The Complexity of Greedy Matching Americ Deligkas¹, George Mertzios², Paul Spirakis^{1,3}

(1) University of Liverpool, (2) Durham university, (3) Computer Technology Institute, Greece.

Abstract

Motivated by the fact that in several cases a matching in a graph is stable if and only if it is produced by a greedy algorithm, we study the problem of computing a *maximum weight greedy matching* on weighted graphs, termed **GREEDYMATCHING**. We prove that GREEDYMATCHING is *strongly* **NP**-hard and **APX**-complete, and thus it does not admit a PTAS unless **P=NP**. Moreover we consider natural parameters of the problem, for which we establish a *sharp threshold* behavior between NP-hardness and tractability.

On the positive side, we present a randomized approximation algorithm (RGMA) for GREEDYMATCHING on a special class of weighted graphs, called *bush graphs*. We highlight an unexpected connection between RGMA and the approximation of maximum cardinality matching in unweighted graphs via randomized greedy algorithms.

A Randomized Algorithm

Bush graph An edge-weighted graph G = (V, E) with ℓ edge weight values $w_1 > w_2 > \ldots > w_\ell$ is a *bush graph* if, for every $i \in \{1, 2, \ldots, \ell\}$, the edges of $G(w_i)$ form a *star*, which we call the *i*-th bush.

Rgma Algorithm

Input: Bush Graph G with edge weight values $w_1 > w_2 > \ldots > w_\ell$. **Output:** A greedy matching \mathcal{M}_{RG} . 1. $\mathcal{M}_{RG} \leftarrow \emptyset$ 2. for $i = 1 \dots \ell$ do 3. if $G(w_i) \neq \emptyset$ Select uniformly at random an edge $e_i \in G(w_i)$

Greedy Matching Procedure

Input: Graph G = (V, E), with $w_1 > \ldots > w_\ell$ edge weight values **Output:** Greedy matching \mathcal{M}

- 1. $\mathcal{M} \leftarrow \emptyset$
- 2. for $i = 1 \dots \ell$ do
- 3. while there is an $e \in E$ such that $w(e) = w_i$ do
- Pick an edge $e^* \in E$ with $w(e^*) = w_i$ and add it to \mathcal{M} ; 4.
- Remove all edges adjacent to e^* from E; 5.

The problem

GREEDYMATCHING

INSTANCE: Graph G = (V, E) with positive edge weights. TASK: Compute a maximum weight greedy matching \mathcal{M} for G.

Hardness result

Unless $\mathbf{P} = \mathbf{NP}$, GREEDYMATCHING admits no PTAS:

- 5. Add e_i to \mathcal{M}_{RG}
- Remove from *G* the endpoints of e_i 6.

Maximum Cardinality Matching and Greedy Algorithms

Randomly pick the next (unweighted) edge in the matching \Rightarrow approximation ratio:

 $\blacktriangleright \frac{1}{2}$: [Korte and Hausmann, 1978] $\blacktriangleright \frac{1}{2} + \frac{1}{400.000}$: [Aronson, Dyer, Frieze and Suen, RSA1995] $\blacktriangleright \frac{1}{2} + \frac{1}{256}$: [Poloczek and Szegedy, FOCS'12] But: Experiments indicate a ratio close to $\frac{2}{3}$.

Apply RGMA on unweighted graphs

Bush Decomposition

Input: Unweighted graph G = (V, E) and $\epsilon \ll \frac{1}{|V|^3}$. **Output:** A (weighted) bush graph G^* . 1. Set $k \leftarrow 0$

2. while $E \neq \emptyset$ do

- 3. Chose a random vertex $u \in V$

- even on graphs with maximum degree 3 and
- with at most three different integer weight values on their edges.

Parameters

1. Number of different weights values.

- \triangleright One weight value \rightarrow Maximum cardinality matching.
- ▶ GREEDYMATCHING is NP-hard
 - even on graphs with maximum degree 4,
 - with at most two different weight values,
 - and the graph is bipartite or planar.
- 2. Minimum ratio between weights values.
 - We define $\lambda_i = \frac{w_i}{w_{i+1}}$ for every $i \in [\ell 1]$ and $\lambda_0 = \min_i \lambda_i$
- \triangleright GREEDYMATCHING can be solve in polynomial time if $\lambda_0 \geq 2$.
- ▷ GREEDYMATCHING is strongly **NP**-hard
 - for any constant $\lambda_0 < 2$,
 - even on graphs with maximum degree 3,
 - with at most three different integer weight values.

4. For every $v' \in S := \{v' \in V : (u, v') \in E\}$ set $w(u,v') = 1 - k \cdot \epsilon$

- 5. Remove the edges of *S* from *E*
- 6. $k \leftarrow k + 1$

Theorem

Let ρ be the approximation guarantee of Rgma algorithm on bush graphs. Then, for every $\epsilon < 1$, Rgma computes a $(\rho - \epsilon)$ approximation of the maximum cardinality matching for unweighted graphs.

- ▶ We conjecture that $\rho = \frac{2}{3}$.
- Bush graphs offer new approach to a well studied problem.
- Might be helpful as bush graphs impose a *fixed* ordering of matching the vertices.

Open Questions

- ► Approximation guarantee of RGMA:
- ▷ on bush graphs
- ▷ on general weighted graphs

3. Maximum edge cardinality.

a) $G(w_i)$ is the subgraph of G spanned by the edges of weight w_i . b) μ_i is the maximum edge cardinality of the connected components of $G(w_i)$.

c) $\mu = \max_i \mu_i$.

- $\triangleright \mu = 1 \Rightarrow A$ unique solution for GREEDYMATCHING.
- ▷ GREEDYMATCHING is strongly NP-hard and APX-complete
- for $\mu > 2$,
- even on graphs with maximum degree 3,
- with at most five different integer weight values.

- **Complexity of** GREEDYMATCHING for: ▷ graphs of maximum degree 2 ▷ other parameters?
- *Deterministic* approximation algorithm for GREEDYMATCHING

References

Argyrios Deligkas, George Mertzios, and Paul Spirakis (2016). |1| The Complexity of Greedy matching. http://arxiv.org/abs/1602.05909.

Used template from: http://www.LaTeXTemplates.com

A.Deligkas@liverpool.ac.uk, http://cgi.csc.liv.ac.uk/argyris/