Centre for Data Analytics

Insight

Preference Inference Based on Pareto Models

Anne-Marie George, Nic Wilson

Motivation

Preference Inference is relevant in many fields like recommender systems and multi-objective optimization where one wants to reason over user preferences. Preference Inference based on Pareto models can also be seen as a prediction of voting/decision making outcomes based on prior experience. Here, we assume that each individual has a (known) total order on the alternatives that is realised by a function to the rational numbers, called evaluation function. Participants form (unknown) groups, within which they come to decisions by

combining their evaluation functions with an operator \oplus , e.g., addition, multiplication, etc. Then, one alternative is chosen over another, if it is preferred in all groups.

Preference Structure

Alternatives: Set \mathcal{A} of items the user can choose from. **Evaluations:** Set \mathcal{C} of functions $\mathcal{A} \to \mathbb{Q}^{\geq 0}$ from the alternatives to the non-negative rational numbers to rate the alternatives (the optimum is 0).

Operator \oplus : Associative, commutative and strictly monotonic operation on \mathbb{Q}^{\geq} to combine evaluations.

Preference Statements

A set of non-strict and strict preference statements Γ is provided by the user.

Non-Strict Statements:

"Park is preferred to beach."

"Beach is strictly pre-

ferred to aquarium.'

Preference Models

Decision Problems

Preference Consistency Problem (PCP)

Given: Set of preference models $\mathcal M$ over a preference structure $\langle \mathcal{A}, \mathcal{C}, \oplus \rangle$, set of preference statements Γ on alternatives \mathcal{A} . Question: Does there exist a model in \mathcal{M} that satisfies **Γ**?

Pareto Models

- A Pareto model $P = \{C_1, \ldots, C_k\}$ is a (possibly empty) set of disjoint subsets of evaluations $C_i \subseteq C$, e.g., groups of participants that come to decisions together.
- \mathcal{P} is the set of Pareto models.
- $\mathcal{P}(1)$ is the set of models $\{C_1, \ldots, C_k\} \in \mathcal{P}$ with singleton sets $|C_i| = 1$, i.e., every individual votes for itself.

 \mathcal{P}^s is the set of Pareto models $\{C\}$ that consist of a single set $C \subseteq \mathcal{C}$, i.e., a single group that makes the decisions.

• A Pareto model $P = \{C_1, \ldots, C_k\}$ induces an order relation on \mathcal{A} by comparing \oplus -combinations of the sets in a Pareto manner, i.e., one alternative is preferred to another if all groups of participants prefer it. **Example:** Let \oplus be the addition on \mathbb{Q} and $P = \{\{Bruno, Clara\}\}$.

Example: Γ = 🥡 < 👥 < W

Pareto model {{Ana, Clara}} satisfies Γ . Hence, Γ is \mathcal{P} -consistent.

Preference Deduction Problem (PDP)

Given: Set of preference models \mathcal{M} over a preference structure $\langle \mathcal{A}, \mathcal{C}, \oplus \rangle$, set of preference statements Γ and statement φ on alternatives \mathcal{A} . **Question:** Do all model in \mathcal{M} that satisfy Γ also satisfy φ ? ($\Gamma \models_{\mathcal{M}} \varphi$?)

Example:

 $\varphi =$ Г = 🏹 < 🚺 The **C**-satisfying Pareto model, {{Ana, Clara}}, {{Bruno, Clara}} and {Clara}, satisfy φ' , i.e., $\Gamma \models_{\mathcal{P}} \varphi'$. However, the Γ -satisfying Pareto model {Ana, Clara} does not satisfy φ , i.e., $\Gamma \not\models_{\mathcal{P}} \varphi$.

Results

$$\mathcal{P}$$

Let $\mathcal{C}^{\leq \Gamma} := \{ \mathcal{C} \in \mathcal{C} \mid \bigoplus_{c \in \mathcal{C}} c(\alpha_{\varphi}) \leq \mathcal{C} \}$

Pareto Models

$\mathcal{P}(1)$ Let $C^{\leq \Gamma} := \{ c \in C \mid c(\alpha_{\varphi}) \leq c(\beta_{\varphi}) \text{ for all } \varphi \in \Gamma \}$

 $\bigoplus_{c \in C} c(\beta_{\varphi})$ for all $\varphi \in \Gamma$ } be the sets of evaluations (i.e., groups of participants) that do not oppose Γ . Define $\mathcal{C}^{<\Gamma}$ analogously.

- If $\Gamma \vDash_{\mathcal{P}} \varphi$, then $\Gamma \cup \{\overline{\varphi}\}$ is \mathcal{P} -inconsistent. The reverse is not necessarily true.
- Γ is \mathcal{P} -consistent if and only if Γ is \mathcal{P}^{s} -consistent, i.e.,
 - $\bigcap_{\alpha < \beta \in \Gamma} \mathcal{C}^{<\{\alpha < \beta\}} \cap \bigcap_{\alpha < \beta \in \Gamma} \mathcal{C}^{\le \{\alpha \le \beta\}} \neq \emptyset.$

	\mathcal{P}	$\mathcal{P}(1)$
PCP	NP-complete	
	(reduction	solvable in
	from SAT)	$O(\Gamma \mathcal{C})$ by
	coNP-	constructing
PDP	complete	$C^{\leq \Gamma}$
	(reduction	
	from SAT)	

be the evaluations (i.e., participants) that do not oppose I.

- If $\Gamma \vDash_{\mathcal{P}(1)} \varphi$, then $\Gamma \cup \{\overline{\varphi}\}$ is $\mathcal{P}(1)$ -inconsistent. The reverse is not necessarily true.
- Let $\Gamma \subseteq \mathcal{L}^{\mathcal{A}}$ be $\mathcal{P}(1)$ -consistent. $\mathcal{C}^{\leq \Gamma}$ is the set of evaluations that are contained in **C**-satisfying Pareto models.
- Γ is $\mathcal{P}(1)$ -consistent if and only if $\forall \alpha < \beta \in \Gamma$ there exists $c \in C^{\leq \Gamma}$ with $c(\alpha) < c(\beta)$.

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289

