

Fachhochschule für öffentliche Verwaltung NRW

Verification in Incomplete Argumentation Frameworks

Dorothea Baumeister, Daniel Neugebauer, Jörg Rothe, and Hilmar Schadrack Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, Germany

What is Abstract Argumentation?

A tool for non-monotonic reasoning, where an argumentation is modelled as a **directed graph**:

atomic arguments \leftrightarrow nodes

Introducing Incompleteness

We want to represent a broader set of application scenarios:

- intermediate states in an elicitation process
- when merging different beliefs about an argumentation framework's state
- cases where complete information cannot be obtained

Previous work:

- *Attack*-incomplete argumentation frameworks were introduced by Coste-Marquis et al. [3] and studied by us [1] with regard to the complexity of verification.
- Argument-incomplete argumentation frameworks were introduced and their complexity was analyzed by us [2].

Argumentation Frameworks [4]

An *argumentation framework* is a pair $\langle \mathcal{A}, \mathcal{R} \rangle$, with a set of *arguments* \mathcal{A} and an *attack relation* $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$.

A subset $\mathcal{S} \subseteq \mathcal{A}$ is

- conflict-free if ∀a, b ∈ S : (a, b) ∉ R,
- admissible if S is conflict-free and ∀a ∈ S : a is acceptable with respect to S,
- *preferred* if *S* is a maximal (w.r.t. set inclusion) admissible set,
- stable if S is conflict-free and ∀b ∈ A \ S : ∃a ∈
 S with (a, b) ∈ R,
- *complete* if *S* is admissible and contains all $a \in A$ that are acceptable w.r.t. *S*, and
- grounded if S is the least (w.r.t. set inclu-

Incomplete Argumentation Frameworks

An *incomplete argumentation framework* is a quadruple $\langle \mathcal{A}, \mathcal{A}^?, \mathcal{R}, \mathcal{R}^? \rangle$, where \mathcal{A} and $\mathcal{A}^?$ are disjoint sets of arguments and \mathcal{R} and $\mathcal{R}^?$ are disjoint subsets of $(\mathcal{A} \cup \mathcal{A}^?) \times (\mathcal{A} \cup \mathcal{A}^?)$.

An argumentation framework $\langle \mathcal{A}^*, \mathcal{R}^* \rangle$ with $\mathcal{A} \subseteq \mathcal{A}^* \subseteq \mathcal{A} \cup \mathcal{A}^?$ and $\mathcal{R}|_{\mathcal{A}^*} \subseteq \mathcal{R}^* \subseteq (\mathcal{R} \cup \mathcal{R}^?)|_{\mathcal{A}^*}$ is called a *completion* of $\langle \mathcal{A}, \mathcal{A}^?, \mathcal{R}, \mathcal{R}^? \rangle$.

s-Verification [5]

Given:An argumentation framework $AF = \langle \mathcal{A}, \mathcal{R} \rangle$ and a subset $S \subseteq \mathcal{A}$.**Question:**Is S an s extension of AF?

S is an **s** extension of $\langle A, R \rangle$ if *S* is **s** in $\langle A, R \rangle$, for all **s** \in {conflict-free, admissible, preferred, stable, complete, grounded}.

s-Inc-Possible-Verification (s-INCPV)

Given:	An	incomplete	argumentation	framework	IAF	=
Question	$\langle \mathcal{A}, \mathcal{A} \rangle$	$\mathcal{A}^{?}, \mathcal{R}, \mathcal{R}^{?} angle$ and	d a set $S \subseteq \mathcal{A} \cup \mathcal{A}$	$\mathcal{A}^{?}$.	such ·	that
$S _{\mathcal{A}^*} = S \cap \mathcal{A}^*$ is an s extension of AF^* ?						liial

s-Inc-Necessary-Verification (s-INCNV)

Given:	An	incomplete	argumentation	framework	IAF	=
Question:	$\langle \mathcal{A}, \mathcal{A} \rangle$ For $S \cap$	$egin{array}{llllllllllllllllllllllllllllllllllll$	d a set $S \subseteq \mathcal{A} \cup \mathcal{A}$ ons $AF^* = \langle \mathcal{A}^*, \mathcal{A}^* \rangle$ nsion of AF^* ?	${\cal A}^?. \ {\cal R}^* angle $	is $S _{\mathcal{A}^*}$	=

Results								
S	VERIFICATION [4]	INCPV	INCNV					
CONFLICT-FREE	in P	in P	in P					
ADMISSIBLE	in P	NP-c.	in coNP					
STABLE	in P	NP-c.	in coNP					
COMPLETE	in P	NP-c.	in coNP					
GROUNDED	in P	NP-c.	in coNP					
PREFERRED	coNP-C.	DP-h., in Σ_2^p	coNP-C.					

References

[1] D. Baumeister, D. Neugebauer, and J. Rothe.

Verification in attack-incomplete argumentation frameworks.

Next Steps

- Close gaps in complexity results
- Cover new semantics
- Consider other decision problems

In *Proc. ADT'15*, pages 341–358. Springer-Verlag *LNAI*, 2015.

- [2] D. Baumeister, J. Rothe, and H. Schadrack.
 Verification in argument-incomplete argumentation frameworks.
 In *Proc. ADT'15*, pages 359–376. Springer-Verlag *LNAI*, 2015.
- [3] S. Coste-Marquis, C. Devred, S. Konieczny, M. Lagasquie-Schiex, and P. Marquis. On the merging of Dung's argumentation systems. *Artificial Intelligence*, 171(10):730–753, 2007.

[4] P. Dung.

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and *n*-person games. *Artificial Intelligence*, 77(2):321–357, 1995.

[5] P. Dunne and M. Wooldridge.

Complexity of abstract argumentation. In I. Rahwan and G. Simari, editors, *Argumentation in Artificial Intelligence*, chapter 5, pages 85–104. Springer, 2009.

http://www.fortschrittskolleg.de/

{baumeister, neugebauer, rothe, schadrack}@cs.uni-duesseldorf.de