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Fair division of indivisible goods
* m indivisible goods to allocate among n agents

* allocation A = (A;)j=1 n is a partition of a set of goods
. ug is agent i’s satisfaction of a good g
e utilities of agents are additive:

ut(A;) = 2 ué

gEA,;

* Forexample, division of inheritance

Result

The probability of existence of envy-free allocation is greater,
than

1 — n?exp 7 .
4(n + 1)3

Note, that probability increases with increasing of number of
goods.

Fairness criterion
* Envy-freeness:

Allocation A is envy-free iff
ut(A) = u'(A;)Vvij=1..n

Assumptions

. ug are i.i.d. random variables uniformly distributed on
[0; 1]

* the number of goods is large

The question is:
How often does envy-free allocation of indivisible goods exist?
Previous results:

J.P. Dickerson et al. show that the probability of envy-free
allocation existence tends to 1 as the number of goods
becomes large.

Remark:

They do not obtain an explicit estimate on this probability in
terms of n and m.

Our aim:
* obtain explicit estimate

* introduce measure-concentration tools in large fair division
problems

The main ideas of the proof

e Utilitarian maximum
Consider an allocation AY! in which each good g is given to
an agent i who desires it most, in other words, agent i gets

giffug = ué‘v’i,j =1 ..n.

AYT can be really unfair.

* We use measure concentration tools to estimate the
probability that agent i envies agent j in AY!. Measure
concentration theory says that the "macroscopic”
properties (that depends on a large number of random
parameters) of large random objects are non-random, i.e,,
they are close to expected values with high probability.

McDiarmid’s inequality
e &,&,, ..., &y areindependent random variables

* function f is such that for any fixed x4, ..., xythe random
variable f (x4, ...,x;_1,&;, Xi4+1, ..., Xy ) belongs to interval
of length ¢;

Then forany e > 0

PUf @) - EFE) 2 ©) < 2exp (— v —)

=1 "1

Corollary: the law of large numbers.
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