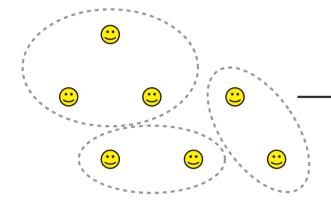
Hedonic Games with **Graph Restricted Communication** Ayumi Igarashi and Edith Elkind, University of Oxford

Hedonic Games with Graph Structure

- ▶ Players have complete preferences over subsets. (e.g. $\{1, 2, 3\} \succ_1 \{1, 2\} \succ_1 \{1, 3\} \succ_1 \{1\}$)
- Question: which partitions are stable?

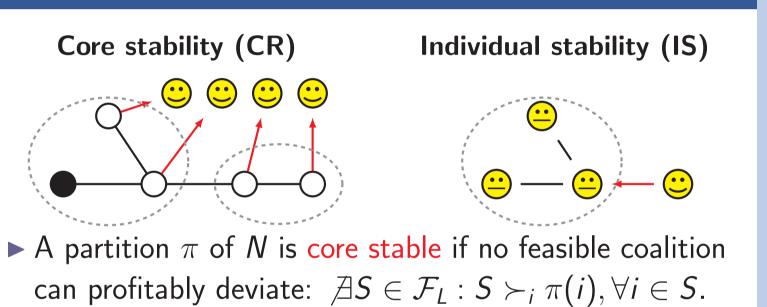
Standard model $(N, (\succeq_i)_{i \in N})$ Our model $(N, (\succeq_i)_{i \in N}, L)$



No restrictions on coalition formation

Only connected subsets can form a coalition. $(\mathcal{F}_{L} = \text{the set of connected subsets of a graph})$

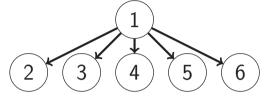
Stability concepts



Acyclic games: Algorithm for CR

A core stable partition can be constructed in time poly($|\mathcal{F}_L|$) if (N, L) is acyclic [Demange, 2004].

- ► Basic idea: Construct a rooted tree and compute a CR partition of each subtree. Each subroot *i* proposes to a coalition from the most preferred to the least preferred until all the subordinates of the coalition accept it.
- **Example:** Star graphs



 $\{1, 2, 4\} \succ_1 \{1, 2\} \succ_1 \{1, 3\} \succ_1 \{1, 4\} \succ_1 \{1\}$ Continue to propose until accepted

The algorithm may require an exponential number of steps but is perhaps optimal. Indeed, it is NP-hard to compute CR for additive games on stars [Igarashi & Elkind, 2016].

Acyclic games: Algorithm for IS

IS can be constructed in time poly(|N|) if (N, L) is acyclic [Igarashi & Elkind, 2016].

► Basic idea: Construct a rooted tree and compute an IS partition of each subtree. Each subroot *i* moves to the most preferred coalition to which *i* can deviate. Then, keep adding a player

A partition π of N is individually stable if no player can profitably deviate to another group without hurting some members of the group: $\forall i \in N$, $\forall S \in \pi \cup \{\emptyset\}$, $S \cup \{i\} \in \mathcal{F}_L \land S \cup \{i\} \succ_i \pi(i) \Rightarrow \exists j \in S : S \succ_i S \cup \{i\}.$

Stable partitions may not exist.

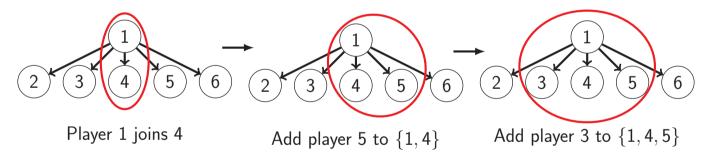
$$N = \{1, 2, 3\}$$
, $L_a = \{\{1, 2\}, \{2, 3\}, \{1, 3\}\}$, $L_b = L_a \setminus \{1, 3\}$

- $1 : \{1,2\} \succ_1 \{1,3\} \succ_1 \{1,2,3\} \succ_1 \{1\}$ 2 : $\{2,3\} \succ_2 \{1,2\} \succ_2 \{1,2,3\} \succ_2 \{2\}$
- $3 : \{1,3\} \succ_3 \{2,3\} \succ_3 \{1,2,3\} \succ_3 \{3\}$
- ▶ The game $(N, (\succeq_i)_{i \in N}, L_a)$ has neither a core stable partition nor an individually stable partition.
- ▶ The game $(N, (\succeq_i)_{i \in N}, L_b)$ has a core and individually stable partition $\{\{1\}, \{2, 3\}\}$.

Acyclic games: CR and IS existence

Every game $(N, (\succeq_i)_{i \in N}, L)$ admits a CR and IS partition if and only if (N, L) is acyclic [Igarashi & Elkind, 2016]. (The core version was proven in [Demange, 2004]). outside of the coalition if she can deviate to i's coalition.

Example: Star graphs



Almost acyclic games: Tractability results

Stable partitions that are resistant to individual deviations can be computed in polynomial time for IRLC and anonymous games whose underlying graph has bounded treewidth [Igarashi & Elkind, 2016].

Summary: computational results

(<i>N</i> , <i>L</i>)	Complete		B-Treewidth		Tree		
\succeq_i	Additive	IRLC	Additive	IRLC	Compact	Additive	IRLC
SCR	Σ_2^p -h	NP-c	NP-h	?	NP-h	NP-h	?
CR	Σ_2^p -h	NP-c	NP-h	?	NP-h	NP-h	Ρ
NS	NP-c	NP-c	NP-c	Р	NP-c	NP-c	Р
INS	NP-c	NP-c	NP-c	Р	NP-c	NP-c	Р
IS	NP-c	NP-c	NP-c	Р	Р	Р	Р

Blue: previous results Red: our results