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Exercises

This section contains precise versions of problems
mentioned on slides

Only do the ones you find interesting (there are too
many for you to do all right now)

Most of the tutorial is based on Chapter 2 of the
Handbook of Computational Social Choice,

Cambridge University Press, 2016. You may find the
chapter helpful for these problems.

Free PDF of the book at
http://www.cambridge.org/download file/898428

To open the PDF use password: cam1CSC




Exercises

1) Copeland scoring

* Recall symmetric Copeland score is given by
Cop(x) = Hy[x>*y} = [{yly >*x}]

 Asymmetric Copeland score is given by
Cop®=(x) = [{y[x >* y}|

 Asymmetric+ Copeland score is given by
Cop?s*(x) = [{yIx>*y}| + (%) {yly =* x}| *

Are these three rules all the same? All
different? Answer as completely as possible.

*We write y = x when Net,(x>y) = 0. You will need to consider
profiles for an even number of voters, making y =* x possible.



Exercises

2) Scoring weights and affine equivalence

* Scoring vectorsw =w,, ..., W andv=v, ..., v_are
affinely equivalent if there exist constants y, 6 with
y > 0 such that v, = yw; + 6 for each i.

* Prove that two scoring vectors w, v induce the same
scoring rule iff they are affinely equivalent.

* Prove that any two evenly spaced vectors are affinely
equivalent.

* Prove that symmetric Borda weights m-1, m-3, . . .,
—-m+1 yield a total score of B(x) for each alternative x.

Recall that B(x) = 2, Net,(x>y)



Exercises

3) Reversal Manipulation We saw Copeland can be
manipulated via reversal: a profile P exists for which some
voter i can, by completely reversing her ranking, switch the
winning alternative from x to some alternative y whom she
sincerely prefers (she ranked y over x before reversing)

* Prove that Borda cannot be manipulated via reversal
(the same argument shows all scoring rules are similarly immune)

* Prove that Simpson-Kramer can be manipulated via
reversal

* Difficult: Prove that every resolute Condorcet
extension for 4 or more alternatives can be
manipulated via reversal



Recall . . . 3 large
classes of SCFs



6) More Rules: 3 Important Classes

I Scoring rules Examples include Borda,

Like Borda, they use a vector Plurality:w =(1,0,0, ..., 0)

of scoring weights Anti-Pl: w = (1,1, ..., 1,0) OR
w = (0,0, ..., 0,-1)

to award points. Formula 1 racing champ:

w = (25,18,15,12,10,8,6,4,
1,0,0, ..., 0) [since 2010]
k-approval-
w=(1,..110,..,0,0)
with k 1s

Each voter awards w, points
to top-ranked, w, to 2"9, etc.

Winner is the alternative
with most points.



6) More Rules: 3 Important Classes

11 Condorcet Extensions Examples include Copeland,
Maximin (Minimax,
Simpson-Kramer).

Simpson Score SS(a) =

Min {Net,(a>x) | x € A\{a}}

ASCFfis a S-K rule chooses the x € A
Condorcet Extension maximizing SS(x): it’s a

if f(P) = the Cond. alt. (for Condorcet Extension
each P having a Cond. alt.)

Recall: A Condorcet
alternative a satisfiesa >* b
for each alternative b # a



6) More Rules: 3 Important Classes

11 Condorcet Extensions Examples include Copeland,
Maximin (Minimax,
Simpson-Kramer)

Recall: A Condorcet

alternative a satisfiesa >* b

for each alternative b # a Top Cycle: A subset XC Ais
a dominating set if x >ty

A SCF fis a holds for each x E X, y & X

Condorcet Extension
if f(P) = the Cond. alt. (for TC(P) = the smallest

each P having a Cond. alt.)  dominating set (which is
unique)
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6) More Rules: 3 Important Classes

STV used:

Best-known example:

» when John Major replaced Single Transferrable Vote

Margaret Thatcher as
conservative party head

* briefly in Burlington
Vermont (USA)

e 2011 U.K. referendum:
use STV for Parliamentary
elections . . . failed.

(STV, alternative vote, Hare,
Instant Run-off)

* Plurality scoring

1 Loser at each stage =
lowest plurality score

* Repeat until a majority
winner appears

Reason for STV name?
Popular with reform groups?
Seems fair — no wasted vote
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* Borda scoring
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“poor” scores
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111 Scoring Elimination Rules Nanson voting rule
* Borda scoring

1. Start with some scoring o
rule, and profile P * |In each round, eliminate

all alternatives with below
average Borda score

(same as negative score,

3. Strike these losers from using symmetric weights)
each ballot in P, to get a

derived profile P,
4. Loop back to 2 (using P,)

e R ¢ until maiorit properties:
- REPEAtUNTIMAJOMY 4~ Nanson is a Cond. Ext’n!
winner appears (or until

only one survivor) 2. ano!orcet I..oser is
eliminated in round 1.

2. ldentify alternatives with
“poor” scores

* Last survivor wins
Interesting theoretical




7) More Axioms: “middle” strength
I Monotonicity

 fisa SCF
 Pisa profile




7) More Axioms: “middle” strength

I Monotonicity Voter i’s ballot:
 fisa SCF b,
 Pisa profile -
* jis one of the voters b

X



7) More Axioms: “middle” strength

I Monotonicity Voter i’s ballot:
 fisa SCF b,
 Pisa profile -
* jis one of the voters b
* f(P)={z} :

X



7) More Axioms: “middle” strength

I Monotonioity Voter i’s ballot:
e fisaSCF b,
 Pisa profile .
* jis one of the voters b
.+ f(P) = {2) ;
lies immediately above
on i’s ballot



7) More Axioms: “middle” strength

I Monotonioity Voter i’s ballot:
e fisaSCF b,
 Pisa profile .
* jis one of the voters b
.+ f(P) = {2) ;
lies immediately above
on i’s ballot

* Voter i moves z over V (no
other changes)



7) More Axioms: “middle” strength

I Monotonicity

Voter i’s ballot:

fis a SCF b;
P is a profile .
i is one of the voters b
f(P) = {z} 3

lies immediately above s
on i’s ballot

Voter i moves Z over Y (no
other changes)

b, — b,*




7) More Axioms: “middle” strength

I Monotonicity

Voter i’s ballot:

fis a SCF b;
P is a profile .
i is one of the voters b
f(P) = {z} 3

lies immediately above s
on i’s ballot

Voter i moves Z over Y (no
other changes)

b; = b,*; P+ P*




7) More Axioms: “middle” strength

I Monotonicity

Voter i’s ballot:

fis a SCF b;
P is a profile .
i is one of the voters b
f(P) = {z} 3

lies immediately above s
on i’s ballot

Voter i moves Z over Y (no
other changes)

b; = b,*; P+ P*

Then f(P*) = 2?7




7) More Axioms: “middle” strength
I Monotonicity

e fisa SCF

 Pisa profile

* jis one of the voters
.+ f(P) = {2)

lies immediately above
oni’s ballot

* Voter i moves z over V (no
other changes)

* bj>b*; P> P*
* Then f(P*) = {z}



7) More Axioms: “middle” strength

I MOIlOtOIliCity This is the resoll.Jt.e ver§ion
of the monotonicity axiom.

e fisa SCF

 Pisa profile

* jis one of the voters
.+ f(P) = {2)

lies immediately above
oni’s ballot

* Voter i moves z over V (no
other changes)

* bj>b*; P> P*
* Then f(P*) = {z}



7) More Axioms: “middle” strength

I Monotonicity

fis a SCF
Pis a profile
i is one of the voters

f(P) = {z}

lies immediately above

on i’s ballot

Voter | moves Z over
other changes)

b; = b,*; P+ P*
Then f(P*) = {z}

(no

This is the resolute version
of the monotonicity axiom.

What is the “correct”
reformulation for irresolute
voting rules?



7) More Axioms: “middle” strength
I Monotonicity

fis a SCF
Pis a profile
i is one of the voters

f(P) = {z}

lies immediately above
oni’s ballot

Voter i moves Z over Y (no
other changes)

b; = b,*; P+ P*
Then f(P*) = {z}

This is the resolute version
of the monotonicity axiom.

What is the “correct”
reformulation for irresolute
voting rules? Not what you
might first guess . . .



7) More Axioms: “middle” strength

I Monotonicity

fis a SCF
Pis a profile
i is one of the voters

f(P) = {z}

lies immediately above

on i’s ballot

Voter | moves Z over
other changes)

b; = b,*; P+ P*
Then f(P*) = {z}

(no

This is the resolute version
of the monotonicity axiom.

What is the “correct”
reformulation for irresolute
voting rules? Not what you
might first guess . . .

If z& f(P) then z & f(P*)



7) More Axioms: “middle” strength

I Monotonicity

fis a SCF
Pis a profile
i is one of the voters

f(P) = {z}

lies immediately above

on i’s ballot

Voter | moves Z over
other changes)

b; = b,*; P+ P*
Then f(P*) = {z}

(no

This is the resolute version
of the monotonicity axiom.

What is the “correct”
reformulation for irresolute
voting rules? Not what you
might first guess . . .

If z& f(P) thenz & f(P*)
Nope



7) More Axioms: “middle” strength

I Monotonicity

fis a SCF
Pis a profile
i is one of the voters

f(P) = (2}

lies immediately above z

on i’s ballot

Voter | moves Z over
other changes)

b; = b;*; P+ P*
Then f(P*) = {z}

(no

This is the resolute version
of the monotonicity axiom.

What is the “correct”
reformulation for irresolute
voting rules? Not what you
might first guess . . .

If z& f(P) thenz & f(P*)
Nope

If z€ f(P) then z & f(P*)
and w & f(P) = w & f(P*)



7) More Axioms: “middle” strength

I Monotonicity

fis a SCF
Pis a profile
i is one of the voters

f(P) = (2}

lies immediately above z

on i’s ballot

Voter | moves Z over
other changes)

b; = b;*; P+ P*
Then f(P*) = {z}

(no

This is the resolute version
of the monotonicity axiom.
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Which voting rule won?

What question should you
be asking me . ..?

“Alternative vote” (= STV)
came in 2" (10 votes)
after Approval voting (15)

Probably 2 of the 10 were
from the Electoral Reform
Society.

Discounting those, STV
came in 3" after
Copeland ... not bad!
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7) More Axioms: “middle” strength

Theorem (Smith) Every
scoring run-off rule fails
monotonicity.

Back to our title .. . .
“Axiomatic Foundations of
Voting Theory”

How should we compare
two voting rules:

This is the resolute version
of the monotonicity axiom.

What is the “correct”
reformulation for irresolute
voting rules? Not what you
might first guess . . .

All voting rules discussed so
far satisfy monotonicity . . .

* By the mechanism used to except STV and Nanson !

compute winner?

* Or by the axiomatic
properties of the rule?

Surprising? Fatal?
€ Hare mechanism “seems
fair” ... but behaves oddly



Interlude: Voting with
Rubber Bands and Strings

http://www.math.union.edu/research/mediancenter/evolver.html

http://www.math.union.edu/locate/voting-simulation

Click on the link: Voting with rubber bands, weights,
and strings
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Proposition: No Condorcet
Ext’s satisfy reinforcement

Theorem (Smith, Young): The
anonymous, reinforcing, and
neutral SCFs are exactly the
compound® scoring rules.

Another triumph of the
axiomatic method!
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ones ... but perhaps not Approval Voting as a
simple enough to sell to “compromise candidate”
the public for political among voting rules.
election
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Exercises

4) Nanson’s Rule

e Prove that Nanson’s Rule is a Condorcet Extension.

Hint: Using B(x) = Z, -, Nety(x>y) to generate Borda scores,
show that the average Borda score of all alternatives is 0.
Then show that B(z) > 0 holds for a Condorcet alternative z.

If x >* z holds for each alternative x other than z itself,

we say that z is a Condorcet loser. Condorcet losers

exist for some profiles, but not for others.

 Prove that Nanson’s Rule will never elect a
Condorcet loser.



