THE NUMBER OF PARTIES AND DECISION-MAKING IN LEGISLATURES

Marina Bannikova, Universitat Rovira i Virgili, Spain

Motivation

It is proposed a model of a legislature, formed by several parties, which have to vote for or against a certain bill in the presence of a lobbyist who is interested in a certain outcome of the vote. We show that the easiness to manipulate a legislature decision by the lobbyist is increasing with the number of parties. A high electoral threshold leads to fewer parties represented, and consequently, decreases the easiness to change a legislature decision by the lobbyist. On the other hand, high electoral threshold may cause a misrepresentation of voters. We show that if the threshold is higher that 6 %, the impact of the misrepresentation effect becomes significant.

Legislature

- n **number of parties** in a parliament.
- Each party has a certain **position** about a bill under voting: $D_i \in [-1; 1], i = 1, ..., n$, such that $D_i = 2X_i - 1$, where $X_i \in [0; 1], X_i \sim Beta(\alpha, \alpha), \alpha$ is a given parameter, so that as $\alpha \rightarrow \infty$, then the political system is less ideologically polarized.
- **voting weight** $w_i \sim Poiss(\lambda)$ for each $i \in \{1, ..., n\}$.
- Simple majority voting rule and .

- The lobbyist offers to each party a nonnegative payment $P_i \in [0; 1]$ for voting for the bill, and every party accepts the offer if $P_i - D_i \ge 0$
- L minimises the total amount of payment to parties, taking into

Elections

- of parties compete in elections: • Random number $n' \sim Poiss(\lambda_p).$
- Each party has a random position about the bill: $D'_i \in [-1; 1]$.
- Each party obtains random number of votes: $v_i \sim Poiss(\lambda^*)$.
- Popular preference $\Pi = \{A, R, I\}$ about the bill ("Accept", "Reject", or "Indifferent") is based on v_i and D'_i .
- There is an electoral threshold t, so that some parties do not pass it and therefore, do not get any seat in legislature.

Lobbyist

- The lobbyist has random standing about the bill: $D_L \in [-1; 1]$.
- He offers to each party a nonnegative **payment** $P_i \in [0; 1]$ for voting for the bill, and every party accepts the offer if $P_i - D_i \geq 0.$
- If the lobbyist succeed to bribe parties, the legislature adopts the decision $\Pi_l(t) = \{A, R, I\}$, desired by the lobbyist.
- If the lobbyist cannot bribe the necessary parties, the legislature the legislature adopts the truthful decision, based on D_i and w_i .

'fairness' is decreasing with the threshold.