# On envy-free allocations in large fair division problems with indivisible goods 

Alisa Maricheva, Fedor Sandomirskiy<br>International Laboratory of Game Theory and Decision Making<br>National Research University "Higher School of Economics"<br>Saint Petersburg, Russia

## Fair division of indivisible goods

- $m$ indivisible goods to allocate among $n$ agents
- allocation $\mathcal{A}=\left(\mathcal{A}_{i}\right)_{i=1 \ldots n}$ is a partition of a set of goods
- $u_{g}^{i}$ is agent $i^{\prime} \mathrm{s}$ satisfaction of a good $g$
- utilities of agents are additive:

$$
u^{i}\left(\mathcal{A}_{i}\right)=\sum_{g \in \mathcal{A}_{i}} u_{g}^{i}
$$

- For example, division of inheritance


## Fairness criterion

- Envy-freeness:

Allocation $\mathcal{A}$ is envy-free iff

$$
u^{i}\left(\mathcal{A}_{i}\right) \geq u^{i}\left(\mathcal{A}_{j}\right) \forall i, j=1 \ldots n
$$

## Assumptions

- $u_{g}^{i}$ are i.i.d. random variables uniformly distributed on [0; 1]
- the number of goods is large


## The question is:

How often does envy-free allocation of indivisible goods exist?

## Previous results:

J.P. Dickerson et al. show that the probability of envy-free allocation existence tends to 1 as the number of goods becomes large.

## Remark:

They do not obtain an explicit estimate on this probability in terms of $n$ and $m$.

## Our aim:

- obtain explicit estimate
- introduce measure-concentration tools in large fair division problems


## Result

The probability of existence of envy-free allocation is greater, than

$$
1-n^{2} \exp \left(\frac{-m}{4(n+1)^{3}}\right)
$$

Note, that probability increases with increasing of number of goods.

## The main ideas of the proof

## - Utilitarian maximum

Consider an allocation $\mathcal{A}^{U T}$ in which each good $g$ is given to an agent $i$ who desires it most, in other words, agent $i$ gets $g$ iff $u_{g}^{i} \geq u_{g}^{j} \forall i, j=1 \ldots n$.
$\mathcal{A}^{U T}$ can be really unfair.

- We use measure concentration tools to estimate the probability that agent $i$ envies agent $j$ in $\mathcal{A}^{U T}$. Measure concentration theory says that the "macroscopic" properties (that depends on a large number of random parameters) of large random objects are non-random, i.e., they are close to expected values with high probability.


## McDiarmid's inequality

- $\xi_{1}, \xi_{2}, \ldots, \xi_{N}$ are independent random variables
- function $f$ is such that for any fixed $x_{1}, \ldots, x_{N}$ the random variable $f\left(x_{1}, \ldots, x_{i-1}, \xi_{i}, x_{i+1}, \ldots, x_{N}\right)$ belongs to interval of length $c_{i}$

Then for any $\varepsilon>0$

$$
\mathbb{P}(|f(\xi)-E(f(\xi))| \geq \varepsilon) \leq 2 \exp \left(-\frac{2 \varepsilon^{2}}{\sum_{i=1}^{N} c_{i}^{2}}\right) .
$$

Corollary: the law of large numbers.

## Contact information

Website: http://scem.spb.hse.ru/en/ilgt/
E-mail: marialisa@yandex.ru

## References

- J.P. Dickerson, J. Goldman, J. Karp, A.D. Procaccia, T. Sandholm, The Computational Rise and Fall of Fairness, Proceedings of the Twenty-Eighth AAAI Conference on Articial Intelligence, 2014.
- C. McDiarmid, On the Method of Bounded Differences, Surveys in Combinatorics 141: 148-188, 1989.

