Polynomial interpolation and counting lattice points in polytopes

I have polytope (dimension d) and I want :
Compute volume of

this polytope | Compute lattice points |
| :---: |
| in this polytope |

Compute polynomial of degree \mathbf{d}

Algorithm?
Clauss

The most Clauss method is based common method on the polynomial
Use power series interpolation :
For polytope of dimansion d we need to compute $\mathbf{d}+1$ values

Our method is based on the polynomial interpolation : For polytope of dimansion d 1 value or just an
approximate of this value is sufficient to generate (Ehrhart) polynomial

Convexe Concave

Integer dilates of polytopes

Square (2D) Simplex (3D)

Ehrhart theorem

Lemma 1.1. Let $\alpha_{r} \in Z$, we define $f_{\alpha, d-1}$ as

So:

- $\lim _{t \rightarrow \infty} f_{\alpha, d-1}(t)=0$ define in lemma 1.1. we define $k_{\text {max,d-1 }}, k_{\text {max }}$ as :
- $k_{\text {max }, d-1}=\operatorname{Max}\left\{k_{\alpha, d-1}, k_{\beta, d-1}\right\}$
- $k_{\text {max }}=\operatorname{Max}\left\{k_{\text {max }, \boldsymbol{r}} \forall r \in[0, d-1]\right\}$

So $\forall t>k_{\max }, \forall r \in[0, d-1]$ we have

Lattice point in dilating unit square

- $\mathrm{L}_{\mathrm{p}}(1)=$ Lattice point in the unit square $\mathrm{C}=4$
- $\mathrm{L}_{\mathrm{p}}(2)=$ Lattice point in $2 \mathrm{C}=9$ $\cdot{ }_{-}(3)=$ Lattice point in $3 C=16$

In general

- $\mathrm{L}_{\mathrm{p}}(\mathrm{n})=(\mathrm{n}+1)^{2}=\mathrm{n}^{2}+2 \mathrm{n}+1$

Polynomial interpolation Need to compute a,b,c

General formula

\qquad $\begin{aligned} & a^{2}+b n+c=4 \\ & \text { an2 } 2+b n+c=9\end{aligned}$ an2 $2+\mathrm{bn}+\mathrm{c}=16$

$$
f_{\alpha, d-1}(t)=\frac{\sum_{r=0}^{d-1} \alpha_{r} t^{r}}{t^{d}}
$$

Lower and upper bound on the coefficients
of Ehrhart polynomial

- Upper bound Ulrich Betke et Peter McMullen (1985) - Lower bound Martin Henk et Makoto Tagami (2009)
- $\exists k_{\alpha, d-1} \in N$ as $\forall t>k_{\alpha, d}$ then $\left|f_{\alpha, d-1}(t)\right|<\frac{1}{2}$

Lemma 1.2. Let $\left(\beta_{r}, c_{r}, \alpha_{r}\right) \in Z^{3}$ as $\beta_{r} \leq c_{r} \leq \alpha_{r}$. Let $f_{\alpha, d}, f_{\beta, d}$ et $f_{c, d}$ function
$\left\lfloor f_{c, r}(t)\right\rceil=0$
Theorem 1.3. Let $\left(\beta_{r}, c_{r}, \alpha_{r}\right) \in$
Let $P(t)$ an integer polynomial.

$$
P(t)=\sum_{r=0}^{d} c_{r} r^{r}
$$

So:
Combining lemma 1.1 and 1.2 we have

- $c_{d}=\left\lfloor\frac{P\left(k_{\text {max }}\right)}{k_{\max }}\right\rceil$

Starting from only one estimate $\mathrm{P}\left(\mathrm{k}_{\text {max }}\right)$, we can generate the Ehrhart polynomial.

Starting from an approximation of $\mathrm{P}\left(\mathrm{k}_{\text {max }}\right)$, we can generate the Ehrhart polynomial.

