

Complexity Results for Manipulation in Judgment Aggregation

Technische Universität Wien Algorithms and Complexity Group dehaan@ac.tuwien.ac.at

Ronald de Haan

Judgment Aggregation (JA)

Combining individual opinions on logically related issues into a group opinion.

- Issues: propositional variables,
 - x_1,\ldots,x_n

Sincere judgments

Integrity constraint: logic formula Γ ,

e.g., $\Gamma = x_1 \leftrightarrow (x_2 \wedge x_3)$

Feasible opinions:

assignments to x_1, \ldots, x_n that satisfy Γ

- Profile: a list of feasible opinions
- Judgment aggregation procedure: takes a profile as input, and outputs a set of feasible opinions (outcomes)

Kemeny rule: outcomes are the feasible opinions that minimize the cumulative Hamming distance to the profile

Hamming distance d(r, r') between r and r': # of issues on which r and r' disagree

Manipulation

Intractability as barrier to manipulation

An individual **reporting an insincere opinion** so that the resulting **group opinion is closer to their true opinion**.

(Logical context: only nonnegative, even numbers)

Manipulation Problems

Manipulation

For JA procedures that produce multiple possible outcomes:

PESSIMISTIC-MANIPULATION(F)

Input: issues x_1, \ldots, x_n , an integrity constraint Γ , and a profile $\overline{r} = (r_1, \ldots, r_p)$.

Question: is there a feasible opinion r'_1 such that for all $r^*_{new} \in \text{KEMENY}(r'_1, r_2, \dots, r_p)$ and for all $r^*_{old} \in \text{KEMENY}(\bar{r})$ it holds that $d(r^*_{new}, r_1) < d(r^*_{old}, r_1)$?

"Can I force each new outcome to be

OPTIMISTIC-MANIPULATION(F)

Input: issues x_1, \ldots, x_n , an integrity constraint Γ , and a profile $\overline{r} = (r_1, \ldots, r_p)$.

Question: is there a feasible opinion r'_1 and some $r^*_{new} \in KEMENY(r'_1, r_2, \dots, r_p)$ such that for all $r^*_{old} \in KEMENY(\bar{r})$ it holds that $d(r^*_{new}, r_1) < d(r^*_{old}, r_1)$?

SUPER-OPTIMISTIC-MANIPULATION(F)

Input: issues x_1, \ldots, x_n , an integrity constraint Γ , and a profile $\overline{r} = (r_1, \ldots, r_p)$.

Question: is there a feasible opinion r'_1 , some $r^*_{new} \in KEMENY(r'_1, r_2, \dots, r_p)$ and some $r^*_{old} \in KEMENY(\overline{r})$ such that $d(r^*_{new}, r_1) < d(r^*_{old}, r_1)$?

"Can I force some new outcome to be

"Can I force some new outcome to be

better than each old outcome?"

better than each old outcome?"

better than some old outcome?"

Computational Complexity

PESSIMISTIC-MANIPULATION(KEMENY), OPTIMISTIC-MANIPULATION(KEMENY), and SUPER-OPTIMISTIC-MANIPULATION(KEMENY) are:

Σp₂-complete

Manipulation is possible, but in the worst case it is computationally very expensive.

Future work:

Discussion

- Look at more JA procedures.
- Look at group manipulation.
- Do these intractability results also work in a parameterized complexity setting?

Questions?

Talk to me and ask me!

