Competitive fair division of bads, hairy ball theorem and concentration effects

Misha Gavrilovich, Herve Moulin, Fedor Sandomirskiy, Elena Yanovskaya
Laboratory of Game Theory and Decision Making, National Research University Higher School of Economics

Fair division of divisible goods
Example: divorcing partners divide assets

Setting: divisible goods \& additive utilities

- the set A of divisible goods is to be divided between the set of agents N
- x_{a}^{i} is a share of a good a obtained by agent i - each good is completely allocated: $\Sigma_{i \in N} x_{a}^{i}=1$ for all a
- the total utility of agent i is

$$
U^{i}=\Sigma_{a \in A} u_{a}^{i} x_{a}^{i}
$$

Division rule: assigns an allocation x (or a feasible vector of total utilities $\left.U=\left(U^{i}\right)_{i \in N}\right)$ to a utility profile u.

- we do not distinguish x and x^{\prime} if $U(x)=U\left(x^{\prime}\right)$

Competitive Equilibrium with Equal Incomes (CEEI rule)

Allocation x is CEEI iff there exists a vector of prices p s.t.

$$
x^{i}=\operatorname{argmax}_{z: \Sigma_{a} p_{a} z_{a}=1} \Sigma_{a} u_{a}^{i} z_{a},
$$

i.e., all agents have equal budgets and each agent maximizes his total utility given prices and budget constraints.

- Eisenberg-Gale optimization

 problem: CEEI maximizes the Nash product $\Pi_{i \in N} U^{i}$ over all allocations.
CEEI rule is

- Efficient
© Envy-Free (every agents weakly prefers his allocation to the allocation of any other agent) © Single-valued (utilitywise)

The case of bads: so similar and so different

Example: substitutable workers get tasks

- The same formalization as for goods. But now $U^{i}=\Sigma_{a \in A} u_{a}^{i} x_{a}^{i}$ is the disutility obtained by agent i (he wants to minimize it)
A.Bogomolnaia, H.Moulin (2016):
(1)CEEI can be defined in a similar way and always exists;
© CEEI is Efficient and Envy-free;
© CEEI becomes multivalued
(utilitywise);
© Negative results:
- No single-valued rule is Efficient + Continuous +

Envy-Free;

- No single-valued rule is Efficient + Fair Share

Guaranteed + Resource-Monotonic.

What do we do?

- Find the origin of multiplicity of CEEI allocation for bads
- Count the number of different CEEI mod 2 - Show that for large number of random bads multiplicity disappears with high probability

Multiplicity of CEEI

Extending Eisenberg-Gale result

CEEI for goods or for bads are the critical points of the Nash product $\Pi_{i \in N} U^{i}$
(1)CEEI for goods is the global maximum © CEEI for bads are local non-zero minima Remarks:

- concave function on a convex set can have many local minima but only one maximum;
- the global minimum $\Pi_{i \in N} U^{i}=0$ corresponds to giving no bads to some agent.

Example: 2 agents \& 2 objects (goods/bads) $u=\left(\begin{array}{ll}2 & 8 \\ 7 & 3\end{array}\right) \Longrightarrow 3$ CEEI (bads) +1 CEEI (goods)

Counting CEEI modulo 2

Typical oddness

In case of bads the number of different CEEI is odd for almost all utility profiles u (w.r.t. the Lebesgue measure over $\mathbb{R}_{+}^{N \times A}$).

- Corollary: In case of two agents, there is a natural median selector of CEEI correspondence.

Idea of the proof:

- CEEI for goods/bads \Longleftrightarrow points of the feasible set such that the gradient of the Nash product $\Pi_{i \in N} U^{i}$ is orthogonal to the boundary.
- Hairy ball (Poincare-Hopf) "theorem": if you comb a hairy ball, you produce an even number of cowlicks.
- Interpret the gradient projected to the tangent space as an attempt to comb, then cowlicks are CEEI for goods/bads.

Large number of random bads

- two agents and m bads, $m \rightarrow \infty$
- u_{a}^{i} are given by i.i.d. random variables uniformly distributed on $[0,1]$ normalized to sum up to one

Concentration effects

With probability that tends to 1 , as $m \rightarrow \infty$: (1) for any $\varepsilon>0$ the boundary B_{m} of the feasible set lies in ε-neighborhood of the limit boundary B_{∞}

- anti-Pareto part of B_{∞} is given by

$$
U^{2}=\frac{3}{4}\left(1-U^{1}\right)^{2} \quad \text { and } \quad U^{1}=\frac{3}{4}\left(1-U^{2}\right)^{2} ;
$$

aall CEEIs for bads are concentrated in ε-neighborhood of the point $(1 / 3,1 / 3)$, the equilibrium point of the limit cake-cutting problem.

- Interpretation: in case of large number of small bads CEEI is essentially-unique.

Example of concentration effect: 2 agents \& $m=20$ objects; dotted line is the theoretical limit boundary \qquad

Conclusion
© Similarly to the case of goods, CEEI for bads can be computed as a solution of
Eisenberg-Gale-like optimization problem
© But this problem is no longer convex (as in the case of goods) and one seeks for local extrema \Longrightarrow multiplicity of CEEIs
© In a typical problem with bads the number of different CEEIs is odd.
© In a typical problem with large number of small bads all CEEIs lie in a small ball, i.e., CEEI becomes essentially single-valued.

Contact Information

- Web: http://scem.spb.hse.ru/en/ilgt/
- Email: sandomirski@yandex.ru

HIGHER SCHOOL OF ECONOMICS national research university saint petersburg

