In Short

- A new model that extends Strategic Candidacy Games.
- Candidates may choose either to quit or to join the election at a real position.
- Voter positions are fixed and their preferences are determined by the distances from the candidates.
- Best response strategies are poly-time computable for any polynomial voting rule.
- Results on existence of Pure Nash Equilibria for Condorcet-consistent voting rules and positional scoring rules.

Model and Notation

Basics

- The set of voters is $V=\{1, \ldots, n\}$.
- The set of candidates is $C=\left\{c_{1}, \ldots, c_{m}\right\}$.
- Voter positions are given as $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{n}$
- Each candidate c_{i} chooses a strategy $s_{i}=s_{c_{i}} \in \mathbb{R}_{\perp}=\mathbb{R} \cup\{\perp\}$ where \perp denotes withdrawal of candidacy.
- The candidate position vector, AKA state, is $s=\left(s_{1}, \ldots, s_{m}\right) \in \mathbb{R}_{\perp}^{m}$.
- The election winner is denoted by $\mathcal{V}(p, s)$ or simply $\mathcal{V}(s)$.

Preferences

- The positions p, s are mapped to a preference profile \mathcal{P} such that each voter ranks the candidates in increasing distance order.
- All ties are broken either lexicographically, in compliance with a fixed order \succ_{*} over the candidates or randomly, by uniformly sampling the set of valid profiles.
- The most preferred candidate according to \succ_{*} is denoted as c^{*}.
- Voter preferences are denoted by \succ_{i} for every voter $i \in V$.
- Every candidate $c \in C$ has a fixed and predetermined preference order \succ_{c} over the candidate set such that $c \succ_{c} c^{\prime}$ for all $c^{\prime} \neq c$.
- When random tie-breaking is used, we assume each candidate $c \in C$ has a fixed utility function $u_{c}: C \rightarrow \mathbb{R}$ over the possible winners of the election, subject to $u_{c}(a)>u_{c}(b) \Rightarrow a \succ_{c} b$.

Examples notation

- Voters are marked with large dots.
- Candidates are marked with lower case letters.
- Each candidate can position herself freely within the interval drawn beneath.

Voting Rules

- We discuss the following irresolute versions of voting rules, i.e. functions of the form $\mathcal{F}: \mathcal{L}(C)^{n} \rightarrow 2^{C}$ that map preference profiles to subsets of

candidates.

- Monotonic positional scoring rules defined by $\alpha=\left(\alpha_{m}, \ldots, \alpha_{1}\right)$ such that
$\alpha_{m} \geq \cdots \geq \alpha_{1}$, Plurality, in particular.
- Condorcet-consistent voting rules.
- Super Condorcet-consistent (SCC) voting rules - Condorcet-consistent voting rules that always produce the set of Weak Condorcet-winners, if it is nonempty.
- An RCG always has a Weak Condorcet-winner!

Best Responses

Lexicographic tie-breaking

- Let \mathcal{F} be a voting rule that is computable in $O\left(T_{n, m}\right)$ time for any preference profile of n voters over m candidates. For any candidate $c \in C$, the best responses set $\mathcal{B}_{c}(p, s)$ is computable in $O\left(n \cdot m \cdot\left[T_{n, m}+\log (m)\right]\right)$ time, for any $p \in \mathbb{R}^{n}, s \in \mathbb{R}_{\perp}^{m}$.

Random tie-breaking

- Let \mathcal{V} be the Plurality voting rule with random tie-breaking. For any voter and candidate position vectors $p \in \mathbb{R}^{n}, s \in \mathbb{R}_{\perp}^{m}$ and any given candidate $c \in C$, it is possible to compute
in $O(p o l y(n, m))$ time.

Unrestricted Strategies

- Candidates may choose any position in \mathbb{R}.

Lexicographic tie-breaking

- For Condorcet-consistent voting rules when there is a single median position, SCC voting rules and monotonic scoring rules, a NE is only possible if c^{*} is the winner. - For the same rules, for all $s \in \mathbb{R}_{\perp}^{m}$, there is $s_{c^{*}}^{\prime} \in \mathbb{R}$ such that $\left(s_{c^{*}}^{\prime}, s_{-c^{*}}\right)$ is a NE .

Random tie-breaking

- For Condorcet-consistent voting rules when there is a single median position, SCC voting rules and monotonic scoring rules, for all $s \in \mathbb{R}_{\perp}^{m}$ and any candidate $c \in C$, there is $s_{c}^{\prime} \in \mathbb{R}$ such that $\operatorname{Pr}\left(\mathcal{V}\left(s_{c}^{\prime}, s_{-c}\right)=c\right)>0$.

Restricted Strategies with Lexicographic Tie-breaking

- Each candidate c may choose any position within a closed interval I_{c}.
- Ties are broken lexicographically.

Conditions of guaranteed equilibrium existence

Voting Rule	Withdrawals	Single	Median Position
Number of Candidates			
SCC	Yes	Any	Any
Condorcet-consistent	Any	Yes	Any
Monotonic ccoring rule	Yes	Yes	Any
Plurality	Any	Any	2
Plurality	Yes	Any	3

Example 1 without an equilforium

- Plurality; no quitting; 3 or more candidates.
- Ties broken by $a \succ_{*} b \succ_{*} c$.
- Assume $b \succ_{c} a$.

Example 2 without an equilibrium

- Plurality; with or without quitting; 4 or more candidates.
- Ties broken by $\alpha \succ_{*} a \succ_{*} b \succ_{*} c$.
- Assume $b \succ_{c} a$ and $a, c \succ_{b} \alpha$.

Restricted Strategies with Random Tie-breaking

- Each candidate c may choose any position within a closed interval I_{c}.
- Ties are broken randomly.
- Candidates wish to maximize expected utility.

Example 3 without an equilibrium

- Plurality; with or without quitting; 4 or more candidates.
- The utility functions are defined by

Example 4 without an equilibrium

- The voting rule is SCC with fallback (in case there are no Weak Condorcet-winners) to Plurality with lexicographic tie-breaking, subject to $a \succ_{*} b \succ_{*} c \succ_{*} d \succ_{*} e \succ_{*} f$.
- The utility functions are defined by

