

Combinatorial Auctions and LONGEST PATH for DAGs – A Case Study

Summer School on Computational Social Choice, San Sebastián 2016

Janosch Döcker^a

^aJoint work with Britta Dorn and Dominikus Krüger

Combinatorial auctions

Definition 1 (WINNER DETERMINATION). *Given:*

• Goods $A := \{1, 2, ..., n\}$ and

• bids on combinations $C \subseteq A$. A bid can be regarded as a pair of a subset of goods

Reduction to LONGEST PATH in a DAG

• Given: a funnel \mathcal{F} and bids represented by $b: \mathcal{F} \to \mathbb{N} \setminus \{0\}$.

• For each combination $[i, j] \setminus [x, y] \in \mathcal{F}$ we create two vertices $v_{i,j}$ and $v_{x,y}$ (if a

- and a positive integer.
- **Task:** Find revenue maximizing subset of bids, the winners, such that the corresponding combinations are pairwise disjoint.
- For each combination C we only represent the highest bid b(C), which can be found by a simple and efficient preprocessing step [RPH98, p. 1136]. Since WINNER DETER-MINATION is \mathcal{NP} -hard [RPH98] in general, a crucial aspect of practical applicability is finding efficiently solvable special cases.

Figure 1: Instance of WINNER DETERMINATION. The smileys mark the winners.

Discrete intervals, LONGEST PATH

Rothkopf et al. [RPH98] identified several tractable instances of WINNER DETERMINA-TION, e.g., for bids on consecutive integers

- vertex exists already, we do **not** introduce a copy), and the edge $(v_{i,j}, v_{x,y})$ with weight $b([i, j] \setminus [x, y])$.
- The intuition behind a vertex $v_{q,r}$ is that the goods in [q, r] are available. In $v_i := \arg \max_{v_i \in V_e} (j-i)$ all goods of the funnel are available and in v_f none is available by definition, where v_f is a special new vertex.
- Since we do not require all goods to be sold, we have to ensure that from a vertex $v_{s,t}$ all $v_{i,j}$ with an outgoing weighted edge, $v_{i,j} \neq v_{s,t}$ and $s \leq i \leq j \leq t$ are reachable. If there is no edge $(v_{s,t}, v_{i,j})$ with positive weight, we introduce this edge with weight 0.
- Finally, we connect each vertex $v_{x,y}$ without an outgoing edge directly to v_f , i.e., we introduce the edge $(v_{x,y}, v_f)$ with weight 0 (this happens if and only if no combination of the funnel is a subset of [x, y]).
- We call the resulting Graph $G_{\mathcal{F}}$. The longest path (with respect to edge weights) corresponds to an optimal solution of the given instance of WINNER DETERMINATION.

Figure 3 shows the result of this construction for the example shown in Figure 2.

 $[i, j] := \{x \in A : i \le x \le j\}, i, j \in A,$

we call such combinations *discrete intervals*. If bidders are allowed to place a bid on the union of two discrete intervals, WINNER DETERMINATION becomes \mathcal{NP} -hard again [CDS04, Theorem 4]. The union of two discrete intervals can also be regarded as one discrete interval with a gap, i.e., a combination of the form

$[i, j] \setminus [x, y], \quad i < x \le y < j.$

In the following we present a special case of this structure and show that it is tractable by reducing it to LONGEST PATH in a DAG.

Definition 2 (LONGEST PATH). Given a DAG G = (V, E) with edge weights defined by a mapping $g: E \to \mathbb{N}$ and two vertices $v_i, v_f \in V$, find a directed path $\pi = (v_i = v_1, v_2, \dots, v_f = v_{|\pi|})$ that maximizes the path length $\sum_{l=1}^{|\pi|-1} g((v_l, v_{l+1}))$. LONGEST PATH in a DAG can be solved in time $\mathcal{O}(|V| + |E|)$ [SW11, p. 661].

Funnel structure

Definition 3 (Funnel). Let $A := \{1, 2, ..., n\}$ be a set of goods. A set of combinations $\mathcal{F} \subset \{ [i, j] \setminus [x, y] : 1 \le i < x \le y < j \le n \}$

is called a funnel, if there is an injective mapping $f: \mathcal{F} \to \{1, 2, \ldots, |\mathcal{F}|\}$, such that for all $C, C' \in \mathcal{F}$ with $C \neq C'$ the following holds:

 $f(C) < f(C') \Rightarrow i < i' \text{ and } j' < j.$

We can show that the number of combinations of any funnel \mathcal{F} is bounded by $|\mathcal{F}| < \frac{n^3}{2} - \frac{n^2}{2} + \frac{n}{2}$, where n is the number of goods; hence, we have $|\mathcal{F}| \in \mathcal{O}(n^3)$.

Figure 3: Graph $G_{\mathcal{F}}$ for the funnel \mathcal{F} and the bids shown in Figure 2. The dashed edges have weight 0. The longest path from v_i to v_f (marked in red) yields the winners.

Results

By analyzing the construction described above, we can prove the following theorem.

Theorem. Let $A := \{1, 2, ..., n\}$ be a set of goods and \mathcal{F} be a funnel. For these combinations WINNER DETERMINATION can be solved in time $\mathcal{O}(n^3)$.

$$|\mathbf{r}| = 6$$
 $2 + 3$, there is the harder of geode, hence, the hard $|\mathbf{r}| \in \mathbf{C}(n)$.

$$b(C_1) = 5$$

 $b(C_2) = 6$
 $b(C_3) = 4$
 $b(C_4) = 1$
 $b(C_5) = 3$

Figure 2: A funnel \mathcal{F} with corresponding bids.

• Dynamic programming formulation with the same time complexity

• Extension of funnels to include intervals without gaps (the intervals must also satisfy the condition of Definition 3) \rightarrow same asymptotic complexity

References

[CDS04] Vincent Conitzer, Jonathan Derryberry, and Tuomas Sandholm. Combinatorial auctions with structured item graphs. In AAAI, 2004.

[RPH98] Michael H. Rothkopf, Aleksandar Pekeč, and Ronald M. Harstad. Computationally manageable combinational auctions. *Management Science*, 44(8):1131–1147, August 1998.

[SW11] Robert Sedgewick and Kevin Wayne. *Algorithms, 4th Edition*. Addison-Wesley Professional, 2011.

Universität Tübingen Wilhelm-Schickard-Institut für Informatik Mathematische Strukturen in der Informatik Sand 13 · 72076/Tübingen · Germany · Telefon +49 7071 29-70499 · janosch.doecker@uni-tuebingen.de