - |\{y | y > \mu x\}| \]
- For \(P_2 \), \(\text{Cop}(a) = 1 - 1 = 0 \)
 \(0 = \text{Cop}(b) = \text{Cop}(c) \) **Tie!**

Cop’d ignores size of margins in pairwise wins/losses . . . very indecisive
1) Intro: Three voting rules

Borda Voting Rule

- Symmetric Borda Score
 \[\beta(x) = \sum_y \text{Net}_p(x > y) \]
- Equivalently, weight the +1s, -1s in Copeland score by size of margins
- For \(P_2 \), \(\beta(b) = (-100) + (+102) = 2 \), \(\beta(a) = 0 \), \(\beta(c) = -2 \), so b wins.
- The rules we discuss are all distinct – you can learn a lot by constructing profiles for which the winners differ

Scoring Rules

- \(w = (w_1 \geq w_2 \geq \ldots \geq w_m) \) any vector of numerical **scoring weights**, \(w_1 > w_m \)

This is *not* the standard definition of Borda Voting Rule
1) Intro: Three voting rules

Borda Voting Rule

- Symmetric Borda Score
 \[\beta(x) = \sum_y \text{Net}_p(x>y) \]
- Equivalently, weight the +1s, -1s in Copeland score by size of margins
- For \(P_2 \), \(\beta(b) = (-100) + (+102) = 2 \), \(\beta(a) = 0 \), \(\beta(c) = -2 \), so \(b \) wins.
- *The rules we discuss are all distinct – you can learn a lot by constructing profiles for which the winners differ*

Scoring Rules

- \(w = (w_1 \geq w_2 \geq \ldots \geq w_m) \) any vector of numerical *scoring weights*, \(w_1 > w_m \)
- Each voter awards \(w_1 \) points to top candidate in her ranking, \(w_2 \) to 2nd, etc; Winner = highest score total

This is *not* the standard definition of Borda Voting Rule
1) Intro: Three voting rules

Borda Voting Rule

- Symmetric Borda Score
 \[\beta(x) = \sum_y \text{Net}_P(x>y) \]
- Equivalently, weight the +1s, -1s in Copeland score by size of margins
- For \(P_2 \), \(\beta(b) = (-100) + (+102) = 2 \), \(\beta(a) = 0 \), \(\beta(c) = -2 \), so \(b \) wins.
- *The rules we discuss are all distinct – you can learn a lot by constructing profiles for which the winners differ*

This is **not** the standard definition of Borda Voting Rule

Scoring Rules

- \(w = (w_1 \geq w_2 \geq \ldots \geq w_m) \) any vector of numerical **scoring weights**, \(w_1 > w_m \)
- Each voter awards \(w_1 \) points to top candidate in her ranking, \(w_2 \) to 2\(^{nd}\), etc; Winner = highest score total
- Standard Borda weights: \(m-1, m-2, \ldots, 0 \);
 2, 1, 0 for \(m = 3 \)
1) Intro: Three voting rules

Borda Voting Rule

• Symmetric Borda Score
 \[\beta(x) = \sum_y \text{Net}_p(x>y) \]
• Equivalently, weight the +1s, -1s in Copeland score by size of margins
• For \(P_2 \), \(\beta(b) = (-100) + (+102) = 2 \), \(\beta(a) = 0 \), \(\beta(c) = -2 \), so b wins.
• The rules we discuss are all distinct – you can learn a lot by constructing profiles for which the winners differ

This is not the standard definition of Borda Voting Rule

Scoring Rules

• \(w = (w_1 \geq w_2 \geq ... \geq w_m) \) any vector of numerical scoring weights, \(w_1 > w_m \)
• Each voter awards \(w_1 \) points to top candidate in her ranking, \(w_2 \) to 2\(^{nd}\), etc; Winner = highest score total
• Standard Borda weights: \(m-1, m-2, ..., 0 \);
 \(2, 1, 0 \) for \(m = 3 \)
• “Symmetric” Borda wts \(m-1, m-3, ... , -(m-1) \) yield exactly \(\beta(x) \)
1) Intro: Three voting rules

Borda Voting Rule

- Symmetric Borda Score
 \(\beta(x) = \sum_y \text{Net}_p(x>y) \)
- Equivalently, weight the +1s, -1s in Copeland score by size of margins
- For \(P_2 \), \(\beta(b) = (-100) + (+102) = 2 \), \(\beta(a) = 0 \), \(\beta(c) = -2 \), so \(b \) wins.

The rules we discuss are all distinct – you can learn a lot by constructing profiles for which the winners differ

This is not the standard definition of Borda Voting Rule

Scoring Rules

- \(w = (w_1 \geq w_2 \geq \ldots \geq w_m) \) any vector of numerical scoring weights, \(w_1 > w_m \)
- Each voter awards \(w_1 \) points to top candidate in her ranking, \(w_2 \) to 2nd, etc; Winner = highest score total
- Standard Borda weights: \(m-1, m-2, \ldots, 0 \); evenly spaced \(2, 1, 0 \) for \(m = 3 \)
- “Symmetric” Borda wts \(m-1, m-3, \ldots, -(m-1) \) yield exactly \(\beta(x) \)
1) Intro: Three voting rules

Exercise 2

a) Scoring vectors \(w_1, \ldots, w_m \) and \(v_1, \ldots, v_m \) are **affinely equivalent** if there exist constants \(\gamma, \delta \) with \(\gamma > 0 \) and \(v_i = \gamma w_i + \delta \) for each \(i \). Show that
- affinely equivalent vectors induce same voting rule, and
- any two evenly spaced vectors are affinely equivalent.

b) Show symmetric Borda weights yield a total score = \(\beta(x) \).

Scoring Rules

- \(w = (w_1 \geq w_2 \geq \ldots \geq w_m) \) any vector of numerical **scoring weights**, \(w_1 > w_m \)
- Each voter awards \(w_1 \) points to top candidate in her ranking, \(w_2 \) to 2\(^{nd} \), etc; Winner = highest score total
- Standard Borda weights: \(m-1, m-2, \ldots, 0 \); evenly spaced
- “Symmetric” Borda wts \(m-1, m-3, \ldots, -(m-1) \) yield exactly \(\beta(x) \)
2) Social Choice Functions

Goal: select one alternative from a finite set A

1. Each voter (finitely many) casts a ballot

2. Apply some voting rule
2) Social Choice Functions

Goal: select one alternative from a finite set A

1. Each voter (finitely many) casts a ballot
2. Apply some voting rule

But ties are possible!
2) Social Choice Functions

Goal: select one alternative from a finite set A

1. Each voter (finitely many) casts a ballot
2. Apply some voting rule

Alternatives = . . . ?
- candidates for mayor of small town
- € budgets for new firehouse
- Estimates for amount of oil lying beneath a region
- (amend the constitution?) yes or no
- different versions of an immigration reform bill
- committees
2) Social Choice Functions

Goal: select one alternative from a finite set A

1. Each voter (finitely many) casts a ballot

2. Apply some voting rule

A ballot might be . . .
- an individual alternative
- a strict ranking of alternatives

Francine

```
  d
  a
  c
  b
  e
```

linear ordering \(\geq_F \) of \(A = \{a, b, c, d, e\} \)

\(\mathcal{L}(A) \) = the set of all possible linear orderings of \(A \).

\(|\mathcal{L}(A)| = m! \)
2) Social Choice Functions

Goal: select one alternative from a finite set A

1. Each voter (finitely many) casts a ballot

2. Apply some voting rule

A ballot might be . . .
- an individual alternative
- a strict ranking of alternatives
- a weak ranking of alternatives

Ahmed
d, e
c
a, b

$d \geq_A e$ and $e \geq_A d$ both hold, so we say “Ahmed is indifferent to d and $e.”$ But maybe not . . .
2) Social Choice Functions

Goal: select one alternative from a finite set A
1. Each voter (finitely many) casts a ballot
2. Apply some voting rule

A ballot might be . . .
• an individual alternative
• a strict ranking of alternatives
• a weak ranking of alternatives
• yes or no or abstain or ...
• a set of 1 or more alternatives those you “approve” for mayor
• a separate score (1-10) assigned to each alternative
2) Social Choice Functions

Goal: select one alternative from a finite set A

1. Each voter (finitely many) casts a ballot

2. Apply some voting rule

A ballot might be . . .

• an individual alternative
• a strict ranking of alternatives
• a weak ranking of alternatives
• yes or no or abstain or ...
• a set of 1 or more alternatives those you “approve” for mayor
• a separate score (1-10) assigned to each alternative
2) Social Choice Functions

Goal: select one alternative from a finite set A

1. Each voter (finitely many) casts a ballot
2. Apply some voting rule

A ballot might be . . .
- an individual alternative
- a strict ranking of alternatives
- **a weak ranking of alternatives**
- yes or no or abstain or ...
- a set of 1 or more alternatives *those you “approve” for mayor*
- a separate score (1-10) assigned to each alternative
There are many types of voting.

We focus on one type: Social Choice Functions *SCFs*
2) Social Choice Functions

- \(N = \{1, 2, \ldots, n\} \) set of \(n \) voters
- \(A = \) finite set of \(m \) alternatives
- \(C(A) = \{ X \subseteq A \mid X \neq \emptyset \} \)
- \(\geq_j = \) ballot cast by voter \(j \), an element of \(\mathcal{L}(A) \)
- \(P = (\geq_1, \geq_2, \ldots, \geq_n) \in \mathcal{L}(A)^n \) specifies a ballot for each voter \(j \in N \). \(P \) is a profile.
- A **SCF** is a function that assigns, to each election, one winner (or several, if a tie)
 \(f: \mathcal{L}(A)^n \rightarrow C(A) \)
- A SCF with no ties is **resolute**
- A **variable electorate** SCF handles profiles for all finite \(n \)

\[
\mathcal{L}(A)^{<\infty} = \bigcup \{ \mathcal{L}(A)^n \mid n \in \mathbb{N} \}
\]
\(f: \mathcal{L}(A)^{<\infty} \rightarrow C(A) \)
3) A taste of strategic manipulation

Consider profile P_3, in which Ali is one of the last 2 voters.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>e</td>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>e</td>
</tr>
</tbody>
</table>
3) A taste of strategic manipulation

Consider profile P_3, in which Ali is one of the last 2 voters.

Copeland scores are:

Cop(a) = 0
Cop(b) = -2
Cop(c) = 0
Cop(d) = 0
Cop(e) = 2
3) A taste of strategic manipulation

Consider profile P_3, in which Ali is one of the last 2 voters.

Copeland scores are:
- Cop(a) = 0
- Cop(b) = -2
- Cop(c) = 0
- Cop(d) = 0
- Cop(e) = 2*

e loses to d and to no one else
3) A taste of strategic manipulation

Consider profile P_3, in which $P_3 = \begin{array}{ccc} 2 & 3 & 2 \\ e & d & a \\ c & e & b \\ a & b & c \\ d & c & d \\ b & a & e \end{array}$

Ali is one of the last 2 voters.

Copeland scores are:

- $\text{Cop}(a) = 0$
- $\text{Cop}(b) = -2$
- $\text{Cop}(c) = 0$
- $\text{Cop}(d) = 0^*$
- $\text{Cop}(e) = 2$

*d loses to a, c by 4-3

d beats b, e by 5-2
3) A taste of strategic manipulation

Consider profile P_3, in which $P_3 = \begin{array}{ccc} 2 & 3 & 2 \\ e & d & a \\ c & e & b \\ a & b & c \\ d & c & d \\ b & a & e \end{array}$

Ali is one of the last 2 voters.

Copeland scores are:
- Cop(a) = 0
- Cop(b) = -2
- Cop(c) = 0
- Cop(d) = 0
- Cop(e) = 2

*d loses to a, c by 4-3
d beats b, e by 5-2

Ali is . . . unhappy!
3) A taste of strategic manipulation

Consider profile P_3, in which Ali is one of the last 2 voters.

Copeland scores are:

- $\text{Cop}(a) = 0$
- $\text{Cop}(b) = -2$
- $\text{Cop}(c) = 0$
- $\text{Cop}(d) = 0^*$
- $\text{Cop}(e) = 2$

* d loses to a, c by 4-3

 d beats b, e by 5-2

Ali is . . . unhappy!

Before the election, Ali anticipates this bad outcome
3) A taste of strategic manipulation

Consider profile P_3, in which Ali is one of the last 2 voters.

Copeland scores are:

- $\text{Cop}(a) = 0$
- $\text{Cop}(b) = -2$
- $\text{Cop}(c) = 0$
- $\text{Cop}(d) = 0^*$
- $\text{Cop}(e) = 2$

*d loses to a, c by 4-3
d beats b, e by 5-2

Ali is . . . unhappy!

Before the election, Ali anticipates this bad outcome

<table>
<thead>
<tr>
<th>P_3</th>
<th>2</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>d</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

Ali decides to misrepresent her preferences by reversing her ballot: $e \geq d \geq c \geq b \geq a$.
3) A taste of strategic manipulation

Consider profile P_3, in which Ali is one of the last 2 voters. Copeland scores are:

$\text{Cop}(a) = 0$

$\text{Cop}(b) = -2$

$\text{Cop}(c) = 0$

$\text{Cop}(d) = 0^*$

$\text{Cop}(e) = 2$

d loses to a, c by 4-3

d beats b, e by 5-2

Ali is . . . unhappy!

Before the election, Ali anticipates this bad outcome

Now, P_3^*

<table>
<thead>
<tr>
<th>e</th>
<th>d</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>e</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>e</td>
</tr>
</tbody>
</table>

Ali decides to misrepresent her preferences by reversing her ballot: $e \geq d \geq c \geq b \geq a$. Now, P_3^*
3) A taste of strategic manipulation

Consider profile P_3, in which Ali is one of the last 2 voters.

Copeland scores are:

- $\text{Cop}(a) = 0$
- $\text{Cop}(b) = -2$
- $\text{Cop}(c) = 0$
- $\text{Cop}(d) = 0^*$
- $\text{Cop}(e) = 2$

* d loses to a, c by 4-3
 d beats b, e by 5-2

Ali is . . . unhappy!

Before the election, Ali anticipates this bad outcome

In P_3^*, d now beats a, c by 4-3
 d beats b by 6-1; d beats e by 4-3
3) A taste of strategic manipulation

Consider profile P_3, in which Ali is one of the last 2 voters.

Copeland scores are:

- $\text{Cop}(a) = 0$
- $\text{Cop}(b) = -2$
- $\text{Cop}(c) = 0$
- $\text{Cop}(d) = 0^*$
- $\text{Cop}(e) = 2$

*d loses to a, c by 4-3

d beats b, e by 5-2

Ali is . . . unhappy!

Before the election, Ali anticipates this bad outcome

In P_3, d now beats a, c by 4-3

d beats b by 6-1; d beats e by 4-3

d beats everyone else, winning the Copeland election.
3) A taste of strategic manipulation

- By misrepresenting her preferences Ali does better.

<table>
<thead>
<tr>
<th>P₃</th>
<th>2</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>d</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

Ali decides to misrepresent her preferences by reversing her ballot: e ≥ d ≥ c ≥ b ≥ a. Now, P₃*

In P₃*, d now beats a, c by 4-3

d beats b by 6-1; d beats e by 4-3

d beats everyone else, winning the Copeland election.
3) A taste of strategic manipulation

- By misrepresenting her preferences Ali does better – she has *manipulated* the election

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>d</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

Ali decides to misrepresent her preferences by reversing her ballot: \(e \geq d \geq c \geq b \geq a \). Now, \(P_3^* \)

In \(P_3^* \), \(d \) now beats \(a, c \) by 4-3
\(d \) beats \(b \) by 6-1; \(d \) beats \(e \) by 4-3
\(d \) beats everyone else, winning the Copeland election.
3) A taste of strategic manipulation

- By misrepresenting her preferences Ali does better – she has *manipulated* the election
- How much better?

\[P_3 \]

\[
\begin{array}{ccc}
2 & 3 & 2 \\
\hline
e & d & a \\
c & e & b \\
a & b & c \\
d & c & d \\
b & a & e \\
\end{array}
\]

Ali decides to misrepresent her preferences by reversing her ballot: \(e \geq d \geq c \geq b \geq a \). Now, \(P_3^* \)

In \(P_3^* \), \(d \) now beats \(a, c \) by 4-3
\(d \) beats \(b \) by 6-1; \(d \) beats \(e \) by 4-3
\(d \) beats everyone else, winning the Copeland election.
3) A taste of strategic manipulation

- By misrepresenting her preferences Ali does better – she has **manipulated** the election
- How much better?
- We don’t know – cannot extract cardinal utilities from ordinal preferences.

\[P_3 \]

\[\begin{array}{ccc}
 e & d & a \\
 c & e & b \\
 a & b & c \\
 d & c & d \\
 b & a & e \\
\end{array} \]

Ali decides to misrepresent her preferences by reversing her ballot: \(e \geq d \geq c \geq b \geq a \). Now, \(P_3^* \)

In \(P_3^* \), \(d \) now beats \(a \), \(c \) by 4-3

\(d \) beats \(b \) by 6-1; \(d \) beats \(e \) by 4-3

\(d \) beats everyone else, winning the Copeland election.
3) A taste of strategic manipulation

- By misrepresenting her preferences Ali does better – she has *manipulated* the election
- How much better?
- We don’t know – cannot extract cardinal utilities from ordinal preferences.
- In P_3^*, d beats each other alternative in the pairwise majority sense; d is a *Condorcet alternative*

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Ali decides to misrepresent her preferences by reversing her ballot: $e \geq d \geq c \geq b \geq a$. Now, P_3^*

In P_3^, d now beats a, c by 4-3*

d beats b by 6-1; d beats e by 4-3

d beats everyone else, winning the Copeland election. d is a Cond. Alt.
3) A taste of strategic manipulation

• By misrepresenting her preferences Ali does better – she has **manipulated** the election

• How much better?

• We don’t know – cannot extract cardinal utilities from ordinal preferences.

• In P_3^*, d beats each other alternative in the pairwise majority sense; d is a **Condorcet alternative**

• Condorcet’s principle: if x is a Condorcet alternative, it should win

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>d</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P_3

Ali decides to misrepresent her preferences by reversing her ballot: $e \geq d \geq c \geq b \geq a$. Now, P_3^*

In P_3^*, d now beats a, c by 4-3

d beats b by 6-1; d beats e by 4-3

d beats everyone else, winning the Copeland election. d is a Cond. Alt.
3) A taste of strategic manipulation

- By misrepresenting her preferences Ali does better – she has *manipulated* the election.
- How much better?
- We don’t know – cannot extract cardinal utilities from ordinal preferences.
- In P_3^*, d beats each other alternative in the pairwise majority sense; d is a **Condorcet alternative**.
- Condorcet’s principle: if x is a Condorcet alternative,* it should win *might not be any

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>d</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

Ali decides to misrepresent her preferences by reversing her ballot: $e \geq d \geq c \geq b \geq a$. Now, P_3^*

In P_3^, d now beats a, c by 4-3
 *d beats b by 6-1; d beats e by 4-3
 *d beats everyone else, winning the Copeland election. d is a Cond. Alt.
3) A taste of strategic manipulation

- By misrepresenting her preferences Ali does better – she has *manipulated* the election.
- How much better?
- We don’t know – cannot extract cardinal utilities from ordinal preferences.
- In P_3^*, d beats each other alternative in the pairwise majority sense; d is a *Condorcet alternative*
- Condorcet’s principle: if x is a Condorcet alternative,* it should win *might not be any
- A SCF honoring this principle is called a *Condorcet extension*

\[
P_3
\begin{array}{ccc}
 2 & 3 & 2 \\
e & d & a \\
c & e & b \\
a & b & c \\
d & c & d \\
b & a & e \\
\end{array}
\]

Ali decides to misrepresent her preferences by reversing her ballot: $e \geq d \geq c \geq b \geq a$. Now, P_3^*

\[In P_3^*, d now beats a, c by 4-3\]
\[d beats b by 6-1; d beats e by 4-3\]
\[d beats everyone else, winning the Copeland election. d is a Cond. Alt.\]
3) A taste of strategic manipulation

• A SCF honoring this principle is called a **Condorcet extension**

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>e</td>
<td>b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ali decides to misrepresent her preferences by reversing her ballot: e ≥ d ≥ c ≥ b ≥ a. Now, P₃*

In P₃*, d now beats a, c by 4-3

d beats b by 6-1; d beats e by 4-3

d beats everyone else, winning the Copeland election. **d is a Cond. Alt.**
3) A taste of strategic manipulation

- A SCF honoring this principle is called a **Condorcet extension**
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)

\[P_3 \]

\[
\begin{array}{ccc}
2 & 3 & 2 \\
e & d & a \\
c & e & b \\
a & b & c \\
d & c & d \\
b & a & e \\
\end{array}
\]

Ali decides to misrepresent her preferences by reversing her ballot: \(e \geq d \geq c \geq b \geq a \). Now, \(P_3^* \)

In \(P_3^ \), \(d \) now beats \(a, c \) by 4-3

* \(d \) beats \(b \) by 6-1; \(d \) beats \(e \) by 4-3

d beats everyone else, winning the Copeland election. \(d \) is a Cond. Alt.
3) A taste of strategic manipulation

- A SCF honoring this principle is called a **Condorcet extension**
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)
- **News Flash!** Borda, not Copeland, will be used for P_3

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>d</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P_3 matrix:

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ali decides to misrepresent her preferences by reversing her ballot: $e \geq d \geq c \geq b \geq a$. Now, P_3^*

In P_3^*, d now beats a, c by 4-3
d beats b by 6-1; d beats e by 4-3
d beats everyone else, winning the Copeland election. d is a Cond. Alt.
3) A taste of strategic manipulation

- A SCF honoring this principle is called a **Condorcet extension**
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)
- **News Flash!** Borda, not Copeland, will be used for P₃
- Who wins in P₃?

<table>
<thead>
<tr>
<th>P₃</th>
<th>2</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>d</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

Ali decides to misrepresent her preferences by reversing her ballot: e ≥ d ≥ c ≥ b ≥ a. Now, P₃*

In P₃*, d now beats a, c by 4-3

* d beats b by 6-1; d beats e by 4-3

* d beats everyone else, winning the Copeland election. d is a Cond. Alt.
3) A taste of strategic manipulation

- A SCF honoring this principle is called a **Condorcet extension**
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)
- **News Flash!** Borda, not Copeland, will be used for P₃
- **Who wins in P₃?** Still e. (6)ₚ₃

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>d</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ali decides to misrepresent her preferences by reversing her ballot: e ≥ d ≥ c ≥ b ≥ a. Now, P₃*

In P₃*, d now beats a, c by 4-3
d beats b by 6-1; d beats e by 4-3
D beats everyone else, winning the Copeland election. d is a Cond. Alt.
3) A taste of strategic manipulation

- A SCF honoring this principle is called a **Condorcet extension**
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)

- **News Flash!** Borda, not Copeland, will be used for \(P_3 \)
- Who wins in \(P_3 \)? Still e. \((6)_{sym}\)
- Who wins in \(P_3^* \)?

\[
\begin{array}{ccc}
2 & 3 & 2 \\
e & d & a \\
c & e & b \\
a & b & c \\
d & c & d \\
b & a & e \\
\end{array}
\]

Ali decides to misrepresent her preferences by reversing her ballot: \(e \geq d \geq c \geq b \geq a \). Now, \(P_3^* \)

- In \(P_3^* \), \(d \) now beats \(a, c \) by 4-3
- \(d \) beats \(b \) by 6-1; \(d \) beats \(e \) by 4-3
- \(d \) beats everyone else, winning the Copeland election. \(d \) is a Cond. Alt.
3) A taste of strategic manipulation

- A SCF honoring this principle is called a **Condorcet extension**
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)
- **News Flash!** Borda, not Copeland, will be used for P₃
- Who wins in P₃? Still e. \((6)_{\text{sym}}\)
- Who wins in P₃*? Still e. \((14)\)

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>d</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>a</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Ali decides to misrepresent her preferences by reversing her ballot: \(e \geq d \geq c \geq b \geq a\). Now, P₃*

In P₃*, d now beats a, c by 4-3

d beats b by 6-1; d beats e by 4-3

d beats everyone else, winning the Copeland election. **d is a Cond. Alt.**
3) A taste of strategic manipulation

- A SCF honoring this principle is called a **Condorcet extension**
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)
- **News Flash!** Borda, not Copeland, will be used for P_3
- Who wins in P_3? Still e. $(6)_{sym}$
- Who wins in P_3^*? Still e. (14)
- Is Borda a Condorcet Ext’n?

\[
\begin{array}{ccc}
\text{e} & \text{d} & \text{a} \\
\text{c} & \text{e} & \text{b} \\
\text{a} & \text{b} & \text{c} \\
\text{d} & \text{c} & \text{d} \\
\text{b} & \text{a} & \text{e} \\
\end{array}
\]

Ali decides to misrepresent her preferences by reversing her ballot: \(e \geq d \geq c \geq b \geq a \). Now, P_3^*

In P_3^*, \(d \) now beats \(a, c \) by 4-3

\(d \) beats \(b \) by 6-1; \(d \) beats \(e \) by 4-3

\(d \) beats everyone else, winning the Copeland election. \(d \) is a Cond. Alt.
3) A taste of strategic manipulation

- A SCF honoring this principle is called a **Condorcet extension**
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)

News Flash! Borda, not Copeland, will be used for P_3

Who wins in P_3? Still e. (6)$_{sym}$

Who wins in P_3? Still e. (14)

Is Borda a Condorcet Extn’? no!

EXERCISE 3 Show Borda can never be manipulated via reversal

<table>
<thead>
<tr>
<th>Borda</th>
<th>Copeland</th>
<th>Win</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>e</td>
</tr>
</tbody>
</table>

Ali decides to misrepresent her preferences by reversing her ballot: $e \geq d \geq c \geq b \geq a$. Now, P_{3^*}

In P_{3^*}, d now beats a, c by 4-3

d beats b by 6-1; d beats e by 4-3

d beats everyone else, winning the Copeland election. d is a Cond. Alt.
3) A taste of strategic manipulation

- A SCF honoring this principle is called a **Condorcet extension**
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)

News Flash! Borda, not Copeland, will be used for P_3
- Who wins in P_3? Still e. ($6)_{sym}$
- Who wins in P_3^*? Still e. (14)

Is Borda a Condorcet Ext’n? no!

EXERCISE 3 Show Borda can never be manipulated via reversal

- In P_3, can Ali manip’te Borda?

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>d</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

Ali decides to misrepresent her preferences by reversing her ballot: $e \geq d \geq c \geq b \geq a$. Now, P_3^*

In P_3^*, d now beats a, c by 4-3
- d beats b by 6-1; d beats e by 4-3
- d beats everyone else, winning the Copeland election. d is a Cond. Alt.
3) A taste of strategic manipulation

- A SCF honoring this principle is called a **Condorcet extension**
- Copeland Rule is a Cond. Extn. (A Cond. Alt. uniquely gets the max poss. Copeland score m-1)
- **News Flash!** Borda, not Copeland, will be used for P_3
- Who wins in P_3? Still e. ($6)_{sym}$
- Who wins in P_3^*? Still e. (14)
- Is Borda a Condorcet Ext’n? **no!**

EXERCISE 3 Show Borda can never be manipulated via reversal

- In P_3, can Ali manip’te Borda?
- Yes: lift d to top, push others down. $e: (6)$ $d: (4)\rightarrow (10)$

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td></td>
<td>d</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>

P_3

Ali decides to misrepresent her preferences by reversing her ballot: $e \geq d \geq c \geq b \geq a$. Now, P_3^*

In P_3^*, d now beats a, c by 4-3

d beats b by 6-1; d beats e by 4-3

d beats everyone else, winning the Copeland election. d is a Cond. Alt.
3) A taste of strategic manipulation

Definition An SCF \(f \) is *single-voter manipulable* if \(\exists \) profiles \(P, P^* \) and voter \(v \) s.t. \(f(P^*) >_v f(P) \), where \(P^* \) is obtained from \(P \) by having \(v \) alone switch ballots from \(\geq_v \) to \(\geq_{v^*} \), *with no ties in \(f(P) \) or \(f(P^*) \)*.
3) A taste of strategic manipulation

Definition An SCF f is *single-voter manipulable* if \exists profiles P, P^* and voter v s.t. $f(P^*) >_v f(P)$, where P^* is obtained from P by having v alone switch ballots from \geq_v to \geq_v^*, *with no ties in* $f(P)$ *or* $f(P^*)$.

Interpretation
- v’s ballot \geq_v in P = his sincere ranking
3) A taste of strategic manipulation

Definition An SCF f is **single-voter manipulable** if \exists profiles P, P^* and voter v s.t. $f(P^*) >_v f(P)$, where P^* is obtained from P by having v alone switch ballots from \geq_v to \geq_v^*, *with no ties in $f(P)$ or $f(P^*)$*

Interpretation

- v’s ballot \geq_v in $P =$ his sincere ranking
- v’s ballot \geq_v^* in $P^* =$ an insincere ranking (manip. attempt)
3) A taste of strategic manipulation

Definition An SCF f is *single-voter manipulable* if \exists profiles P, P^* and voter v s.t. $f(P^*) \succ_v f(P)$, where P^* is obtained from P by having v alone switch ballots from \succeq_v to \succeq_v^*, *with no ties in* $f(P)$ *or* $f(P^*)$.

Interpretation
- v’s ballot \succeq_v in $P =$ his sincere ranking
- v’s ballot \succeq_v^* in P^* = an insincere ranking (manip. attempt)
- $f(P^*) \succ_v f(P)$?
3) A taste of strategic manipulation

Definition An SCF f is *single-voter manipulable* if \exists profiles P, P^* and voter v s.t. $f(P^*) >_v f(P)$, where P^* is obtained from P by having v alone switch ballots from \geq_v to \geq_{v^*}, *with no ties in $f(P)$ or $f(P^*)*

Interpretation

- v’s ballot \geq_v in P = his sincere ranking
- v’s ballot \geq_{v^*} in P^* = an insincere ranking (manip. attempt)
- $f(P^*) >_v f(P)$? the attempt succeeds: according to his sincere ranking \geq_v, he strictly prefers outcome from insincere ballot
3) A taste of strategic manipulation

Definition An SCF \(f \) is *single-voter manipulable* if \(\exists \) profiles \(P, P^* \) and voter \(v \) s.t. \(f(P^*) >_v f(P) \), where \(P^* \) is obtained from \(P \) by having \(v \) alone switch ballots from \(\succeq_v \) to \(\succeq_v^* \), *with no ties in \(f(P) \) or \(f(P^*) \)*

Interpretation

- \(v \)'s ballot \(\succeq_v \) in \(P \) = his sincere ranking
- \(v \)'s ballot \(\succeq_v^* \) in \(P^* \) = an insincere ranking (manip. attempt)
- \(f(P^*) >_v f(P) \) ? the attempt succeeds

What goes wrong with ties?
3) A taste of strategic manipulation

Definition An SCF f is *single-voter manipulable* if \exists profiles P, P^* and voter v s.t. $f(P^*) >_v f(P)$, where P^* is obtained from P by having v alone switch ballots from \geq_v to \geq_v^*, *with no ties in $f(P)$ or $f(P^*)*

Interpretation

- v’s ballot \geq_v in P = his sincere ranking
- v’s ballot \geq_v^* in P^* = an insincere ranking (manip. attempt)
- $f(P^*) >_v f(P)$? the attempt succeeds

What goes wrong with ties?

- Say $a \geq_v b \geq_v c$
3) A taste of strategic manipulation

Definition An SCF f is *single-voter manipulable* if \exists profiles P, P^* and voter v s.t. $f(P^*) \succ_v f(P)$, where P^* is obtained from P by having v alone switch ballots from \succeq_v to \succeq_v^*, *with no ties in* $f(P)$ or $f(P^*)$.

Interpretation

- v’s ballot \succeq_v in P = his sincere ranking
- v’s ballot \succeq_v^* in P^* = an insincere ranking (manip. attempt)
- $f(P^*) \succ_v f(P)$? the attempt succeeds

What goes wrong with ties?

- Say $a \succeq_v b \succeq_v c$
- $f(P) = \{a, c\}$, $f(P^*) = \{b\}$
3) A taste of strategic manipulation

Definition An SCF f is *single-voter manipulable* if ∃ profiles P, P* and voter v s.t. f(P*) >_v f(P), where P* is obtained from P by having v alone switch ballots from ≥_v to ≥_v*, with no ties in f(P) or f(P*)

Interpretation
- v’s ballot ≥_v in P = his sincere ranking
- v’s ballot ≥_v* in P* = an insincere ranking (manip. attempt)
- f(P*) >_v f(P)? the attempt succeeds

What goes wrong with ties?
- Say a ≥_v b ≥_v c
- f(P) = {a,c}, f(P*) = {b}
- Does he prefer b alone to an a-c tie? It depends!
3) A taste of strategic manipulation

Definition An SCF \(f \) is *single-voter manipulable* if \(\exists \) profiles \(P, P^* \) and voter \(v \) s.t. \(f(P^*) >_v f(P) \), where \(P^* \) is obtained from \(P \) by having \(v \) alone switch ballots from \(\geq_v \) to \(\geq_v^* \), *with no ties in \(f(P) \) or \(f(P^*) \)*

Interpretation
- \(v^* \)'s ballot \(\geq_v \) in \(P \) = his sincere ranking
- \(v^* \)'s ballot \(\geq_v^* \) in \(P^* \) = an insincere ranking (manip. attempt)
- \(f(P^*) >_v f(P) \)? the attempt succeeds

What goes wrong with ties?

If a rule always yields ties, it is never s-v manipulable

- Say \(a \geq_v b \geq_v c \)
- \(f(P) = \{a,c\}, f(P^*) = \{b\} \)
- Does he prefer \(b \) alone to an \(a-c \) tie? It depends!
4) The GST: Gibbard-Satterthwaite Theorem and Arrow’s Impossibility Theorem
4a) The GST: Gibbard-Satterthwaite Theorem

Theorem (Alan Gibbard, Mark Satterthwaite)
Let f be any SCF for three or more alternatives.

If f is:

- resolute
- nonimposed
- and strategyproof

then f must be a dictatorship
4a) The GST: Gibbard-Satterthwaite Theorem

Theorem (Alan Gibbard, Mark Satterthwaite)
Let f be any SCF for three or more alternatives.

If f is:
- resolute – unique winner for each profile
- nonimposed
- and strategyproof

then f must be a dictatorship
4a) The GST: Gibbard-Satterthwaite Theorem

Theorem (Alan Gibbard, Mark Satterthwaite)
Let f be any SCF for three or more alternatives.

If f is:
- resolute \quad – unique winner for each profile
- nonimposed \quad – for each alternative x, $\exists P \, f(P) = \{x\}$
- and strategyproof

then f must be a dictatorship
4a) The GST: Gibbard-Satterthwaite Theorem

Theorem (Alan Gibbard, Mark Satterthwaite)

Let f be any SCF for three or more alternatives.

If f is:

- resolute — unique winner for each profile
- nonimposed — for each alternative x, $\exists P : f(P) = \{x\}$
- and strategyproof — not single-voter manipulable

then f must be a dictatorship
4a) The GST: Gibbard-Satterthwaite Theorem

Theorem (Alan Gibbard, Mark Satterthwaite)
Let f be any SCF for three or more alternatives.

If f is:
- **resolute** – unique winner for each profile
- **nonimposed** – for each alternative x, \(\exists P f(P) = \{x\} \)
- **and strategyproof** – not single-voter manipulable

then f must be a dictatorship – winner is dictator’s top-ranked alternative
4a) The GST: Gibbard-Satterthwaite Theorem

Theorem (Alan Gibbard, Mark Satterthwaite)
Let f be any SCF for three or more alternatives.

If f is:
- resolute
- nonimposed
- and strategyproof

then f must be a dictatorship

Equivalently . . . If f is a SCF for 3 or more, then resolute + nonimposed + nondictatorial \Rightarrow manipulable
4a) The GST: Gibbard-Satterthwaite Theorem

Theorem (Alan Gibbard, Mark Satterthwaite)
Let f be any SCF for three or more alternatives.

If f is:
- resolute
- nonimposed
- and strategyproof

then f must be a dictatorship

Question: are each of the 4 assumptions necessary?

Equivalently . . . If f is a SCF for 3 or more, then resolute + nonimposed + nondictatorial \Rightarrow manipulable
4a) The GST: Gibbard-Satterthwaite Theorem

Theorem (Alan Gibbard, Mark Satterthwaite)
Let f be any SCF for **three or more alternatives**.

If f is:
- resolute
- nonimposed
- and strategyproof

then f must be a dictatorship

Equivalently . . . If f is a SCF for 3 or more, then resolute + nonimposed + nondictatorial \Rightarrow manipulable

Question: are each of the 4 assumptions necessary?
4b) Arrow’s Impossibility Theorem

Theorem (Kenneth Arrow) Let \(f \) be any Social Welfare Function (SWF) for **three or more alternatives**.

Social Welfare Function
- Ballots are linear orders of \(A \) (as before), . . .
- but the outcome \(F(P) \) of an election is a weak order of \(A \)
4b) Arrow’s Impossibility Theorem

Theorem (Kenneth Arrow) Let f be any Social Welfare Function (SWF) for three or more alternatives.

If f satisfies:

- the weak Pareto property for SWFs
- and independence of irrelevant alternatives “IIA”

then f must be a dictatorship.

Social Welfare Function

- Ballots are linear orders of A (as before), . . .
- but the outcome F(P) of an election is a weak order of A
4b) Arrow’s Impossibility Theorem

Theorem (Kenneth Arrow) Let f be any Social Welfare Function (SWF) for three or more alternatives.

If f satisfies:

- the weak Pareto property for SWFs
- and independence of irrelevant alternatives “IIA”

then f must be a dictatorship.

Social Welfare Function

- Ballots are linear orders of A (as before), . . .
- but the outcome $F(P)$ of an election is a weak order of A

A SWF F satisfies the Weak Pareto property if

- whenever each voter i ranks $x >_i y$,
- the outcome under F has $x > y$
4b) Arrow’s Impossibility Theorem

Theorem (Kenneth Arrow) Let \(f \) be any Social Welfare Function (SWF) for **three or more alternatives**.

If \(f \) satisfies:

- the weak Pareto property for SWFs
- and independence of irrelevant alternatives “IIA”

then \(f \) must be a dictatorship.

Social Welfare Function

- Ballots are linear orders of \(A \) (as before), . . .
- but the outcome \(F(P) \) of an election is a weak order of \(A \)

A SWF \(F \) satisfies the **Weak Pareto property** if

- whenever each voter \(i \) ranks \(x >_i y \), \(F \) respects unanimity in strict preferences
- the outcome under \(F \) has \(x > y \)
4b) Arrow’s Impossibility Theorem

Theorem (Kenneth Arrow) Let f be any Social Welfare Function (SWF) for **three or more alternatives**.

If f satisfies:

- the weak Pareto property for SWFs
- and independence of irrelevant alternatives “**IIA**”

then f must be a dictatorship.

A SWF F satisfies **IIA** if

- for each pair x, y of alternatives
- the relative ranking of x VS y in the outcome F(P)
- depends only on the relative ranking of x VS y in the ballots
4b) Arrow’s Impossibility Theorem

<table>
<thead>
<tr>
<th>Example P</th>
<th>Robert</th>
<th>Sandra</th>
<th>Dieter</th>
<th>Pablo</th>
<th>Mei-Ling</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>y</td>
<td>y</td>
<td>y</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>
4b) Arrow’s Impossibility Theorem

<table>
<thead>
<tr>
<th>Example P</th>
<th>Robert</th>
<th>Sandra</th>
<th>Dieter</th>
<th>Pablo</th>
<th>Mei-Ling</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P*</th>
<th>Robert</th>
<th>Sandra</th>
<th>Dieter</th>
<th>Pablo</th>
<th>Mei-Ling</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
4b) **Arrow’s Impossibility Theorem**

<table>
<thead>
<tr>
<th>Example P</th>
<th>Robert</th>
<th>Sandra</th>
<th>Dieter</th>
<th>Pablo</th>
<th>Mei-Ling</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P*</th>
<th>Robert</th>
<th>Sandra</th>
<th>Dieter</th>
<th>Pablo</th>
<th>Mei-Ling</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

P \mapsto P*: no individual voter changes **relative** ranking of x VS y.
4b) Arrow’s Impossibility Theorem

<table>
<thead>
<tr>
<th>Example P</th>
<th>Robert</th>
<th>Sandra</th>
<th>Dieter</th>
<th>Pablo</th>
<th>Mei-Ling</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P*</th>
<th>Robert</th>
<th>Sandra</th>
<th>Dieter</th>
<th>Pablo</th>
<th>Mei-Ling</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

P \mapsto P*: no individual voter changes **relative** ranking of x VS y. So IIA says “If F(P) = x > y > a > b > c then F(P*) must have x > y”
4b) Arrow’s **Impossibility** Theorem

Theorem (Kenneth Arrow) Let f be any Social Welfare Function (SWF) for three or more alternatives.

If f satisfies:

- the weak Pareto property for SWFs
- and independence of irrelevant alternatives “IIA”

then f must be a dictatorship.
4b) Arrow’s **Impossibility** Theorem

Theorem (Kenneth Arrow) Let \(f \) be any Social Welfare Function (SWF) for **three or more alternatives**.

If \(f \) satisfies:

- the weak Pareto property for SWFs
- and independence of irrelevant alternatives “\(\text{IIA} \)”

then \(f \) must be a dictatorship.

Equivalently . . . **No** SWF for 3 or more alternatives satisfies weak Pareto + \(\text{IIA} \) + nondictatoriality
5) Axioms I Pareto property, anonymity, neutrality

- A profile of 201 voters

- A profile of 201 voters

- A profile of 201 voters

- A profile of 201 voters
5) Axioms I Pareto property, anonymity, neutrality

- A profile of 201 voters
- For the moment, only top choices visible
5) Axioms I Pareto property, anonymity, neutrality

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
5) Axioms I Pareto property, anonymity, neutrality

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
- Argument for b is stronger than “b is the plurality winner” . . .
5) Axioms I Pareto property, anonymity, neutrality

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
- Argument for b is stronger than “b is the plurality winner” . . .

WHY?
5) Axioms I Pareto property, anonymity, neutrality

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
- Argument for b is stronger than “b is the plurality winner” . . .

WHY?

Majoritarian Principle
5) Axioms I Pareto property, anonymity, neutrality

• A profile of 201 voters

• For the moment, only top choices visible

• Based on this limited info, \textcolor{orange}{b} wins

• We see the hidden info

\begin{align*}
101 & & 100 \\
\text{b} & & \text{a} \\
\text{a} & & \text{d} \\
\text{c} & & \text{e} \\
\text{d} & & \text{f} \\
\text{e} & & \text{b} \\
\text{f} & & \text{c}
\end{align*}
5) Axioms I Pareto property, anonymity, neutrality

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, \(b \) wins
- We see the hidden info
- Should \(b \) still win?

\[
\begin{array}{c|c|c}
101 & 100 \\
\hline
b & a \\
\hline
a & d \\
\hline
c & e \\
\hline
d & f \\
\hline
e & b \\
\hline
f & c \\
\end{array}
\]
5) Axioms I Pareto property, anonymity, neutrality

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, \textbf{b} wins
- We see the hidden info
- Should \textbf{b} still win?
- Or should it be \textbf{a}?
5) Axioms I Pareto property, anonymity, neutrality

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, **b** wins
- We see the hidden info
- Should **b** still win? **hands**
- Or should it be **a**?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>
5) Axioms I Pareto property, anonymity, neutrality

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
- We see the hidden info
- Should b still win? **hands**
- Or should it be a? **hands**
5) Axioms I Pareto property, anonymity, neutrality

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, b wins
- We see the hidden info
- Should b still win? hands
- Or should it be a? hands

b is Condorcet alt, so b wins
Copeland
5) Axioms I Pareto property, anonymity, neutrality

• A profile of 201 voters
• For the moment, only top choices visible
• Based on this limited info, b wins
• We see the hidden info
• Should b still win? hands
• Or should it be a? hands

b is Condorcet alt, so b wins
Copeland

a is Borda winner. . . Borda
“favors compromise over Maj.”
5) Axioms I Pareto property, anonymity, neutrality

- A profile of 201 voters
- For the moment, only top choices visible
- Based on this limited info, \(b \) wins
- We see the hidden info
- Should \(b \) still win? hands
- Or should it be \(a \)? hands

\(b \) is Condorcet alt, so \(b \) wins
\(a \) is Borda winner. . . Borda
“favors compromise over Maj.”
5) Axioms I Pareto property, anonymity, neutrality

• A profile of 201 voters

• Someone says it is c, not a or b, who should win
5) Axioms I Pareto property, anonymity, neutrality

• A profile of 201 voters

• Someone says it is c, not a or b, who should win

• Counterargument is ... ?
5) Axioms I Pareto property, anonymity, neutrality

• A profile of 201 voters
• Someone says it is c, not a or b, who should win
• Counterargument is ... ?
5) Axioms I Pareto property, anonymity, neutrality

- A profile of 201 voters
- Someone says it is c, not a or b, who should win?
- Counterargument is ...
- Every voter prefers b to c

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>a</td>
<td></td>
<td>c</td>
<td></td>
<td>e</td>
<td>f</td>
</tr>
</tbody>
</table>
5) Axioms I Pareto property, anonymity, neutrality

- A profile of 201 voters
- Someone says it is c, not a or b, who should win
- Counterargument is ... ?
- Every voter prefers b to c
- c is “Pareto dominated” by b
5) Axioms I Pareto property, anonymity, neutrality

- A profile of 201 voters
- Someone says it is c, not a or b, who should win
- Counterargument is ... ?
- Every voter prefers b to c
- c is “Pareto dominated” by b

Axiom An SCF f satisfies the **Pareto Principle** if f(P) never includes a Pareto dominated alternative
5) Axioms I Pareto property, anonymity, neutrality

Easy Theorem: *Pareto Principle* is satisfied by
- Plurality rule
- Borda
- Copeland

\[
\begin{array}{cccc}
\text{101} & \text{100} \\
b & a \\
a & d \\
c & e \\
d & f \\
e & b \\
f & c \\
\end{array}
\]
5) Axioms I Pareto property, anonymity, neutrality

Easy Theorem: Pareto Principle is satisfied by

- Plurality rule
- Borda
- Copeland

(And by most “reasonable” SCFs)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>f</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>f</td>
<td></td>
<td>c</td>
</tr>
</tbody>
</table>
5) Axioms I Pareto property, anonymity, neutrality

Easy Theorem: *Pareto Principle* is satisfied by

- Plurality rule
- Borda
- Copeland

(And by most “reasonable” SCFs)

Pareto implies that winner for this 201-vote profile is *a* or *b*
5) Axioms I Pareto property, anonymity, neutrality

Assume the winner for this profile is a.

<table>
<thead>
<tr>
<th></th>
<th>101</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>f</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>b</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>c</td>
</tr>
</tbody>
</table>
5) Axioms I Pareto property, anonymity, neutrality

Assume the winner for this profile is a.

- Anna is a type I voter (among 1st group of 101);
 Stevo is type II

<table>
<thead>
<tr>
<th></th>
<th>101</th>
<th></th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>d</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td>f</td>
<td></td>
<td>f</td>
</tr>
<tr>
<td>e</td>
<td>b</td>
<td></td>
<td>c</td>
</tr>
</tbody>
</table>
5) Axioms I Pareto property, anonymity, neutrality

Assume the winner for this profile is a.

- Anna is a type I voter (among 1st group of 101);
- Stevo is type II
- Anna is convinced by Sara to change her ballot to type II.
5) Axioms I Pareto property, anonymity, neutrality

Assume the winner for this profile is a.

- Anna is a type I voter (among 1st group of 101);
 Stevo is type II
- Anna is convinced by Sara to change her ballot to type II.
- At same time Stevo is convinced to change his ballot to type I
5) Axioms I Pareto property, anonymity, neutrality

Assume the winner for this profile is a.

- Anna is a type I voter (among 1st group of 101);
- Stevo is type II
- Anna is convinced by Sara to change her ballot to type II.
- At same time Stevo is convinced to change his ballot to type I

After both switches, how should outcome change?
5) Axioms I Pareto property, anonymity, neutrality

Assume the winner for this profile is **a**.

<table>
<thead>
<tr>
<th></th>
<th>101</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

- Anna is a type **I** voter (among 1st group of 101);
- Stevo is type **II**

- Anna is convinced by Sara to change her ballot to type **II**.

- At same time Stevo is convinced to change his ballot to type **I**

After both switches, how should outcome change? It depends!
5) Axioms I Pareto property, anonymity, neutrality

Assume the winner for this profile is a.

• Anna is a type I voter (among 1st group of 101);
 Stevo is type II

• Anna is convinced by Sara to change her ballot to type II.

• At same time Stevo is convinced to change his ballot to type I

After both switches, how should outcome change?
It depends! In some contexts, not at all.
5) Axioms I Pareto property, anonymity, neutrality

Axiom An SCF \(f \) is *anonymous* if each pair of voters play interchangeable roles:
\[f(P) = f(P^*) \]
whenever \(P^* \) is obtained from \(P \) by swapping ballots of 2 voters.

After both switches, how should outcome change? It depends! In some contexts, *not at all.*
5) Axioms I Pareto property, anonymity, neutrality

Axiom An SCF \(f \) is **anonymous** if each pair of voters play interchangeable roles:
\[f(P) = f(P^*) \text{ whenever } P^* \text{ is obtained from } P \text{ by swapping ballots of } 2 \text{ voters.} \]

Math This says \(f(P) = f(\tau P) \) for each **transposition** \(\tau \) of voters.

Transpositions generate the full symmetric group. So \(f(P) = f(\sigma P) \) for each **permutation** \(\sigma \) of the set \(N \) of voters.
5) Axioms I Pareto property, anonymity, neutrality

Axiom An SCF f is *anonymous* if each pair of voters play interchangeable roles: $f(P) = f(P^*)$ whenever P^* is obtained from P by swapping ballots of 2 voters.

Anonymity is a very *strong* form of equal influence by voters. Non-dictatoriality is a very *weak* form.

Math This says $f(P) = f(\tau P)$ for each *transposition* τ of voters.

Transpositions generate the full symmetric group. So $f(P) = f(\sigma P)$ for each *permutation* σ of the set N of voters.
5) Axioms I Pareto property, anonymity, neutrality

Again, assume the winner for this profile is a.

<table>
<thead>
<tr>
<th>101</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td>f</td>
</tr>
<tr>
<td>e</td>
<td>b</td>
</tr>
<tr>
<td>f</td>
<td>c</td>
</tr>
</tbody>
</table>
5) Axioms I Pareto property, anonymity, neutrality

Again, assume the winner for this profile is a.

• This time, switch candidate a with candidate f (in all ballots)
5) Axioms I Pareto property, anonymity, neutrality

Again, assume the winner for this profile is \textbf{a}.

- This time, switch \textit{candidate} \textbf{a} with \textit{candidate} \textbf{f} (in all ballots)
5) Axioms I Pareto property, anonymity, neutrality

Again, assume the winner for this profile is \textbf{a}.

- This time, switch \textit{candidate} \textbf{a} with \textit{candidate} \textbf{f} (in all ballots)

\begin{tabular}{cc}
101 & 100 \\
b & f \\
f & d \\
c & e \\
d & a \\
e & b \\
a & c \\
\end{tabular}
5) Axioms I Pareto property, anonymity, neutrality

Again, assume the winner for this profile is \textbf{a}.

- This time, switch \textit{candidate} a with \textit{candidate} f (in all ballots)
- After the switches, how should outcome change?

<table>
<thead>
<tr>
<th></th>
<th>101</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>e</td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>a</td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td>c</td>
</tr>
</tbody>
</table>
5) Axioms I Pareto property, anonymity, neutrality

Again, assume the winner for this profile is \textbf{a}.

- This time, switch \textit{candidate} a with \textit{candidate} f (in all ballots)
- After the switches, how should outcome change?
- Assume the voting rule treats candidates equivalently.

<table>
<thead>
<tr>
<th></th>
<th>101</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>d</td>
<td>e</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>
5) Axioms I Pareto property, anonymity, neutrality

<table>
<thead>
<tr>
<th></th>
<th>101</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>f</td>
</tr>
<tr>
<td>b</td>
<td>f</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>e</td>
<td>a</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>b</td>
</tr>
<tr>
<td>e</td>
<td>a</td>
<td>c</td>
</tr>
</tbody>
</table>

Again, assume the winner for this profile is **a**.

- This time, switch *candidate* a with *candidate* f (in all ballots)
- After the switches, how should outcome change?
- Assume the voting rule treats candidates equivalently.
- **f** should win, post switch
5) Axioms I Pareto property, anonymity, neutrality

Again, assume the winner for this profile is \textbf{a}.

- This time, switch \textit{candidate} a with \textit{candidate} f (in all ballots)
- After the switches, how should outcome change?
- Assume the voting rule treats candidates equivalently.

\hspace{1cm} \textbf{Axiom} An SCF f is \textit{neutral} if each pair of candidates play interchangeable roles.

- \textbf{f} should win, post switch
5) Axioms I Pareto property, anonymity, neutrality

Again, assume the winner for this profile is a.

- This time, switch *candidate* a with *candidate* f (in all ballots)
- After the switches, how should outcome change?
- Assume the voting rule treats candidates equivalently.
- f should win, post switch

Axiom An SCF f is *neutral* if each pair of candidates play interchangeable roles:
$$f(P^\tau) = \tau[f(P)]$$

whenever P^τ is obtained from P by swapping 2 alternatives in all ballots.
5) Axioms I Pareto property, anonymity, neutrality

Axiom An SCF f is *anonymous* if each pair of voters play interchangeable roles: $f(P) = f(P^*)$ whenever P^* is obtained from P by swapping ballots of 2 voters.

Axiom An SCF f is *neutral* if each pair of candidates play interchangeable roles: $f(P^\tau) = \tau[f(P)]$ whenever P^τ is obtained from P by swapping 2 alternatives in all ballots.
5) Axioms I Pareto property, anonymity, neutrality

Axiom An SCF \(f \) is **anonymous** if each pair of voters play interchangeable roles: \(f(P) = f(P^*) \) whenever \(P^* \) is obtained from \(P \) by swapping ballots of 2 voters.

Axiom An SCF \(f \) is **neutral** if each pair of candidates play interchangeable roles: \(f(P^{\tau}) = \tau[f(P)] \) whenever \(P^{\tau} \) is obtained from \(P \) by swapping 2 alternatives in all ballots.

Again, we can replace \(\tau \) with \(\sigma \): \(f(P^\sigma) = \sigma^{-1}[f(P)] \)

Why use *inverse* of \(\sigma \)?
5) Axioms I Pareto property, anonymity, neutrality

• These three axioms are easy to satisfy: many rules satisfy all of them
5) Axioms I Pareto property, anonymity, neutrality

- These three axioms are easy to satisfy: many rules satisfy all of them
- But they already show

 you can’t always get what you want
5) Axioms I Pareto property, anonymity, neutrality

• These three axioms are easy to satisfy: many rules satisfy all of them

• But they already show

you can’t always get what you want And certainly, the GST and Arrow’s Theorem show this
5) Axioms I Pareto property, anonymity, neutrality

• These three axioms are easy to satisfy: many rules satisfy all of them

• But they already show *you can’t always get what you want*

• Together, they have negative implications for resoluteness
5) Axioms I Pareto property, anonymity, neutrality

• These three axioms are easy to satisfy: many rules satisfy all of them

• But they already show you can’t always get what you want

• Together, they have negative implications for resoluteness

• A profile for 3k voters, m alternatives
5) **Axioms I** Pareto property, anonymity, neutrality

- These three axioms are easy to satisfy: many rules satisfy all of them.
- But they already show *you can’t always get what you want*
- Together, they have negative implications for resoluteness
- A profile for 3k voters, m alternatives

<table>
<thead>
<tr>
<th></th>
<th>k</th>
<th></th>
<th>k</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>c</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>b</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>x₁</td>
<td>x₁</td>
<td></td>
<td>x₁</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xₘ₋₂</td>
<td>xₘ₋₂</td>
<td></td>
<td>xₘ₋₂</td>
<td></td>
</tr>
</tbody>
</table>
5) Axioms I Pareto property, anonymity, neutrality

• These three axioms are easy to satisfy: many rules satisfy all of them

 \[
 \begin{array}{ccc}
 k & k & k \\
 a & c & b \\
 b & a & c \\
 c & b & a \\
 x_1 & x_1 & x_1 \\
 \vdots & \vdots & \vdots \\
 x_{m-2} & x_{m-2} & x_{m-2}
 \end{array}
 \]

• But they already show *you can’t always get what you want*

• Together, they have negative implications for resoluteness

• A profile for 3k voters, m alternatives

 We’ll show a 3-way tie is forced
5) **Axioms I** Pareto property, anonymity, neutrality

- Pareto $\implies f(P) \subseteq \{a,b,c\}$

<table>
<thead>
<tr>
<th></th>
<th>k</th>
<th>k</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>x_1</td>
<td>x_1</td>
<td>x_1</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>x_{m-2}</td>
<td>x_{m-2}</td>
<td>x_{m-2}</td>
<td></td>
</tr>
</tbody>
</table>

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

- Pareto $\Rightarrow f(P) \subseteq \{a,b,c\}$

<table>
<thead>
<tr>
<th></th>
<th>k</th>
<th>k</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>x_1</td>
<td>x_1</td>
<td>x_1</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>x_{m-2}</td>
<td>x_{m-2}</td>
<td>x_{m-2}</td>
<td></td>
</tr>
</tbody>
</table>

- WLOG assume $a \in f(P)$

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

- Pareto $\Rightarrow f(P) \subseteq \{a, b, c\}$
- WLOG assume $a \in f(P)$
- First, permute voters

\[
\begin{array}{ccc}
 k & k & k \\
a & c & b \\
b & a & c \\
c & b & a \\
x_1 & x_1 & x_1 \\
\vdots & \vdots & \vdots \\
x_{m-2} & x_{m-2} & x_{m-2}
\end{array}
\]

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

- Pareto $\Rightarrow f(P) \subseteq \{a,b,c\}$
 \[k\quad k\quad k\]

- WLOG assume $a \in f(P)$
 \[a\quad c\quad b\]

- First, permute voters
 \[b\quad a\quad c\]

- ρ: 1st $k \rightarrow$ last $k \rightarrow$ mid k
 \[c\quad b\quad a\]

\[x_1\quad x_1\quad x_1\]
\[\vdots\quad \vdots\quad \vdots\]
\[x_{m-2}\quad x_{m-2}\quad x_{m-2}\]

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

- Pareto ⇒ \(f(P) \subseteq \{a,b,c\} \)

- WLOG assume \(a \in f(P) \)

- First, permute voters

- \(\rho: 1^{st} k \rightarrow \text{last } k \rightarrow \text{mid } k \)

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

- Pareto $\Rightarrow f(P) \subseteq \{a,b,c\}$
- WLOG assume $a \in f(P)$
- First, permute voters
- ρ: 1st k \rightarrow last k \rightarrow mid k
- $f(\rho P) = f(P)$

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

- Pareto \(\Rightarrow f(P) \subseteq \{a,b,c\} \)
- WLOG assume \(a \in f(P) \)
- First, permute voters
- \(\rho: 1^{st} k \rightarrow \text{last } k \rightarrow \text{mid } k \)
- \(f(\rho P) = f(P) \)
- Next, permute alt’s

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

- Pareto ⇒ f(P) ⊆ {a,b,c}
- WLOG assume a ∈ f(P)
- First, permute voters
 ρ: 1st k → last k → mid k
 f(ρP) = f(P)
- Next, permute alt’s
 with σ: c → a → b → c

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

<table>
<thead>
<tr>
<th></th>
<th>k</th>
<th>k</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c a</td>
<td>b c</td>
<td>a b</td>
</tr>
<tr>
<td></td>
<td>a b</td>
<td>c a</td>
<td>b c</td>
</tr>
<tr>
<td></td>
<td>b c</td>
<td>a b</td>
<td>c a</td>
</tr>
<tr>
<td></td>
<td>x₁</td>
<td>x₁</td>
<td>x₁</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>x_{m-2}</td>
<td>x_{m-2}</td>
<td>x_{m-2}</td>
</tr>
</tbody>
</table>

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

- Pareto \Rightarrow $f(P) \subseteq \{a,b,c\}$
- WLOG assume $a \in f(P)$
- First, permute voters
- ρ: 1st k \rightarrow last k \rightarrow mid k
- $f(\rho P) = f(P)$
- Next, permute alt’s
- with σ: c \rightarrow a \rightarrow b \rightarrow c
- $f(P) = f((\rho P)^{\sigma})$

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

• Pareto ⇒ f(P) ⊆ \{a,b,c\}
 \[\begin{array}{ccc} \ \ \ k & \ \ k & \ \ k \end{array} \]

• WLOG assume a ∈ f(P)
 \[\begin{array}{ccc} \ c & a & b \end{array} \]

• First, permute voters
 \[\begin{array}{ccc} \ a & b & c \end{array} \]

• ρ: 1^{st} k → last k → mid k
 \[\begin{array}{ccc} \ b & c & a \end{array} \]

• f(ρP) = f(P)
 \[\begin{array}{ccc} \ x_1 & x_1 & x_1 \end{array} \]

• Next, permute alt’s
 \[\begin{array}{ccc} \ : & : & : \end{array} \]

• with σ: c → a → b → c
 \[\begin{array}{ccc} \ x_{m-2} & x_{m-2} & x_{m-2} \end{array} \]

• f(P) = f((ρP)^{⊙})
 = σ^{-1}[f(ρP)]

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

• Pareto \Rightarrow $f(P) \subseteq \{a,b,c\}$

• WLOG assume $a \in f(P)$

• First, permute voters

• ρ: 1^{st} k \rightarrow last k \rightarrow mid k

• $f(\rho P) = f(P)$

• Next, permute alt’s

• with σ: c \rightarrow a \rightarrow b \rightarrow c

• $f(P) = f((\rho P)^{\circ})$
 $= \sigma^{-1}[f(\rho P)] = \sigma^{-1}[f(P)]$. . . We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

- Pareto \(\Rightarrow f(P) \subseteq \{a, b, c\} \)
- WLOG assume \(a \in f(P) \)
- First, permute voters
- \(\rho: 1^{st} k \rightarrow \text{last } k \rightarrow \text{mid } k \)
- \(f(\rho P) = f(P) \)
- Next, permute alt’s
- with \(\sigma: c \rightarrow a \rightarrow b \rightarrow c \)
- \(f(P) = f((\rho P)^{\sigma}) \)
 \[= \sigma^{-1}[f(\rho P)] = \sigma^{-1}[f(P)] \ldots \]
- So \(f(P) \) is closed under \(\sigma^{-1} \)

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

- Pareto $\Rightarrow f(P) \subseteq \{a, b, c\}$
- WLOG assume $a \in f(P)$
- First, permute voters
- ρ: 1st $k \rightarrow$ last $k \rightarrow$ mid k
- $f(\rho P) = f(P)$
- Next, permute alt’s
- with σ: $c \rightarrow a \rightarrow b \rightarrow c$
- $f(P) = f((\rho P)^{\sigma})$
 $= \sigma^{-1}[f(\rho P)] = \sigma^{-1}[f(P)] \ldots$
- So $f(P)$ is closed under σ^{-1}, so $\{a, b, c\} \subseteq f(P)$

We’ll show a 3-way tie is forced.
5) Axioms I Pareto property, anonymity, neutrality

Assume 5k voters and 5 ≤ m = # alt’s.

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

Assume 5k voters and 5 ≤ m = # alt’s. Get 5-way tie.

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

Assume $5k$ voters and $5 \leq m = \# \text{alt’s.}$ Get 5-way tie.

Assume n (# of voters) is divisible by some $j \leq m$ (# alt’s).

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

Assume $5k$ voters and $5 \leq m = \# \text{alt’s}$. Get 5-way tie.

Assume n (# of voters) is divisible by some $j \leq m$ (# alt’s). Get j-way tie.

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

Assume 5k voters and 5 \leq m = \# alt’s. Get 5-way tie.

Assume n (\# of voters) is divisible by some j \leq m (\# alt’s). Get j-way tie.

Theorem (Moulin) Pareto + anon + neutral + some j \leq m divides n \implies every SCF is irresolute.

We’ll show a 3-way tie is forced
5) Axioms I Pareto property, anonymity, neutrality

Assume 5k voters and $5 \leq m = \# \text{ alt’s.}$. Get 5-way tie.

Assume n (# of voters) is divisible by some $j \leq m$ (# alt’s). Get j-way tie.

Theorem (Moulin) Pareto + anon + neutral + some $j \leq m$ divides $n \Rightarrow$ every SCF is irresolute

To avoid forced ties, n must be relatively prime to every $j \leq m$
5) Axioms I Pareto property, anonymity, neutrality

Assume 5k voters and 5 ≤ m = # alt’s. Get 5-way tie.

Assume n (# of voters) is divisible by some j ≤ m (# alt’s). Get j-way tie.

Theorem (Moulin) Pareto + anon + neutral + some j ≤ m divides n ⇒
every SCF is irresolute

To avoid forced ties, n must be relatively prime to every j ≤ m

Theorem (Moulin) Pareto + anon + neutral + some j ≤ m divides n ⇔
every SCF is irresolute
5) Axioms I Pareto property, anonymity, neutrality

Assume 5k voters and 5 ≤ m = # alt’s. Get 5-way tie.

Assume n (# of voters) is divisible by some j ≤ m (# alt’s). Get j-way tie.

Theorem (Moulin) Pareto + anon + neutral + some j ≤ m divides n ⇒ every SCF is irresolute

Theorem (Moulin) Pareto + anon + neutral + some j ≤ m divides n ⇔ every SCF is irresolute

To avoid forced ties, n must be relatively prime to every j ≤ m

Recent improvements in ⇐ by Dogan & Giritligl
5) Axioms I Pareto property, anonymity, neutrality

In fact, most rules have more ties than are forced by symmetries.

To avoid forced ties, \(n \) must be relatively prime to every \(j \leq m \)

Theorem (Moulin) Pareto + anon + neutral + some \(j \leq m \) divides \(n \) \(\iff \) every SCF is irresolute

Recent improvements in \(\iff \) by Dogan & Giritligl
5) Axioms I Pareto property, anonymity, neutrality

In fact, most rules have more ties than are forced by symmetries.

For which \(m, n \) does Borda have ties?

To avoid forced ties, \(n \) must be relatively prime to every \(j \leq m \)

Theorem (Moulin) Pareto + anon + neutral + some \(j \leq m \) divides \(n \) \(\iff \) every SCF is irresolute

Recent improvements in \(\iff \) by Dogan & Giritligl
5) Axioms I Pareto property, anonymity, neutrality

In fact, most rules have more ties than are forced by symmetries.

For which m, n does Borda have ties?

Other rules have even more than that (Copeland)

To avoid forced ties, n must be relatively prime to every $j \leq m$

Theorem (Moulin) Pareto + anon + neutral + some $j \leq m$

divides $n \iff$
every SCF is irresolute

Recent improvements in \iff by Dogan & Giritligil
5) Axioms I Pareto property, anonymity, neutrality

In fact, most rules have more ties than are forced by symmetries.

For which m, n does Borda have ties?

Other rules have even more than that (Copeland)

Is it important that some rules have much more ties than others?

To avoid forced ties, n must be relatively prime to every $j \leq m$

Theorem (Moulin) Pareto + anon + neutral + some $j \leq m$ divides n \iff every SCF is irresolute

Recent improvements in \iff by Dogan & Giritligil
5) Axioms I Pareto property, anonymity, neutrality

In fact, most rules have more ties than are forced by symmetries.

For which \(m, n \) does Borda have ties?

Other rules have even more than that (Copeland)

Is it important that some rules have much more ties than others? *Opinions differ!*

To avoid forced ties, \(n \) must be relatively prime to every \(j \leq m \)

Theorem (Moulin) Pareto + anon + neutral + some \(j \leq m \) divides \(n \) \iff every SCF is irresolute

Recent improvements in \(\iff \) by Dogan & Giritligil
6) More Rules: 3 Important Classes

I Scoring rules
6) More Rules: 3 Important Classes

I Scoring rules
Like Borda, they use a vector of scoring weights
\[w_1 \geq w_2 \geq \ldots \geq w_m; \ w_1 > w_m \]
to award points.
6) More Rules: 3 Important Classes

I Scoring rules

Like Borda, they use a vector of scoring weights

\[w_1 \geq w_2 \geq \ldots \geq w_m; \quad w_1 > w_m \]

to award points.

Each voter awards \(w_1 \) points to top-ranked, \(w_2 \) to 2nd, etc.
6) More Rules: 3 Important Classes

Scoring rules
Like Borda, they use a vector of scoring weights

\[w_1 \geq w_2 \geq \ldots \geq w_m; \quad w_1 > w_m \]

to award points.
Each voter awards \(w_1 \) points to top-ranked, \(w_2 \) to 2nd, etc.
Winner is the alternative with most points.
6) More Rules: 3 Important Classes

I Scoring rules
Like Borda, they use a vector of scoring weights

\[w_1 \geq w_2 \geq \ldots \geq w_m; \ w_1 > w_m \]

to award points.
Each voter awards \(w_1 \) points to top-ranked, \(w_2 \) to 2\(^{nd} \), etc.
Winner is the alternative with most points.

Examples include Borda, Plurality: \(w = (1,0,0, \ldots , 0) \)
6) More Rules: 3 Important Classes

Scoring rules
Like Borda, they use a vector of scoring weights

\[w_1 \geq w_2 \geq \ldots \geq w_m; \quad w_1 > w_m \]

to award points.

Each voter awards \(w_1 \) points to top-ranked, \(w_2 \) to 2\(^{nd}\), etc.

Winner is the alternative with most points.

Examples include Borda,

Plurality: \(w = (1,0,0, \ldots, 0) \)

Anti-Pl: \(w = (1,1, \ldots, 1,0) \) OR \(w = (0,0, \ldots, 0,-1) \)
6) More Rules: 3 Important Classes

Scoring rules
Like Borda, they use a vector of scoring weights
\[w_1 \geq w_2 \geq \ldots \geq w_m; \quad w_1 > w_m \]
to award points.
Each voter awards \(w_1 \) points to top-ranked, \(w_2 \) to 2\(^{nd} \), etc.
Winner is the alternative with most points.

Examples include Borda,

Plurality: \(w = (1,0,0, \ldots , 0) \)

Anti-Pl: \(w = (1,1, \ldots , 1,0) \) OR \(w = (0,0, \ldots , 0,-1) \)

Formula 1 racing champ:
\(w = (25,18,15,12,10,8,6,4,1,0,0, \ldots , 0) \) [since 2010]
6) More Rules: 3 Important Classes

Scoring rules

Like Borda, they use a vector of scoring weights

\[w_1 \geq w_2 \geq \ldots \geq w_m; \quad w_1 > w_m \]

to award points.

Each voter awards \(w_1 \) points to top-ranked, \(w_2 \) to 2\(^{nd}\), etc.

Winner is the alternative with most points.

Examples include Borda,

Plurality: \(w = (1,0,0, \ldots, 0) \)

Anti-Pl: \(w = (1,1, \ldots, 1,0) \) OR \(w = (0,0, \ldots, 0,-1) \)

Formula 1 racing champ:

\(w = (25,18,15,12,10,8,6,4,1,0,0, \ldots, 0) \) [since 2010]

k-approval:

\(w = (1, \ldots, 1, 1, 0, \ldots, 0, 0) \)

with \(k \) 1s
6) More Rules: 3 Important Classes

II Condorcet Extensions

Recall: A Condorcet alternative a satisfies $a >^\mu b$ for each alternative $b \neq a$
6) More Rules: 3 Important Classes

II Condorcet Extensions

Recall: A Condorcet alternative a satisfies \(a >^\mu b \)
for each alternative \(b \neq a \)

A SCF f is a Condorcet Extension
if \(f(P) = \) the Cond. alt. (for each \(P \) having a Cond. alt.)
6) More Rules: 3 Important Classes

II Condorcet Extensions

Recall: A *Condorcet alternative* a satisfies $a >^\mu b$ for each alternative $b \neq a$

A SCF f is a *Condorcet Extension* if $f(P) =$ the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland, *Maximin (Minimax, Simpson-Kramer)*
6) More Rules: 3 Important Classes

II Condorcet Extensions

Recall: A Condorcet alternative \(a \) satisfies \(a >^\mu b \) for each alternative \(b \neq a \)

A SCF \(f \) is a Condorcet Extension if \(f(P) = \) the Cond. alt. (for each \(P \) having a Cond. alt.)

Examples include Copeland, Maximin (Minimax, Simpson-Kramer):

Simpson Score \(SS(a) = \) Min \{Net_p(a>x) \mid x \in A\{a}\}
6) More Rules: 3 Important Classes

II Condorcet Extensions

Recall: A **Condorcet alternative** a satisfies a >\(\mu\) b for each alternative b ≠ a

A SCF f is a **Condorcet Extension** if f(P) = the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland, **Maximin (Minimax, Simpson-Kramer)**:

Simpson Score SS(a) = Min \{Net_P(a>x) | x \in A\{a\}\}

S-K rule chooses the x \in A maximizing SS(x): it’s a Condorcet Extension
6) More Rules: 3 Important Classes

II Condorcet Extensions

Recall: A Condorcet alternative a satisfies $a >^\mu b$ for each alternative $b \neq a$

A SCF f is a Condorcet Extension if $f(P) =$ the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland, Maximin (Minimax, Simpson-Kramer):

Simpson Score $SS(a) = \text{Min} \{\text{Net}_p(a>x) \mid x \in A\{a}\}$

S-K rule chooses the $x \in A$ maximizing $SS(x)$: it’s a Condorcet Extension

1. Can more than one alternative a have $SS(a) > 0$?
6) More Rules: 3 Important Classes

II Condorcet Extensions

Recall: A *Condorcet alternative* a satisfies $a >_\mu b$ for each alternative $b \neq a$

A SCF f is a *Condorcet Extension* if $f(P) =$ the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland, *Maximin (Minimax, Simpson-Kramer)*:

Simpson Score $SS(a) = \text{Min} \{\text{Net}_p(a>x) \mid x \in A\{a}\}$

S-K rule chooses the $x \in A$ maximizing $SS(x)$: it’s a Condorcet Extension

1. Can more than one alternative a have $SS(a) > 0$?
2. Suppose $SS(a) > 0 \ldots$ what can you say about alt. a?
6) More Rules: 3 Important Classes

II Condorcet Extensions

Recall: A Condorcet alternative \(a \) satisfies \(a >_\mu b \) for each alternative \(b \neq a \)

A SCF \(f \) is a Condorcet Extension if \(f(P) = \) the Cond. alt. (for each \(P \) having a Cond. alt.)

Examples include Copeland, Maximin (Minimax, Simpson-Kramer)

Top Cycle
6) More Rules: 3 Important Classes

II Condorcet Extensions

Recall: A Condorcet alternative \(a \) satisfies \(a >^\mu b \) for each alternative \(b \neq a \).

A SCF \(f \) is a Condorcet Extension if \(f(P) = \) the Cond. alt. (for each \(P \) having a Cond. alt.)

Examples include Copeland, Maximin (Minimax, Simpson-Kramer)

Top Cycle: A subset \(X \subseteq A \) is a dominating set if \(x >^\mu y \) holds for each \(x \in X, y \not\in X \).
6) More Rules: 3 Important Classes

Condorcet Extensions

Recall: A **Condorcet alternative** \(a\) satisfies \(a >^\mu b\) for each alternative \(b \neq a\)

A SCF \(f\) is a **Condorcet Extension** if \(f(P) = \) the Cond. alt. (for each \(P\) having a Cond. alt.)

Examples include Copeland, *Maximin (Minimax, Simpson-Kramer)*

Top Cycle: A subset \(X \subseteq A\) is a **dominating set** if \(x >^\mu y\) holds for each \(x \in X, y \notin X\)

\(TC(P) = \) the smallest dominating set (which is unique)
6) More Rules: 3 Important Classes

II Condorcet Extensions

Recall: A **Condorcet alternative** a satisfies $a >^\mu b$ for each alternative $b \neq a$

A SCF f is a **Condorcet Extension** if $f(P) =$ the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland, **Maximin (Minimax, Simpson-Kramer)**

Top Cycle: A subset $X \subseteq A$ is a **dominating set** if $x >^\mu y$ holds for each $x \in X, y \notin X$

$TC(P) =$ the smallest dominating set (which is unique)

Why is Top Cycle a Condorcet Extension?
Exercises

• This section contains precise versions of problems mentioned on slides
• Only do the ones you find interesting (there are too many for you to do all right now)
• Most of the tutorial is based on Chapter 2 of the *Handbook of Computational Social Choice*, Cambridge University Press, 2016. You may find the chapter helpful for these problems.
• Free PDF of the book at http://www.cambridge.org/download_file/898428
• To open the PDF use password: cam1CSC
1) Copeland scoring

• Recall **symmetric Copeland score** is given by
 \[\text{Cop}(x) = | \{ y | x >^\mu y \} | - | \{ y | y >^\mu x \} | \]

• **Asymmetric Copeland score** is given by
 \[\text{Cop}^{\text{Ass.}}(x) = | \{ y | x >^\mu y \} | \]

• **Asymmetric+ Copeland score** is given by
 \[\text{Cop}^{\text{Ass.}+}(x) = | \{ y | x >^\mu y \} | + \left(\frac{1}{2} \right) | \{ y | y =^\mu x \} | \]

Are these three rules all the same? All different? Answer as completely as possible.

We write \(y =^\mu x \) when \(\text{Net}_p(x>y) = 0 \). You will need to consider profiles for an even number of voters, making \(y =^\mu x \) possible.
Exercises

2) Scoring weights and affine equivalence

• Scoring vectors $w = w_1, \ldots, w_m$ and $v = v_1, \ldots, v_m$ are **affinely equivalent** if there exist constants γ, δ with $\gamma > 0$ such that $v_i = \gamma w_i + \delta$ for each i.

• Prove that two scoring vectors w, v induce the same scoring rule iff they are affinely equivalent.

• Prove that any two evenly spaced vectors are affinely equivalent.

• Prove that **symmetric** Borda weights $m-1, m-3, \ldots, -m+1$ yield a total score of $\beta(x)$ for each alternative x.

 \[
 Recall \ that \ \beta(x) = \sum_{y \in A} Net_p(x > y)
 \]
Exercises

3) Reversal Manipulation We saw Copeland can be manipulated via reversal: a profile P exists for which some voter i can, by completely reversing her ranking, switch the winning alternative from x to some alternative y whom she sincerely prefers (she ranked y over x before reversing)

• Prove that Borda cannot be manipulated via reversal (the same argument shows all scoring rules are similarly immune)

• Prove that Simpson-Kramer can be manipulated via reversal

• Difficult: Prove that every resolute Condorcet extension for 4 or more alternatives can be manipulated via reversal