Combinatorial Auctions
 and Longest Path for DAGs
 - A Case Study

Summer School on Computational Social Choice, San Sebastián 2016

Janosch Döcker ${ }^{\text {a }}$

Combinatorial auctions
Definition 1 (Winner Determination). Given:

- Goods $A:=\{1,2, \ldots, n\}$ and
- bids on combinations $C \subseteq A$. A bid can be regarded as a pair of a subset of goods and a positive integer.
Task: Find revenue maximizing subset of bids, the winners, such that the corresponding combinations are pairwise disjoint.
For each combination C we only represent the highest bid $b(C)$, which can be found by a simple and efficient preprocessing step [RPH98, p. 1136]. Since Winner DeterMINATION is $\mathcal{N} \mathcal{P}$-hard [RPH98] in general, a crucial aspect of practical applicability is finding efficiently solvable special cases.

Figure 1: Instance of WInNer Determination. The smileys mark the winners.
Discrete intervals, LONGEST PATH
Rothkopf et al. [RPH98] identified several tractable instances of WINNER DETERMINATION, e. g., for bids on consecutive integers

$$
[i, j]:=\{x \in A: i \leq x \leq j\}, \quad i, j \in A,
$$

we call such combinations discrete intervals. If bidders are allowed to place a bid on the union of two discrete intervals, Winner Determination becomes $\mathcal{N} \mathcal{P}$-hard again [CDS04, Theorem 4]. The union of two discrete intervals can also be regarded as one discrete interval with a gap, i.e., a combination of the form

$$
[i, j] \backslash[x, y], \quad i<x \leq y<j
$$

In the following we present a special case of this structure and show that it is tractable by reducing it to LONGEST PATH in a DAG.
Definition 2 (Longest Path). Given a DAG $G=(V, E)$ with edge weights defined by a mapping $g: E \rightarrow \mathbb{N}$ and two vertices $v_{i}, v_{f} \in V$, find a directed path $\pi=\left(v_{i}=v_{1}, v_{2}, \ldots, v_{f}=v_{|\pi|}\right)$ that maximizes the path length $\sum_{l=1}^{|\pi|-1} g\left(\left(v_{l}, v_{l+1}\right)\right)$. Longest Path in a DAG can be solved in time $\mathcal{O}(|V|+|E|)$ [SW11, p. 661].
Funnel structure
Definition 3 (Funnel). Let $A:=\{1,2, \ldots, n\}$ be a set of goods. A set of combinations

$$
\mathcal{F} \subset\{[i, j] \backslash[x, y]: 1 \leq i<x \leq y<j \leq n\}
$$

is called a funnel, if there is an injective mapping $f: \mathcal{F} \rightarrow\{1,2, \ldots,|\mathcal{F}|\}$, such that for all $C, C^{\prime} \in \mathcal{F}$ with $C \neq C^{\prime}$ the following holds:

$$
f(C)<f\left(C^{\prime}\right) \Rightarrow i \leq i^{\prime} \text { and } j^{\prime} \leq j
$$

We can show that the number of combinations of any funnel \mathcal{F} is bounded by $|\mathcal{F}| \leq \frac{n^{3}}{6}-\frac{n^{2}}{2}+\frac{n}{3}$, where n is the number of goods; hence, we have $|\mathcal{F}| \in \mathcal{O}\left(n^{3}\right)$.
C_{1}
C_{2}

$$
C_{3}
$$

C_{4}
C_{5}

$$
\begin{aligned}
& b\left(C_{1}\right)=5 \\
& b\left(C_{2}\right)=6 \\
& b\left(C_{3}\right)=4 \\
& b\left(C_{4}\right)=1 \\
& b\left(C_{5}\right)=3
\end{aligned}
$$

Reduction to Longest Path in a DAG

- Given: a funnel \mathcal{F} and bids represented by $b: \mathcal{F} \rightarrow \mathbb{N} \backslash\{0\}$.
- For each combination $[i, j] \backslash[x, y] \in \mathcal{F}$ we create two vertices $v_{i, j}$ and $v_{x, y}$ (if a vertex exists already, we do not introduce a copy), and the edge ($v_{i, j}, v_{x, y}$) with weight $b([i, j] \backslash[x, y])$.
- The intuition behind a vertex $v_{q, r}$ is that the goods in $[q, r]$ are available. In $v_{i}:=\arg \max _{v_{i, j} \in V_{e}}(j-i)$ all goods of the funnel are available and in v_{f} none is available by definition, where v_{f} is a special new vertex.
- Since we do not require all goods to be sold, we have to ensure that from a vertex $v_{s, t}$ all $v_{i, j}$ with an outgoing weighted edge, $v_{i, j} \neq v_{s, t}$ and $s \leq i \leq j \leq t$ are reachable. If there is no edge $\left(v_{s, t}, v_{i, j}\right)$ with positive weight, we introduce this edge with weight 0 .
- Finally, we connect each vertex $v_{x, y}$ without an outgoing edge directly to v_{f}, i.e., we introduce the edge ($v_{x, y}, v_{f}$) with weight 0 (this happens if and only if no combination of the funnel is a subset of $[x, y]$).
- We call the resulting Graph $G_{\mathcal{F}}$. The longest path (with respect to edge weights) corresponds to an optimal solution of the given instance of Winner Determination.

Figure 3 shows the result of this construction for the example shown in Figure 2.

Figure 3: Graph $G_{\mathcal{F}}$ for the funnel \mathcal{F} and the bids shown in Figure 2. The dashed edges have weight 0 . The longest path from v_{i} to v_{f} (marked in red) yields the winners.

Results

By analyzing the construction described above, we can prove the following theorem.
Theorem. Let $A:=\{1,2, \ldots, n\}$ be a set of goods and \mathcal{F} be a funnel. For these combinations Winner Determination can be solved in time $\mathcal{O}\left(n^{3}\right)$.

- Dynamic programming formulation with the same time complexity
- Extension of funnels to include intervals without gaps (the intervals must also satisfy the condition of Definition 3) \rightsquigarrow same asymptotic complexity

References

[CDS04] Vincent Conitzer, Jonathan Derryberry, and Tuomas Sandholm. Combinatorial auctions with structured item graphs. In AAAI, 2004.
[RPH98] Michael H. Rothkopf, Aleksandar Pekeč, and Ronald M. Harstad. Computationally manageable combinational auctions. Management Science, 44(8):1131-1147, August 1998.
[SW11] Robert Sedgewick and Kevin Wayne. Algorithms, 4th Edition. Addison-Wesley Professional, 2011.

