
Challenges in Explaining Decisions (and some links to Social Choice) Khaled Belahcene¹, C. Labreuche², N. Maudet³, V. Mousseau¹ and W. Ouerdane¹

■ MULTI-CRITERIA DECISION AIDING (MCDA)

Contributions

EXPLAINING ROBUST ADDITIVE UTILITY MODELS BY SEQUENCES OF PREFERENCE SWAPS, *THEORY AND DECISION*, IN PRINT

► Problem statement

PI : a set of pairwise preference statements

Model : any satisfying Pareto, Transitivity and Cancellation axioms, e.g.

- any particular Additive Value model, i.e. $x \gtrsim y \iff \sum V_i(x_i) \geq \sum V_i(y_i)$
- *x* is necessarily preferred to *y* iff V(x) ≥ V(y) for every possible Additive Value model correctly representing the PI.
 Recommendation : a preference statement x ≿ y

► Proposed explanation

A sequence of options $x = e_0 \gtrsim e_1 \gtrsim \cdots \gtrsim e_{n-1} \gtrsim e_n = y$

Preference Information

- limited
- diverse
- incomplete
- consistent

From interpretability...

• Axiomatized MCDA models claim "interpretability", but they are hardly intelligible by themselves;

some Preference Model

decision-theoretic stance

computational approach

problem formulation

inference technique

(among many)

٠

- MCDA is structurally a "human in the loop" methodology and process. The Decision Maker's grasp of the stakes is crucial;
- Existing explanation frameworks, designed to complement

- establishing the preference of *x* over *y* (transitivity)
- two adjacent options differ only on 1 (dominance) or 2 (trade-off) criteria

► Results and Challenges

Existence ? Bound on sequence length ? Computation ?

- Necessary Preference + binary PI : Explanations have a term-by-term structure. Efficient algorithm for existence and actual computation. Explanations can be kept short. Proofs use PL/duality, and graph/flows techniques.
- **general case :** Open issues. We provide an example where there is no upper bound on the length of the shortest possible explanations

ACCOUNTABLE CLASSIFICATION WITHOUT FRONTIERS, DA2PL'16, SUBMITTED

> Design principles favoring Accountability

No jargon. No values. No frontiers. No compensation. No inference.

- an object can not outrank any object assigned to a strictly better class;
- an object outranks objects assigned to a strictly worse class;

► Implementation

- the model **observes** every pair of reference objects not assigned to the same class
- it learns sets of sufficient, insufficient, or undecided coalitions of criteria, accounting for monotonicity
- for a given candidate, it recommends every possible assignment not contradicting its principles
- Decision Support Systems non-specifically MCDA, are too lightweight.

LANDMARKS

 I. Alvarez : Explaining the result of a Decision Tree to the End-User. ECAI 2004: 411-415

Real An explanation is more than an arbitrary trace of the decision process

- **2.** S. Greco, V. Mousseau, and R. Slowinski. *Ordinal regression revisited: multiple criteria ranking using a set of additive value functions*. European Journal of Operational Research, 191(2):415-435, 2008.
 - Recessary and possible preference statements in an additive utility MCDA model
- 3. W. Ouerdane, N. Maudet, A. Tsoukiàs: Argument Schemes and Critical Questions for Decision Aiding Process. COMMA 2008: 285-296
 R An interactive MCDA framework based on argumentation techniques. Model selection is addressed from a user-centric perspective.
- **4.** C. Labreuche: A general framework for explaining the results of a multi-attribute preference model. Artif. Intell. 175(7-8): 1410-1448 (2011)
 - Real A principled way of selecting arguments supporting decisions in MCDA models assigning weights to criteria
- **5.** C. Labreuche, N. Maudet, W. Ouerdane: *Justifying Dominating Options when Preferential Information is Incomplete*. ECAI 2012: 486-491
 - Real An effective engine explaining necessary preference statements in a weighted Condorcet model, with duality techniques

• it **explains** its recommendation with supporting statements instantiating specified *argument schemes*

Object	а	b	С	d	Assignment	
A_1	A	A	2.5	False	***	
A_2	A	B	2.1	True	***	
B_1	В	B	1.3	True	**	
B_2	A	C	3.7	False	**	
C_1	В	C	1.6	True	*	
C_2	С	C	4.1	False	*	
Z_1	В	B	1.1	False	?	
Z_2	В	A	1.8	False	??	
Z_3	A	В	1.2	False	???	

	***		**		*		?	?	?
	A_1	A_2	B_1	B_2	C_1	C_2	Z_1	Z_2	Z_3
A_1			abc	abd	abc	abd	abcd	abcd	abcd
A_2			abcd	abd	abc	abd	abcd	acd	abcd
B_1	d	bd			abd	abd	abcd	ad	bcd
B_2	acd	ac			abc	abd	cd	acd	acd
C_1	d	d	acd	bd			acd	acd	cd
C_2	cd	С	С	bcd			cd	cd	cd
Z_1	d	b	$(_{ab})$	bd	$(_{ab})$	abd			
Z_2	bd	bc	abc	bd	$(_{ab})$	abd			
Z_3	$(_{ab})$	$(_{ab})$	(_{ab})	abd	$(_{ab})$	abd			

For example Z_2 should at least be assigned $\star \star$, as Z_2 is at least as good as B_1 on every criteria except d, and abc is established as sufficient by the comparison A_1 vs C_1 .

... to Accountability.

- Accountability is the ability of a human decision maker to own a recommendation made by the system and to *transfer* this own-ership
- It suits MCDA better than mere trust, transparency, or persua-
- 6. Olivier Cailloux and Ulle Endriss, Arguing about Voting Rules, AAMAS-2016
 INF Voting rules are promoted by exhibiting meaningful situations showcasing the underlying axioms
- 7. Spiegler, R. Equilibrium in Justifiable Strategies: A Model of Reason-Based Choice in Extensive-Form Games. The Review of Economic Studies, 69(3), 2002
 In a strategic context, players are restricted to strategies they can account for, leading to a new definition of equilibrium
- siveness, and leads to actual implementation
- Explanations require in-depth understanding of the preference models, and pose interesting computational challenges
- It mixes Decision Theory, Optimization techniques, and several Artificial Intelligence approaches (e.g. knowledge representation, argumentation)

Connections to Computational Choice

- Structure : MCDA and CSC are structurally close, as Choice and Ranking mirrors Voting, and Ordinal Sorting mirrors Judgment Aggregation
- Techniques : Explaining the result of a Social Choice algorithm, or the selection of a particular procedure, could borrow techniques and insights
- Applications : Accountability is particularly needed in situations addressed simultaneously by MCDA and CSC, such as committee decisions
- Complexity : designing a model behaving well w.r.t. Accountability, incorporating requirements for accountability in adversarial contexts, modelling the collective reconstruction of explanations in a context similar to gossip,...

(1) LGI, CentraleSupélec, Univ. Paris Saclay, (2) Thales, (3) LIP6, Univ. Pierre et Marie Curie