Axiomatic Foundations of Voting Theory (part II)

William S. Zwicker
Mathematics Department, Union College

Computational Social Choice Summer School San Sebastian, Spain

18-22 July 2016

COST IC1205

- This section contains precise versions of problems mentioned on slides
- Only do the ones you find interesting (there are too many for you to do all right now)
- Most of the tutorial is based on Chapter 2 of the Handbook of Computational Social Choice, Cambridge University Press, 2016. You may find the chapter helpful for these problems.
- Free PDF of the book at <u>http://www.cambridge.org/download_file/898428</u>
- To open the PDF use password: cam1CSC

1) Copeland scoring

- Recall *symmetric Copeland score* is given by $Cop(x) = |\{y \mid x >^{\mu} y\}| |\{y \mid y >^{\mu} x\}|$
- Asymmetric Copeland score is given by $Cop^{Ass.}(x) = |\{y \mid x >^{\mu} y\}|$
- Asymmetric+ Copeland score is given by $Cop^{Ass.+}(x) = |\{y \mid x > \mu y\}| + (\frac{1}{2})|\{y \mid y = \mu x\}|^*$

Are these three rules all the same? All different? Answer as completely as possible.

*We write $y = \mu x$ when $Net_p(x>y) = 0$. You will need to consider profiles for an even number of voters, making $y = \mu x$ possible.

- 2) Scoring weights and affine equivalence
- Scoring vectors $w = w_1, ..., w_m$ and $v = v_1, ..., v_m$ are **affinely equivalent** if there exist constants γ , δ with $\gamma > 0$ such that $v_i = \gamma w_i + \delta$ for each i.
- Prove that two scoring vectors w, v induce the same scoring rule iff they are affinely equivalent.
- Prove that any two evenly spaced vectors are affinely equivalent.
- Prove that *symmetric* Borda weights m-1, m-3, . . .,
 -m+1 yield a total score of β(x) for each alternative x.

Recall that
$$\beta(x) = \Sigma_{y \in A} \operatorname{Net}_{P}(x > y)$$

- 3) Reversal Manipulation We saw Copeland can be *manipulated via reversal*: a profile P exists for which some voter i can, by completely reversing her ranking, switch the winning alternative from x to some alternative y whom she sincerely prefers (she ranked y over x before reversing)
- Prove that Borda cannot be manipulated via reversal (the same argument shows all scoring rules are similarly immune)
- Prove that Simpson-Kramer can be manipulated via reversal
- **Difficult:** Prove that every resolute Condorcet extension for 4 or more alternatives can be manipulated via reversal

Recall...3 large classes of SCFs

I Scoring rules

Like Borda, they use a vector of scoring weights

$$w_1 \ge w_2 \ge \ldots \ge w_m$$
; $w_1 > w_m$

to award points.

Each voter awards w_1 points to top-ranked, w_2 to 2^{nd} , etc. Winner is the alternative with most points.

Examples include Borda,

Plurality: W = (1,0,0,...,0)

Anti-PI: w = (1,1, ..., 1,0) OR

$$w = (0,0,...,0,-1)$$

Formula 1 racing champ:

w = (25,18,15,12,10,8,6,4, 1, 0, 0, ..., 0) [since 2010]

k-approval:

w = (1, ..., 1, 1, 0, ..., 0, 0) with k 1s

II Condorcet Extensions

Recall: A *Condorcet*alternative a satisfies $a > \mu$ b for each alternative $b \neq a$

A SCF f is a

Condorcet Extension

if f(P) = the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland,

Maximin (Minimax, Simpson-Kramer):

Simpson Score SS(a) = Min $\{Net_p(a>x) \mid x \in A\setminus\{a\}\}$

S-K rule chooses the $x \in A$ maximizing SS(x): it's a Condorcet Extension

II Condorcet Extensions

Recall: A *Condorcet*alternative a satisfies $a > \mu$ b for each alternative $b \neq a$

A SCF f is a

Condorcet Extension

if f(P) = the Cond. alt. (for each P having a Cond. alt.)

Examples include Copeland,

Maximin (Minimax, Simpson-Kramer)

Top Cycle: A subset $X \subseteq A$ is a **dominating set** if $x >^{\mu} y$ holds for each $x \in X$, $y \notin X$

TC(P) = the smallest dominating set (which is unique)

III Scoring Elimination Rules

1. Start with some scoring rule, and profile P

- 1. Start with some scoring rule, and profile P
- 2. Identify alternatives with "poor" scores

- 1. Start with some scoring rule, and profile P
- 2. Identify alternatives with "poor" scores
- 3. Strike these losers from each ballot in P, to get a derived profile P₂

- 1. Start with some scoring rule, and profile P
- 2. Identify alternatives with "poor" scores
- 3. Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)

- 1. Start with some scoring rule, and profile P
- 2. Identify alternatives with "poor" scores
- 3. Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)
- Repeat until majority winner appears (or until only one survivor)

III Scoring Elimination Rules

- 1. Start with some scoring rule, and profile P
- 2. Identify alternatives with "poor" scores
- Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)
- Repeat until majority winner appears (or until only one survivor)

Best-known example:

Single Transferrable Vote

(STV, alternative vote, Hare, Instant Run-off)

III Scoring Elimination Rules

- 1. Start with some scoring rule, and profile P
- 2. Identify alternatives with "poor" scores
- Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)
- Repeat until majority winner appears (or until only one survivor)

Best-known example:

Single Transferrable Vote

(STV, alternative vote, Hare, Instant Run-off)

Plurality scoring

III Scoring Elimination Rules

- 1. Start with some scoring rule, and profile P
- 2. Identify alternatives with "poor" scores
- Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)
- Repeat until majority winner appears (or until only one survivor)

Best-known example:

Single Transferrable Vote

(STV, alternative vote, Hare, Instant Run-off)

- Plurality scoring
- 1 Loser at each stage = lowest plurality score

III Scoring Elimination Rules

- 1. Start with some scoring rule, and profile P
- 2. Identify alternatives with "poor" scores
- Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)
- Repeat until majority winner appears (or until only one survivor)

Best-known example:

Single Transferrable Vote

(STV, alternative vote, Hare,
Instant Run-off)

- Plurality scoring
- 1 Loser at each stage = lowest plurality score
- Repeat until a majority winner appears

III Scoring Elimination Rules

- 1. Start with some scoring rule, and profile P
- 2. Identify alternatives with "poor" scores
- Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)
- Repeat until majority winner appears (or until only one survivor)

Best-known example:

Single Transferrable Vote

(STV, alternative vote, Hare,
Instant Run-off)

- Plurality scoring
- 1 Loser at each stage = lowest plurality score
- Repeat until a majority winner appears

Reason for STV name?

III Scoring Elimination Rules

- 1. Start with some scoring rule, and profile P
- 2. Identify alternatives with "poor" scores
- Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)
- 5. Repeat until majority winner appears (or until only one survivor)

Best-known example:

Single Transferrable Vote

(STV, alternative vote, Hare,
Instant Run-off)

- Plurality scoring
- 1 Loser at each stage = lowest plurality score
- Repeat until a majority winner appears

Reason for STV name?

Popular with reform groups?

III Scoring Elimination Rules

- 1. Start with some scoring rule, and profile P
- 2. Identify alternatives with "poor" scores
- Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)
- Repeat until majority winner appears (or until only one survivor)

Best-known example:

Single Transferrable Vote

(STV, alternative vote, Hare, Instant Run-off)

- Plurality scoring
- 1 Loser at each stage = lowest plurality score
- Repeat until a majority winner appears

Reason for STV name?

Popular with reform groups? **Seems** fair – no wasted vote

STV used:

- when John Major replaced Margaret Thatcher as conservative party head
- briefly in Burlington Vermont (USA)
- 2011 U.K. referendum: use STV for Parliamentary elections . . . failed.

Best-known example: **Single Transferrable Vote** (STV, alternative vote, Hare,

Plurality scoring

Instant Run-off)

- 1 Loser at each stage = lowest plurality score
- Repeat until a majority winner appears

Reason for STV name?

Popular with reform groups?

Seems fair – no wasted vote

III Scoring Elimination Rules

- Nanson voting rule
- 1. Start with some scoring rule, and profile P
- Identify alternatives with "poor" scores
- Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)
- Repeat until majority winner appears (or until only one survivor)

Borda scoring

III Scoring Elimination Rules

- 1. Start with some scoring rule, and profile P
- Identify alternatives with "poor" scores
- 3. Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)
- Repeat until majority winner appears (or until only one survivor)

- Borda scoring
- In each round, eliminate all alternatives with below average Borda score

III Scoring Elimination Rules

- 1. Start with some scoring rule, and profile P
- Identify alternatives with "poor" scores
- 3. Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)
- Repeat until majority winner appears (or until only one survivor)

- Borda scoring
- In each round, eliminate all alternatives with below average Borda score (same as negative score, using symmetric weights)

III Scoring Elimination Rules

- 1. Start with some scoring rule, and profile P
- Identify alternatives with "poor" scores
- 3. Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)
- Repeat until majority winner appears (or until only one survivor)

- Borda scoring
- In each round, eliminate all alternatives with below average Borda score (same as negative score, using symmetric weights)
- Last survivor wins

III Scoring Elimination Rules

- 1. Start with some scoring rule, and profile P
- Identify alternatives with "poor" scores
- 3. Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)
- Repeat until majority winner appears (or until only one survivor)

- Borda scoring
- In each round, eliminate all alternatives with below average Borda score (same as negative score, using symmetric weights)
- Last survivor wins
 Interesting theoretical properties:
- 1. Nanson is a Cond. Ext'n!

III Scoring Elimination Rules

- 1. Start with some scoring rule, and profile P
- Identify alternatives with "poor" scores
- 3. Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)
- Repeat until majority winner appears (or until only one survivor)

- Borda scoring
- In each round, eliminate all alternatives with below average Borda score (same as negative score, using symmetric weights)
- Last survivor wins
 Interesting theoretical properties:
- 1. Nanson is a Cond. Ext'n!
- 2. <u>Condorcet Loser</u> is eliminated in round 1.

III Scoring Elimination Rules

- 1. Start with some scoring rule, and profile P
- Identify alternatives with "poor" scores
- 3. Strike these losers from each ballot in P, to get a derived profile P₂
- 4. Loop back to 2 (using P₂)
- Repeat until majority winner appears (or until only one survivor)

Nanson voting rule

- Borda scoring
- In each round, eliminate all alternatives with below average Borda score (same as negative score, using symmetric weights)
- Last survivor wins

Interesting theoretical properties:

- 1. Nanson is a Cond. Ext'n!
- 2. Condorcet Loser is eliminated in round 1.

7) More Axioms: "middle" strength I Monotonicity

- f is a SCF
- P is a profile

- f is a SCF
- P is a profile
- i is one of the voters

b _i
а
b
•
X
y
Z
W
•

- f is a SCF
- P is a profile
- i is one of the voters
- f(P) = {**z**}

b _i
а
b
•
X
y
Z
W
•

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot

b _i
а
b
•
X
y
Z
W
•

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no other changes)

b _i	
a b :	

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no other changes)
- $b_i \mapsto b_i^*$

b _i	b _i *
a	a
b	b
•	•
X	X
y	Z
Z	y W
W	W
•	:

7) More Axioms: "middle" strength I Monotonicity Voter i's ballot:

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$

b _i	b _i *
a	a
b	b
• •	•
X	X
y	Z
Z	y W
W	W
•	•

7) More Axioms: "middle" strength I Monotonicity Voter i's ballot:

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = ???$

b _i	b _i *
a	a
b	a b
•	•
X	X
y	Z
Z	y W
W	W
•	•

7) More Axioms: "middle" strength I Monotonicity

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = \{z\}$

I Monotonicity

This is the resolute version of the monotonicity axiom.

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = \{z\}$

I Monotonicity

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = \{z\}$

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules?

I Monotonicity

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = \{z\}$

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? *Not what you might first guess . . .*

I Monotonicity

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = \{z\}$

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? *Not what you might first guess*...

If $z \in f(P)$ then $z \in f(P^*)$

I Monotonicity

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = \{z\}$

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? *Not what you might first guess*...

If $z \in f(P)$ then $z \in f(P^*)$ Nope

I Monotonicity

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{Z\}$
- y lies immediately above z on i's ballot
- Voter i moves \mathbf{Z} over \mathbf{y} (no If $z \in f(P)$ then $z \in f(P^*)$ other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = \{z\}$

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? **Not what you** might first quess . . .

If $z \in f(P)$ then $z \in f(P^*)$ Nope

and $w \notin f(P) \Rightarrow w \notin f(P^*)$

I Monotonicity

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{Z\}$
- y lies immediately above z on i's ballot
- Voter i moves \mathbf{Z} over \mathbf{y} (no If $z \in f(P)$ then $z \in f(P^*)$ other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = \{z\}$

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? **Not what you** might first quess . . .

If $z \in f(P)$ then $z \in f(P^*)$ Nope

and $w \notin f(P) \Rightarrow w \notin f(P^*)$ (Peleg)

I Monotonicity

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = \{z\}$

Consider a monotonicity failure, in which $f(P) = \{z\}$, but $f(P^*)$ is **not** equal to z. $f(P^*) > z$, or < z

I Monotonicity

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = \{z\}$

Consider a monotonicity failure, in which $f(P) = \{z\}$, but $f(P^*)$ is **not** equal to z. $f(P^*) > z$, or < z

Depending on which, either $b_i \mapsto b_i^*$ or $b_i^* \mapsto b_i$ is a successful manipulation.

I Monotonicity

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = \{z\}$

Consider a monotonicity failure, in which $f(P) = \{z\}$, but $f(P^*)$ is **not** equal to z. $f(P^*) > z$, or < z

Depending on which, either $b_i \mapsto b_i^*$ or $b_i^* \mapsto b_i$ is a successful manipulation.

Monotonicity is a limited form of strategy proofness (non-manipulability).

I Monotonicity

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = \{z\}$

Consider a monotonicity failure, in which $f(P) = \{z\}$, but $f(P^*)$ is **not** equal to z. $f(P^*) > z$, or < z

Depending on which, either $b_i \mapsto b_i^*$ or $b_i^* \mapsto b_i$ is a successful manipulation.

Monotonicity is a limited form of strategy proofness (non-manipulability).

But defining the irresolute version can NOT be done by extending pref's to sets!

I Monotonicity

Moreover, Peleg's solution agrees with a general method for adapting forms of strategy-proofness to the irresolute case . . .

Consider a monotonicity failure, in which $f(P^*) = \{z\}$, but $f(P^*)$ is **not** equal to z. $f(P^*) > z$, or < z

Depending on which, either $b_i \mapsto b_i^*$ or $b_i^* \mapsto b_i$ is a successful manipulation.

Monotonicity is a limited form of strategy proofness (non-manipulability).

But defining the irresolute version can NOT be done by extending pref's to sets!

I Monotonicity

Moreover, Peleg's solution agrees with a general method for adapting forms of strategy-proofness to the irresolute case . . . without using set extensions (Sanver & Zwicker, 2012)

Consider a monotonicity failure, in which $f(P^*) = \{z\}$, but $f(P^*)$ is **not** equal to z. $f(P^*) > z$, or < z

Depending on which, either $b_i \mapsto b_i^*$ or $b_i^* \mapsto b_i$ is a successful manipulation.

Monotonicity is a limited form of strategy proofness (non-manipulability).

But defining the irresolute version can NOT be done by extending pref's to sets!

I Monotonicity

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = Z$

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? *Not what you might first guess*...

All voting rules discussed so far satisfy monotonicity . . .

I Monotonicity

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no except STV and Nanson!
 other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = Z$

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? *Not what you might first guess . . .*

All voting rules discussed so far satisfy monotonicity . . . except STV and Nanson!

I Monotonicity

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no except STV and Nanson!
 other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = Z$

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? *Not what you might first guess*...

All voting rules discussed so far satisfy monotonicity . . . except STV and Nanson!

Surprising?

I Monotonicity

- f is a SCF
- P is a profile
- i is one of the voters
- $f(P) = \{z\}$
- y lies immediately above z on i's ballot
- Voter i moves z over y (no except STV and Nanson!
 other changes)
- $b_i \mapsto b_i^*$; $P \mapsto P^*$
- Then $f(P^*) = Z$

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? *Not what you might first guess*...

All voting rules discussed so far satisfy monotonicity . . . except STV and Nanson!

- Which voting rule won?
- What question should you be asking me . . .?
- "Alternative vote" (= STV)
 came in 2nd (10 votes)
 after Approval voting (15)

- Which voting rule won?
- What question should you be asking me . . .?
- "Alternative vote" (= STV)
 came in 2nd (10 votes)
 after Approval voting (15)
- Probably 2 of the 10 were from the Electoral Reform Society.

- Which voting rule won?
- What question should you be asking me . . .?
- "Alternative vote" (= STV)
 came in 2nd (10 votes)
 after Approval voting (15)
- Probably 2 of the 10 were from the Electoral Reform Society.
- Discounting those, STV came in 3rd after
 Copeland . . . not bad!

Theorem (Smith) Every scoring run-off rule fails monotonicity.

7) More Axioms: "middle" strength

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? **Not what you** might first quess . . .

All voting rules discussed so far satisfy monotonicity . . . except STV and Nanson!

Theorem (Smith) Every scoring run-off rule fails monotonicity.

Back to our title . . .

7) More Axioms: "middle" strength

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? **Not what you** might first quess . . .

All voting rules discussed so far satisfy monotonicity . . . except STV and Nanson!

Theorem (Smith) Every scoring run-off rule fails monotonicity.

Back to our title . . .

"Axiomatic Foundations of Voting Theory"

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? *Not what you might first guess . . .*

All voting rules discussed so far satisfy monotonicity . . . except STV and Nanson!

Theorem (Smith) Every scoring run-off rule fails monotonicity.

Back to our title . . .

"Axiomatic Foundations of Voting Theory"

How should we compare two voting rules?

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? *Not what you might first guess . . .*

All voting rules discussed so far satisfy monotonicity . . . except STV and Nanson!

Theorem (Smith) Every scoring run-off rule fails monotonicity.

Back to our title . . .

"Axiomatic Foundations of Voting Theory"

How should we compare two voting rules:

- By the *mechanism* used to *except STV and Nanson!* compute winner?
- Or by the axiomatic properties of the rule?

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? *Not what you might first guess . . .*

All voting rules discussed so far satisfy monotonicity . . . except STV and Nanson!

Theorem (Smith) Every scoring run-off rule fails monotonicity.

Back to our title . . .

"Axiomatic Foundations of Voting Theory"

How should we compare two voting rules:

- By the *mechanism* used to *except STV and Nanson!* compute winner?
- Or by the axiomatic properties of the rule?

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? *Not what you might first guess . . .*

All voting rules discussed so far satisfy monotonicity . . . except STV and Nanson!

Theorem (Smith) Every scoring run-off rule fails monotonicity.

Back to our title . . .

"Axiomatic Foundations of Voting Theory"

How should we compare two voting rules:

- compute winner?
- Or by the axiomatic *properties* of the rule?

This is the resolute version of the monotonicity axiom.

What is the "correct" reformulation for irresolute voting rules? **Not what you** might first guess . . .

All voting rules discussed so far satisfy monotonicity . . . By the mechanism used to except STV and Nanson!

Surprising? Fatal?

← Hare mechanism "seems fair" . . . but behaves oddly

Interlude: Voting with Rubber Bands and Strings

http://www.math.union.edu/research/mediancenter/evolver.html

http://www.math.union.edu/locate/voting-simulation

Click on the link: Voting with rubber bands, weights, and strings

• f is a SCF

- f is a SCF; N₁, N₂ disjoint sets of voters
- P₁, P₂ profiles for N₁, N₂

- f is a SCF; N₁, N₂ disjoint sets of voters
- P₁, P₂ profiles for N₁, N₂
- Combined profile P₁ + P₂
 (with |N₁| + |N₂| voters)

- f is a SCF; N₁, N₂ disjoint sets of voters
- P₁, P₂ profiles for N₁, N₂
- Combined profile P₁ + P₂
 (with |N₁| + |N₂| voters)
- If a is unique winner for P₁ and a is unique winner for P₂, then a is unique winner for P₁ + P₂

- f is a SCF; N₁, N₂ disjoint sets of voters
- P₁, P₂ profiles for N₁, N₂
- Combined profile P₁ + P₂
 (with |N₁| + |N₂| voters)
- If a is unique winner for P₁ and a is unique winner for P₂, then a is unique winner for P₁ + P₂
- $f(P_1) = {\boldsymbol{a}} = f(P_2) \Rightarrow$ $f(P_1 + P_2) = {\boldsymbol{a}}$

II Reinforcement

- f is a SCF; N₁, N₂ disjoint sets of voters
- P₁, P₂ profiles for N₁, N₂
- Combined profile P₁ + P₂
 (with |N₁| + |N₂| voters)
- If a is unique winner for P₁ and a is unique winner for P₂, then a is unique winner for P₁ + P₂
- $f(P_1) = \{a\} = f(P_2) \Rightarrow$ $f(P_1 + P_2) = \{a\}$

 That was the "resolute" form of Reinforcement

II Reinforcement

- f is a SCF; N₁, N₂ disjoint sets of voters
- P₁, P₂ profiles for N₁, N₂
- Combined profile P₁ + P₂
 (with |N₁| + |N₂| voters)
- If a is unique winner for P₁ and a is unique winner for P₂, then a is unique winner for P₁ + P₂
- $f(P_1) = \{a\} = f(P_2) \Rightarrow$ $f(P_1 + P_2) = \{a\}$

- That was the "resolute" form of Reinforcement
- Reinforcement "If there are any common winners among f(P₁) and f(P₂), then the winners f(P₁ + P₂) for the combined election are all and only these common winners"

II Reinforcement

- f is a SCF; N₁, N₂ disjoint sets of voters
- P₁, P₂ profiles for N₁, N₂
- Combined profile P₁ + P₂
 (with |N₁| + |N₂| voters)
- If a is unique winner for P₁ and a is unique winner for P₂, then a is unique winner for P₁ + P₂
- $f(P_1) = {a} = f(P_1) \Rightarrow$ $f(P_1 + P_2) = {a}$

- That was the "resolute" form of Reinforcement
- Reinforcement "If there are any common winners among f(P₁) and f(P₂), then the winners f(P₁ + P₂) for the combined election are all and only these common winners":

$$f(P_1) \cap f(P_2) \neq \emptyset \implies$$

 $f(P_1 + P_2) = f(P_1) \cap f(P_2)$

Example:

```
f(P_1) = \{a,b,c\}, f(P_2) = \{b,c,d,e\}

\Rightarrow f(P_1 + P_2) = \{b,c\}
```

- That was the "resolute" form of Reinforcement
- Reinforcement "If there are any common winners among f(P₁) and f(P₂), then the winners f(P₁ + P₂) for the combined election are all and only these common winners":

$$f(P_1) \cap f(P_2) \neq \emptyset \Rightarrow$$

 $f(P_1 + P_2) = f(P_1) \cap f(P_2)$

Example:

```
f(P_1) = \{a,b,c\}, f(P_2) = \{b,c,d,e\}

\Rightarrow f(P_1 + P_2) = \{b,c\}
```

- That was the "resolute" form of Reinforcement
- Reinforcement "If there are any common winners among f(P₁) and f(P₂), then the winners f(P₁ + P₂) for the combined election are all and only these common winners":

$$f(P_1) \cap f(P_2) \neq \emptyset \implies$$

 $f(P_1 + P_2) = f(P_1) \cap f(P_2)$

Example:

$$f(P_1) = \{a,b,c\}, f(P_2) = \{b,c,d,e\}$$

 $\Rightarrow f(P_1 + P_2) = \{b,c\}$

Proposition: All scoring rules satisfy reinforcement

- That was the "resolute" form of Reinforcement
- Reinforcement "If there are any common winners among f(P₁) and f(P₂), then the winners f(P₁ + P₂) for the combined election are all and only these common winners":

$$f(P_1) \cap f(P_2) \neq \emptyset \implies$$

 $f(P_1 + P_2) = f(P_1) \cap f(P_2)$

Example:

$$f(P_1) = \{a,b,c\}, f(P_2) = \{b,c,d,e\}$$

 $\Rightarrow f(P_1 + P_2) = \{b,c\}$

Proposition: All scoring rules satisfy reinforcement

- That was the "resolute" form of Reinforcement
- Reinforcement "If there are any common winners among f(P₁) and f(P₂), then the winners f(P₁ + P₂) for the combined election are all and only these common winners":

$$f(P_1) \cap f(P_2) \neq \emptyset \implies$$

 $f(P_1 + P_2) = f(P_1) \cap f(P_2)$

Example:

$$f(P_1) = \{a,b,c\}, f(P_2) = \{b,c,d,e\}$$

 $\Rightarrow f(P_1 + P_2) = \{b,c\}$

Proposition: All scoring rules satisfy reinforcement

Why? Think about scores of a and b (above example)

 P₁: a and b are tied for highest

- That was the "resolute" form of Reinforcement
- Reinforcement "If there are any common winners among $f(P_1)$ and $f(P_2)$, then the winners $f(P_1 + P_2)$ for the combined election are all and only these common winners": $f(P_1) \cap f(P_2) \neq \emptyset \implies$

$$f(P_1) \cap f(P_2) \neq \emptyset \Rightarrow$$

 $f(P_1 + P_2) = f(P_1) \cap f(P_2)$

Example:

$$f(P_1) = \{a,b,c\}, f(P_2) = \{b,c,d,e\}$$

 $\Rightarrow f(P_1 + P_2) = \{b,c\}$

Proposition: All scoring rules satisfy reinforcement

- P₁: a and b are tied for highest
- P₂: b higher than a

- That was the "resolute" form of Reinforcement
- Reinforcement "If there are any common winners among $f(P_1)$ and $f(P_2)$, then the winners $f(P_1 + P_2)$ for the combined election are all and only these common winners": $f(P_1) \cap f(P_2) \neq \emptyset \implies$

$$f(P_1) \cap f(P_2) \neq \emptyset \Rightarrow$$

 $f(P_1 + P_2) = f(P_1) \cap f(P_2)$

Example:

$$f(P_1) = \{a,b,c\}, f(P_2) = \{b,c,d,e\}$$

 $\Rightarrow f(P_1 + P_2) = \{b,c\}$

Proposition: All scoring rules satisfy reinforcement

- P₁: a and b are tied for highest
- P₂: b higher than a
- $P_1 + P_2$?

- That was the "resolute" form of Reinforcement
- Reinforcement "If there are any common winners among $f(P_1)$ and $f(P_2)$, then the winners $f(P_1 + P_2)$ for the combined election are all and only these common winners":

$$f(P_1) \cap f(P_2) \neq \emptyset \implies$$

 $f(P_1 + P_2) = f(P_1) \cap f(P_2)$

Example:

$$f(P_1) = \{a,b,c\}, f(P_2) = \{b,c,d,e\}$$

 $\Rightarrow f(P_1 + P_2) = \{b,c\}$

Proposition: All scoring rules satisfy reinforcement

- P₁: a and b are tied for highest
- P₂: b higher than a
- $P_1 + P_2$: add P_1 , P_2 scores

- That was the "resolute" form of Reinforcement
- Reinforcement "If there are any common winners among $f(P_1)$ and $f(P_2)$, then the winners $f(P_1 + P_2)$ for the combined election are all and only these common winners": $f(P_1) \cap f(P_2) \neq \emptyset \implies$

$$f(P_1) \cap f(P_2) \neq \emptyset \Rightarrow$$

 $f(P_1 + P_2) = f(P_1) \cap f(P_2)$

Example:

$$f(P_1) = \{a,b,c\}, f(P_2) = \{b,c,d,e\}$$

 $\Rightarrow f(P_1 + P_2) = \{b,c\}$

Proposition: All scoring rules satisfy reinforcement

Proposition: No Condorcet Ext's satisfy reinforcement

- That was the "resolute" form of Reinforcement
- Reinforcement "If there are any common winners among f(P₁) and f(P₂), then the winners f(P₁ + P₂) for the combined election are all and only these common winners":

$$f(P_1) \cap f(P_2) \neq \emptyset \implies$$

 $f(P_1 + P_2) = f(P_1) \cap f(P_2)$

Example:

$$f(P_1) = \{a,b,c\}, f(P_2) = \{b,c,d,e\}$$

 $\Rightarrow f(P_1 + P_2) = \{b,c\}$

Proposition: All scoring rules satisfy reinforcement

Proposition: No Condorcet Ext's satisfy reinforcement

Theorem (Smith, Young): The anonymous, reinforcing, and neutral SCFs are exactly the compound* scoring rules.

- That was the "resolute" form of Reinforcement
- Reinforcement "If there are any common winners among f(P₁) and f(P₂), then the winners f(P₁ + P₂) for the combined election are all and only these common winners":

$$f(P_1) \cap f(P_2) \neq \emptyset \implies$$

 $f(P_1 + P_2) = f(P_1) \cap f(P_2)$

Example:

$$f(P_1) = \{a,b,c\}, f(P_2) = \{b,c,d,e\}$$

 $\Rightarrow f(P_1 + P_2) = \{b,c\}$

Proposition: All scoring rules satisfy reinforcement

Proposition: No Condorcet Ext's satisfy reinforcement

Theorem (Smith, Young): The anonymous, reinforcing, and neutral SCFs are exactly the compound* scoring rules.

*compound

Given by j ≥ 1 scoring rules: rule 2 breaks any ties left by rule 1, rule 3 breaks any ties that still remain, . . .

Example:

$$f(P_1) = \{a,b,c\}, f(P_2) = \{b,c,d,e\}$$

 $\Rightarrow f(P_1 + P_2) = \{b,c\}$

Proposition: All scoring rules satisfy reinforcement

Proposition: No Condorcet Ext's satisfy reinforcement

Theorem (Smith, Young): The anonymous, reinforcing, and neutral SCFs are exactly the compound* scoring rules.

*compound

Given by j ≥ 1 scoring rules: rule 2 breaks any ties left by rule 1, rule 3 breaks any ties that still remain, . . .

Smith, Young use a 4th axiom (continuity) to characterize ordinary scoring rules

Example:

$$f(P_1) = \{a,b,c\}, f(P_2) = \{b,c,d,e\}$$

 $\Rightarrow f(P_1 + P_2) = \{b,c\}$

Proposition: All scoring rules satisfy reinforcement

Proposition: No Condorcet Ext's satisfy reinforcement

Theorem (Smith, Young): The anonymous, reinforcing, and neutral SCFs are exactly the compound* scoring rules.

*compound

Given by j ≥ 1 scoring rules: rule 2 breaks any ties left by rule 1, rule 3 breaks any ties that still remain, . . .

Smith, Young use a 4th axiom (continuity) to characterize ordinary scoring rules

Another triumph of the axiomatic method!

A. More rules – interesting ones . . . but perhaps not simple enough to sell to the public for political election

- A. More rules interesting ones . . . but perhaps not simple enough to sell to the public for political election
- B. More axioms interesting ones

Back to voting simulator: "McBorda" rule

- A. More rules interesting ones . . . but perhaps not simple enough to sell to the public for political election
- B. More axioms interesting ones
- C. A better understanding of trade-offs . . . which axiomatic properties are more important for particular applications

- A. More rules interesting ones . . . but perhaps not simple enough to sell to the public for political election
- B. More axioms interesting ones
- C. A better understanding of

 But if you try trade-offs . . . which axiomatic properties are more important for particular applications
 - sometimes you find you get what you need

- A. More rules interesting ones . . . but perhaps not simple enough to sell to the public for political election
- D. Greater acceptance of Approval Voting as a "compromise candidate" among voting rules.
- B. More axioms interesting ones
- C. A better understanding of

 But if you try trade-offs . . . which axiomatic properties are more important for particular applications
 - sometimes you find you get what you need

Exercises

4) Nanson's Rule

• Prove that Nanson's Rule is a Condorcet Extension. Hint: Using $\beta(x) = \Sigma_{y \in A} \operatorname{Net}_{P}(x>y)$ to generate Borda scores, show that the average Borda score of all alternatives is 0. Then show that $\beta(z) > 0$ holds for a Condorcet alternative z.

If $x > \mu z$ holds for each alternative x other than z itself, we say that z is a **Condorcet loser**. Condorcet losers exist for some profiles, but not for others.

 Prove that Nanson's Rule will never elect a Condorcet loser.