

Karlsruhe Institute of Technology

Institute of Theoretical Informatics (ITI) **Application-oriented Formal Verification**

Automated Verification for Functional and Relational Properties of Voting Rules [COMSOC 2016]

Bernhard Beckert, Thorsten Bormer, Michael Kirsten, Till Neuber, and Mattias Ulbrich

Motivation

- Voting rules often required (e.g., by constitution) to fulfil axiomatic properties
- Design of voting rules with desired properties non-trivial and error-prone
- Growing complexity with rise of electronic voting increases vulnerability Solution: Computer-aided verification for trustworthy voting rules

Verifying Voting Rules

- Formalisation: Rules as imperative algorithms (C / Java), properties in FOL_N
- **Established** verification techniques: **KeY** and **CBMC** \Rightarrow Deductive Theorem Proving and Bounded Model Checking (BMC)

Relational Specification: Coupling Evaluations

Technique for proving relational (inter-profile) properties, e.g., anonymity Relational properties consider two ballot profiles and election outcomes

Often enables short and concise specifications (only differences)

Functional Specification: Exploiting Symmetries

- Already established symmetry, target: functional (intra-profile) property
- Functional property considers elections individually, e.g., majority criterion
- Symmetry example: Anonymity, operation is ballot permutation

Relational Verification: Examples

Verification using Bounded Model Checking (Tool: CBMC)

- Anonymity Prop.: Indifference to renaming and permutation of voters
- Plurality Rule: Single choice, candidate with plurality of votes is elected • Concise specifications useable for BMC \Rightarrow Guidance for SAT-solver

Verification using Deductive Theorem Proving (Tool: KeY)

Functional Verification: Example

Verification using Bounded Model Checking (Tool: CBMC)

Plurality Rule: Single choice, candidate with plurality of votes is elected

General Approach for Functional Verification

- Verification Task: Does voting rule V satisfy property P?
- Conjecture: V satisfies symmetry property S.

	Plurality Rule	Approval Rule	Range Rule	Borda Count
Anonymity	33	43	44	44
Neutrality	42	56	57	57
Monotonicity	46	47	48	52
Participation	28	50	51	50
Homogeneity	53	70	71	71

Verified various properties (numbers are required lines of specification)

• Proof construction almost fully automatic (< 10 user interactions)

Verification using separate evaluations often not feasible

General Approach

1. Verify S for V using relational techniques

2. Verify V satisfies property P only for subset X

3. Prove that X spans all possible profiles (independent of V!)

4. Prove that S-operations preserve property P (independent of V!)

Conclusion

- General approach: Verification of functional axiomatic properties
- **Feasibility demonstrated** on multiple well-known results

KIT – The Research University in the Helmholtz Association

